Logica \& Linguaggio, PL: Tableaux

RAFFAELLA BERNARDI

Università di Trento
P.zZA VENEZIA, Room: 2.05, e-mAIL: BERNARDI@DISI.UNITN.IT

Contents

1 Weaker Results 3
2 Tableaux 4
3 Alberi di refutazione (tableaux 5
4 Consequences 6

1. Weaker Results

- If ψ is valid, can we conclude it is satifiable, falsifiable or unsatisfiable?

1. Weaker Results

- If ψ is valid, can we conclude it is satifiable, falsifiable or unsatisfiable? We can conclude ψ is satisfiable:

$$
\text { IF } \forall I, I \models \psi \text { THEN } \exists I, I \models \psi
$$

1. Weaker Results

- If ψ is valid, can we conclude it is satifiable, falsifiable or unsatisfiable? We can conclude ψ is satisfiable:

$$
\text { IF } \forall I, I \models \psi \text { THEN } \exists I, I \models \psi
$$

Satisfiability is a weaker property then validity.

1. Weaker Results

- If ψ is valid, can we conclude it is satifiable, falsifiable or unsatisfiable? We can conclude ψ is satisfiable:

$$
\text { IF } \forall I, I \models \psi \text { THEN } \exists I, I \models \psi
$$

Satisfiability is a weaker property then validity.

- If ψ is unsatisfiable, can we conclude it is satifiable, falsifiable or valid?

1. Weaker Results

- If ψ is valid, can we conclude it is satifiable, falsifiable or unsatisfiable? We can conclude ψ is satisfiable:

$$
\text { IF } \forall I, I \models \psi \text { THEN } \exists I, I \models \psi
$$

Satisfiability is a weaker property then validity.

- If ψ is unsatisfiable, can we conclude it is satifiable, falsifiable or valid? We can conclude ψ is falsifiable:

$$
\text { IF } \forall I, I \not \vDash \psi \text { THEN } \exists I, I \not \models \psi
$$

Falsiability is a weaker property then unsatisifiability.

2. Tableaux

2. Tableaux

$A \wedge B$		
A		
B		

2. Tableaux

$A \wedge B$		$A \vee B$		
A			B	
B				

2. Tableaux

$\begin{gathered} A \wedge B \\ A \\ B \end{gathered}$	$A \stackrel{A \vee B}{\overbrace{B}}$	$\begin{array}{cc} & A \rightarrow B \\ \neg A & \\ & \\ & \\ & \\ \hline \end{array}$

2. Tableaux

$\begin{gathered} A \wedge B \\ A \\ B \end{gathered}$		$\neg_{\neg A} \stackrel{A \rightarrow B}{ }{ }_{B}$
$A \wedge B \stackrel{A \leftrightarrow B}{\wedge} \rightarrow \neg A \wedge \neg B$		

2. Tableaux

$\begin{gathered} A \wedge B \\ A \\ B \end{gathered}$	$\stackrel{\sim}{A}_{\stackrel{A \vee B}{ }}^{\wedge_{B}}$	$\neg_{\neg A} \stackrel{A \rightarrow B}{ }{ }_{B}$
$A \wedge B \stackrel{A \leftrightarrow}{ }_{\stackrel{A}{\wedge}}^{\neg A \wedge \neg B}$	$\begin{gathered} \neg \neg A \\ A \end{gathered}$	

2. Tableaux

$\begin{gathered} A \wedge B \\ A \\ B \end{gathered}$		
$A \wedge B \stackrel{A \leftrightarrow B}{\wedge} \rightarrow \neg A \wedge \neg B$	$\begin{gathered} \neg \neg A \\ A \end{gathered}$	$\stackrel{\neg(A \wedge B)}{\wedge_{\neg A}} \underset{\neg B}{ }$

2. Tableaux

$\begin{gathered} A \wedge B \\ A \\ B \end{gathered}$		
$A \wedge B \stackrel{A \leftrightarrow B}{\wedge} \quad \neg A \wedge \neg B$	$\begin{gathered} \neg \neg A \\ A \end{gathered}$	
$\begin{aligned} & \neg(A \vee B) \\ & \quad \neg A \\ & \quad \neg B \end{aligned}$		

