
Chapter 1

The Logical Approach in Linguistics

The framework of categorial type logic (CTL) [Moo97] developed out of earlier work in
the tradition of categorial grammar. In this chapter, we briefly present these ancestral
lines of research, and we give the reader an idea of the kind of problems that have led
to the introduction of CTL. Readers familiar with the categorial approach to natural
language syntax and semantics can skip this chapter and go directly to Chapter 2.

The present chapter is organized as follows. We start by introducing classical and
combinatory categorial grammars, two formalisms closely related to CTL (Section 1.1).
Then, by highlighting the differences between these frameworks and the logical approach
assumed in this thesis, we introduce the main aspects of CTL (Section 1.2). Moreover,
we discuss the proof theoretical perspective on form-meaning assembly of linguistic
expressions.

1.1 Rule-Based Categorial Grammars

The categorial tradition of natural language analysis goes back to the pioneering works
of Lesniewski [Les29] and Ajdukiewicz [Ajd35]. The ingredients of a categorial grammar
are extremely simple: a system of syntactic categories (or types), and a set of rules to
compute with these types. The categories are either atomic, or they are structured as
‘fractions’ a

b
. Atomic types categorize expressions that in some intuitive sense are ‘com-

plete’; incomplete expressions are assigned a fractional category. The basic combinatory
rule schema takes the form of a kind of ‘multiplication’: from a

b
×b one obtains the cate-

gory a. The algebraic nature of the schemata for category combination was emphasized
by Bar-Hillel in [BH53].

In the section, we discuss two categorial frameworks: the classical categorial gram-
mars of Ajdukiewicz and Bar-Hillel (CG, also known as AB grammars), and the com-
binatory categorial grammars of Steedman (CCG, [Ste00]). These frameworks have the
same category concept, but they have different sets of rule schemata for category com-
bination: the CCG rule set extends the schemata of CG in order to overcome certain
expressive limitations of the classical categorial approach.

1

2 Chapter 1. The Logical Approach in Linguistics

1.1.1 Classical Categorial Grammar

The type language and the rules of classical Categorial Grammar (CG) are defined as
below.

Definition 1.1. [Type Language and Rules of CG] The language of CG is recursively
built over atomic categories by means of the category forming operators \ and /. The
combinatorial behavior of categories is captured by the left/right application rules.

CG language. Given a set of basic categories ATOM, the set of categories CAT is the
smallest set such that:

i. if A ∈ ATOM, then A ∈ CAT;

ii. if A and B ∈ CAT, then A/B and B\A ∈ CAT.

There are two schemata for category combination, backward application (BA) and forward
application (FA) CG rules.

A/B, B ⇒ A [FA]
B, B\A ⇒ A [BA].

[FA] (resp. [BA]) says that when an expression of category A/B (resp. B\A) is concate-
nated with an expression of category B on its right (resp. on its left), it yields a structure
of category A.

To facilitate the comparison between CG and the categorial systems developed by Jim
Lambek (Section 1.2), we present CG as a deductive system (cf. Buszkowski [Bus97]).
Below we define the derives relation, holding between a finite sequence of categories Γ
and a category A.

Definition 1.2. [Derivability Relation] Let ⇒ be the derivability relation between a
finite non-empty sequence of categories Γ and a category B (Γ ⇒ B), fulfilling the
following conditions:

A ⇒ A [id]
Γ, A, Γ′ ⇒ B and ∆ ⇒ A, then Γ, ∆, Γ′ ⇒ B. [cut]

In CG ⇒ is the smallest relation containing the logical axioms [id], the application rules
[BA] and [FA] as non-logical axioms, and it is closed under [cut].

To obtain a grammar G, we add a lexicon to the deductive part. Let Σ be the terminal
alphabet, i.e. the set of basic natural language expressions. The lexicon LEX assigns
a finite number of types to the elements of Σ, i.e. LEX ⊆ Σ × CAT. We say that G
generates a string w1 . . . wn ∈ Σ+ as an expression of category B if and only if there
are categories A1, . . . , An such that (wi, Ai) ∈ LEX and A1, . . . , An ⇒ B. L(G), the
language of G, is the set of strings generated by G for some designated category, the
start symbol of G.