2. Tableaux

$\begin{gathered} A \wedge B \\ A \\ B \end{gathered}$	$\overbrace{B}^{A \vee B}$	
$A \wedge B \stackrel{A \leftrightarrow B}{\wedge} \neg A \wedge \neg B$	$\begin{gathered} \neg \neg A \\ A \end{gathered}$	
$\begin{gathered} \neg(A \vee B) \\ \quad \neg A \\ \quad \neg B \end{gathered}$	$\begin{gathered} \neg(A \rightarrow B) \\ A \\ \neg B \end{gathered}$	

2. Tableaux

$\begin{gathered} A \wedge B \\ A \\ B \end{gathered}$	$\stackrel{\sim}{A}^{\wedge}{ }_{B}^{A \vee B}$	
$A \wedge B \stackrel{A \leftrightarrow B}{\wedge} \rightarrow \neg A \wedge \neg B$	$\begin{gathered} \neg \neg A \\ A \end{gathered}$	$\neg A_{\neg(A \wedge B)}^{{ }^{\wedge}} \underset{\neg B}{ }$
$\begin{gathered} \neg(A \vee B) \\ \quad \neg A \\ \quad \neg B \end{gathered}$	$\begin{gathered} \neg(A \rightarrow B) \\ A \\ \neg B \end{gathered}$	$A \wedge \neg B \stackrel{\neg(A \leftrightarrow B)}{\wedge} \neg A \wedge B$

3. Alberi di refutazione (tableaux

Le tavole di verità non sono l'algoritmo più efficiente. Esistono altre procedure più veloci. Gli alberi di refutazione (tablaux) sono uno di questi:

Si formi una lista di formule con tutte le premesse e la negazione della conclusione. Se si arriva a trovare un'interpretazione per la quale tale lista contiene tutte formule vere, allora quell'interpretazione mostra che esiste un controesempio: l'argomentazione non è valida (non è una conseguenza logica). Se non si riesce a trovare nessuna interpretazione che renda vera tale lista, allora la conclusione non è stata refutata, dunque l'argomentazione è valida.

4. Consequences

You are asked to prove whether ψ is valid by means of tableaux.

- If all branches of your tableaux are open, what do you conclude?

4. Consequences

You are asked to prove whether ψ is valid by means of tableaux.

- If all branches of your tableaux are open, what do you conclude? ψ is satisfiable.

4. Consequences

You are asked to prove whether ψ is valid by means of tableaux.

- If all branches of your tableaux are open, what do you conclude? ψ is satisfiable.

Are you sure you cannot give a stronger answer, i.e. are you sure ψ is not valid?

4. Consequences

You are asked to prove whether ψ is valid by means of tableaux.

- If all branches of your tableaux are open, what do you conclude? ψ is satisfiable.
Are you sure you cannot give a stronger answer, i.e. are you sure ψ is not valid? In order to check whether ψ is valid you have to look at $\neg \psi$.

4. Consequences

You are asked to prove whether ψ is valid by means of tableaux.

- If all branches of your tableaux are open, what do you conclude? ψ is satisfiable.
Are you sure you cannot give a stronger answer, i.e. are you sure ψ is not valid? In order to check whether ψ is valid you have to look at $\neg \psi$. If $\neg \psi$ is unsatisfiable then ψ is also valid.

4. Consequences

You are asked to prove whether ψ is valid by means of tableaux.

- If all branches of your tableaux are open, what do you conclude? ψ is satisfiable.
Are you sure you cannot give a stronger answer, i.e. are you sure ψ is not valid? In order to check whether ψ is valid you have to look at $\neg \psi$.

If $\neg \psi$ is unsatisfiable then ψ is also valid.

- If all branches close: ψ is unsatisfiable.

4. Consequences

You are asked to prove whether ψ is valid by means of tableaux.

- If all branches of your tableaux are open, what do you conclude? ψ is satisfiable.
Are you sure you cannot give a stronger answer, i.e. are you sure ψ is not valid? In order to check whether ψ is valid you have to look at $\neg \psi$.

If $\neg \psi$ is unsatisfiable then ψ is also valid.

- If all branches close: ψ is unsatisfiable.

Can you make a stronger claim?

4. Consequences

You are asked to prove whether ψ is valid by means of tableaux.

- If all branches of your tableaux are open, what do you conclude? ψ is satisfiable.
Are you sure you cannot give a stronger answer, i.e. are you sure ψ is not valid? In order to check whether ψ is valid you have to look at $\neg \psi$.

If $\neg \psi$ is unsatisfiable then ψ is also valid.

- If all branches close: ψ is unsatisfiable.

Can you make a stronger claim?
No this is already a strong result, there is no need to look at $\neg \psi$.