It was shown in [BGS60] that CG has the weak generative capacity of Context Free
Grammar (CFG). But conceptually, CG already improves on CFG. The structured cate-
gory format allows one to replace a stipulated set of rewrite rules by two simple combi-
natory schemata. In phrase structure grammar, this categorial idea later resurfaced in
the form of the X-Bar Theory [Jac77].

1.1. Rule-Based Categorial Grammars 3

In order to get a feeling for the kind of phenomena that can be handled by CG, and
for the limitations of this framework, we introduce an extremely elementary fragment of
English in Example 1.3. We will use the phrases given there as a checklist throughout
this chapter, and come back to them later to see how the descendants of CG improve
on the original framework.

Example 1.3. [English Toy Fragment] The fragment contains simple declarative sen-
tences, with intransitive or transitive verbs; proper names and full noun phrases intro-
duced by determiners; nominal and adverbial modifiers; relative clauses with subject
and object relativization.

(1) a. Lori left.
b. Lori knows Sara.
c. Sara wears the new dress.

(2) a. The student left.
b. Some student left.

(3) a. No student left yet.
b. Some student left already.

(4) a. who knows Lori.
b. which Sara wrote.
c. which Sara wrote there.

(5) a. Every student knows one book.
b. Every student knows some book.
c. No student knows any book.

Let us see whether we can come up with a CG that generates the phrases of our toy
fragment.

Example 1.4. [CG Grammar for the Toy Fragment] Let ATOM be {n, s, np} (for com-
mon nouns, sentences and names, respectively) and LEX as given below:

Lori, Sara np the np/n
student, book, dress n left np\s
knows, wrote, wears (np\s)/np some, every, one, any, no (s/(np\s))/n
which, who (n\n)/(np\s) there, yet, already (np\s)\(np\s)
new, tall n/n

Given the lexicon above, our sample grammar recognizes the strings in (1), (2) and (3)
as expressions of category s; the relative clause in (4-a) is recognized as an expression
of type n\n. By way of illustration, we give the derivations of (1-c) and (4-a). We use
the familiar parse tree format, with vocabulary items as leaves and the types assigned
to them in the lexicon as preterminals.

Sara wears the new dress ∈ s? ; np, (np\s)/np, np/n, n/n, n ⇒ s?

4 Chapter 1. The Logical Approach in Linguistics

Sara
np

wears
(np\s)/np

the
np/n

new
n/n

dress
n

n [FA]

np [FA]

np\s [FA]

s [BA]

who knows Lori ∈ n\n? ; (n\n)/(np\s), (np\s)/np, np ⇒ n\n?

who
(n\n)/(np\s)

knows
(np\s)/np

Lori
np

np\s [FA]

n\n [FA]

Turning to the remaining examples, our CG runs into problems. Let us look at the
relative clauses first. The case of subject relativization (4-a) is derivable from the as-
signment (n\n)/(np\s) to the relative pronoun, but this type will not do for object
relativization (4-b), or for (4-c) where the relativized position is a non-peripheral con-
stituent of the relative clause body. To generate these structures, our CG would have
to multiply lexical assignments in an ad hoc way for each case. Writing tv as an ab-
breviation for (np\s)/np, the assignment ((n\n)/tv)/np to the relative pronoun would
produce (4-b); for the non-peripheral case of relativization, yet another type would be
needed —obviously, not a very satisfactory situation. In a similar way, multiple lexical
assignments would be needed to obtain the examples in (5), with full noun phrases in
direct object position: the lexicon, as it stands, only covers the subject case. Writing
iv as an abbreviation for np\s, the determiners some, every, one, any, no could be
assigned a second type (tv\iv)/n for their occurrence in direct object position.

One way of dealing with this failure to express structural generalizations in lexical
type assignments is to extend the inventory of combinatory rules of CG. The framework
of Combinatory Categorial Grammar, developed by Mark Steedman, offers the most
elaborate proposal for this strategy.

1.1.2 Combinatory Categorial Grammar

For an excellent exposition of Combinatory Categorial Grammar (CCG), we refer the
reader to [Ste00]1. The architecture of CCG is the same as that of CG: we can take
over the definitions of the category language, the derives relation, lexicon, grammar
G and the language generated by L(G) from the previous section, with one important
change: instead of having just the forward/backward application rules as non-logical
axioms, CCG introduces a larger set of rule schemata. The name CCG derives from the
fact that these extra schemata are inspired by the combinators of Curry’s Combinatory
Logic [CF68].

1In order to avoid confusion with the notation and facilitate the comparison between CCG and CTL
we replace the “left-result” notation used in CCG, with the “result on top” one we have being using so
far.

1.1. Rule-Based Categorial Grammars 5

Below we present some of the rule schemata that have been proposed in the CCG
framework, and we return to our toy fragment, to see how they can help in the cases
where CG failed.

Lifting A ⇒ B/(A\B) [T]
Forward Composition A/B, B/C ⇒ A/C [B]
Backward Crossed Composition A/B, A\C ⇒ C/B [B×]

Example 1.5. [Wh-Dependencies] Let us look first at the cases of direct object rela-
tivization in (4-b) and (4-c). Suppose we extend the lexicon given in Example 1.4 with
a second type for which and who: (n\n)/(s/np). Intuitively, this type says that the
relative pronoun looks for a clause with an np missing at the right edge. With the com-
binators [T] and [B], we can compose subject and transitive verb in (4-b), and produce
the required type s/np for combination with the relative pronoun as shown in the deriva-
tion below. The [T] combinator lifts the subject np type into a fractional type s/(np\s)
which can then combine with the transitive verb by means of Forward Composition.

which
(n\n)/(s/np)

Sara
np

s/(np\s) [T] wrote
(np\s)/np

s/np
[B]

n\n [FA]

The combinators [B] and [T] are not enough to parse the phrase in (4-c): which Sara
wrote there. Here, the missing np in the relative clause body comes from a non-peripheral
position, whereas our lexical entry for non-subject relativization insists on a peripheral
missing np, as indicated by the argument subtype s/np for the relative pronoun. To
derive the non-peripheral case of relativization, our CCG grammar has to rely on the
combinator [B×] as illustrated below.

which
(n\n)/(s/np)

Sara
s/(np\s) [T]

wrote
(np\s)/np

there
(np\s)\(np\s)

(np\s)/np
[B×]

s/np
[B]

n\n [FA]

Example 1.6. [Object generalized quantifiers] The next set of examples are the sen-
tences with full noun phrases in direct object position. In our discussion of CG, we
already noticed that the noun phrase some book can be assigned a type which allows it
to combine with a transitive verb by means of Backward Application producing np\s as
a result. A derivation is given in (i) below. In CCG , there is a second option for typing
the direct object: (s/np)\s. This type requires the combination of the subject and the
transitive verb into a constituent of type s/np. This combination, as we have already
seen in the derivation of relative clauses, can be obtained by means of the Composition
combinator [B]. We present the derivations of (5-b) in (i) and (ii). In the discussion
of meaning assembly in Section 1.3, we will come back to these two options for object
generalized quantifiers.

6 Chapter 1. The Logical Approach in Linguistics

(i)

every student

s/(np\s)

knows
(np\s)/np

some book
((np\s)/np)\(np\s)
np\s [BA]

s [FA]

(ii)
every student

s/(np\s)
knows

(np\s)/np

s/np
[B] some book

(s/np)\s
s [BA]

Let us evaluate the CCG strategy. We notice first of all that a combinator like [B×],
which was used in the derivation of non-peripheral cases of extraction, implicitly in-
volves a form of commutativity. It is obvious that such a combinator, if it would be
available in its full generality, would lead to problems of overgeneration. CCG avoids
such problems by restricting the application of combinatory rules to certain categories.
Different languages could impose their individual restrictions on the rules; also, they
can make their individual choices as to which combinators they allow. As for generative
capacity, it is shown in [VW90] that an appropriately restricted version of CCG is weakly
equivalent to linear indexed grammars, which means CCG belongs to the class of mildly
context-sensitive formalisms. Important questions that remain are: What is the set of
combinatory schemata allowed by Universal Grammar? and: Could we refine schemata
in such a way that side conditions on their applicability can be avoided? These questions
will be addressed in the next two sections.

1.2 A Logic of Types: Lambek 1958

At the beginning of this chapter, we commented on the resemblance between complex
categories and fractions in arithmetic, and between the Application schemata and multi-
plication. The crucial insight of Lambek [Lam58] was that one can also see the categories
as logical formulas. The changes introduced by this logical perspective with respect to
the rule-based approach are summarized in Table 1.1. To start with, categories are seen
as formulas and their type forming operators as connectives, i.e. logical constants. As
a result, the rules for category combination can now be formulated as rules of inference
for these connectives, rather than as the non-logical axiom schemata we had in CG and
CCG. Parsing literally becomes a process of deduction in the logic of the categorial type
formulas.

The logical perspective introduces another important theme: the distinction be-
tween proof theory and model theory. In the logical setup, formulas will be assigned
a modeltheoretic interpretation. The syntactic side of derivations (the prooftheoretic
machinery) can then be judged in terms of its soundness and completeness with respect
to the proposed interpretation.

1.2. A Logic of Types: Lambek 1958 7

CG & CCG L
Categories Formulas
Type forming operators Logical constants
Rule schemata Inference Rules
Parsing Deduction

Table 1.1: Rules-based approach vs. logical approach.

1.2.1 Parsing as Deduction

Let us look at the syntax of the Lambek calculus (L) first. Lambek himself presented
his type logic in the format of a Gentzen-style Sequent Calculus [Gen38]. An alternative
(equivalent) presentation2, which is closer to the format we have used in the previous
sections, is the Natural Deduction (N.D.) format.

Definition 1.7. [Natural Deduction Rules for L] Let Γ, ∆ stand for finite non-empty
sequences of formulas and A, B, C for logical formulas. The logical rules of L are:

A ` A
[axiom]

∆ ` B/A Γ ` A

∆, Γ ` B
[/E]

Γ ` A ∆ ` A\B
Γ, ∆ ` B

[\E]

∆, B ` C

∆ ` C/B
[/I]

B, ∆ ` C

∆ ` B\C [\I]

The rules of Forward and Backward Application in this format take the form of the
familiar inference patterns of Modus Ponens, where we see the ‘fractional’ categories
now as ‘implicational’ formulas. Compiling in the Cut rule of our definition of the
‘derives’ relation, we obtain the Elimination rules for ’/’ and ’\’. But the elimination
rules capture only one half of the inferential possibilities of these connectives: they tell
us how we can use an implicational formula in a derivation. To obtain the other half, we
need inference rules to derive an implicational formula. These are the Introduction rules
for the ’/’ and ’\’ connectives. As rules of inference, they give our grammar logic access
to hypothetical reasoning : to obtain a formula C/B (B\C), we withdraw a hypothesis
B as the rightmost (leftmost) assumption of the antecedent sequence of formulas.

On the modeltheoretic side, we want to interpret formulas (i.e. syntactic categories)
as sets of expressions, and the ‘derives’ relation as settheoretic inclusion at the inter-
pretive level. In the systems considered so far, categorial combination was intuitively
interpreted as concatenation. We can make this interpretation precise by considering
semigroup models. It was shown by Pentus in [Pen95] that the calculus of [Lam88] is
indeed sound and complete with respect to this interpretation.

Definition 1.8. [Semigroup Interpretation]

2See [Res00] for a detailed comparison of the two presentations.

8 Chapter 1. The Logical Approach in Linguistics

A B = {xy ∈ M | x ∈ A ∧ y ∈ B}
C/B = {x ∈ M | ∀y(y ∈ B → xy ∈ C)}
B\C = {y ∈ M | ∀x(x ∈ B → xy ∈ C)}.

A pleasant consequence of the shift to the logical perspective is that a number of com-
binators that have the status of non-logical axioms in CCG now turn out to be theorems
of our type logic.

Example 1.9. [Hypothetical Reasoning] We show that the combinatory rules [T] and
[B] of CCG considered above are theorems of L.

The combinator T of CCG. The lifting theorem, which raises a type to a higher
order one3, is a typical application of hypothetical reasoning. Its derivation is illustrated
below.

∆ ` A [(A\B) ` (A\B)]1

∆, (A\B) ` B
[\E]

∆ ` B/(A\B)
[/I]1

The derivation proves that if a structure ∆ is of type A, then it is of type B/(A\B) as
well. The proof is given by hypothetical reasoning: Assume a structure of type A\B,
given ∆ ` A, then ∆ composed with A\B is of type B. Then by withdrawing the
hypothesis by means of the coindexed rule, ∆ is proved to be of the higher order type.
Note that the introduction rule can discharge one hypothesis at a time since we are in
a resource sensitive system..

The combinator B of CCG. The forward composition added in CCG to the function
application of CG is derivable in L as shown below:

∆ ` A/B

Γ ` B/C [C ` C]1

Γ, C ` B
[/E]

∆, Γ, C ` A
[/E]

∆, Γ ` A/C
[/I]1

Similarly to the previous derivation, the combinator is inferred by means of the logical
rules of L. In particular, the derivation is based on the hypothetical reasoning: it starts
by assuming a hypothesis C and it withdraws it once the functions are composed.

Let us turn to the examples of our toy fragment, and present some Lambek derivations
in the sequent-style Natural Deduction format introduced above. The leaves of the
N.D. derivations are axioms A ` A. Some of these leaves correspond to lexical assump-
tions, others to hypothetical assumptions that will have to be withdrawn in the course
of the derivation. To make the derivations more readable, we replace the formula on the
left of ` by the lexical item in the case of lexical assumptions.

3The order of the categories is defined as following: order(A) = 0, if A ∈ ATOM, order(A/B) =
max(order(A), order(B) + 1) and the same holds for (B\A).

1.2. A Logic of Types: Lambek 1958 9

Example 1.10. [Function Application in L] Given the lexicon of our toy grammar, the
expression in (4-a), who knows Lori, is shown to be an expression of type n\n as follows.

who ` (n\n)/(np\s)
knows ` (np\s)/np Lori ` np

knows, Lori ` np\s [/E]

who, knows, Lori ` n\n [/E]

As we discussed above, hypothetical reasoning is applied in the derivation of the combi-
nator [B] which is required to account for right-peripheral extraction. We show how the
structure which Sara wrote is proved to be grammatical in L.

Example 1.11. [Right-Peripheral Extraction in L] The string which Sara wrote is de-
rived as an expression of type n\n, by starting from the lexical entries it consists of and
by assuming a hypothetical np taken as object by the transitive verb.

which ` (n\n)/(s/np)

Sara ` np

wrote ` (np\s)/np [np ` np]1

wrote, np ` np\s [/E]

Sara, wrote, np ` s
[\E]

Sara, wrote ` s/np
[/I]1

which, Sara, wrote ` n\n [/E]

First, the string ‘Sara, wrote, np’ is proved to be of category s. Then, the hypothesis np
is withdrawn. This is done by means of [/I] which produces the formula s/np required
by the type assigned to the relative pronoun.

The type logic L does not succeed in producing a derivation for the case of non-peripheral
extraction which Sara wrote there. As we saw in our discussion of Backward Crossed
Composition [B×], this combinator involves a form of commutativity. This combinator,
in other words, is not a valid theorem of L —it would violate the concatenation inter-
pretation. Summing up, by making the shift to a type logic, we have gained a better
understanding of the CCG combinators, seeing which ones are indeed valid given the in-
terpretation of the type-forming connectives and which ones are not. But as a linguistic
framework, L is not expressive enough to deal with the phenomena illustrated by our toy
fragment. The proof by Mati Pentus [Pen93] that L grammars are context free provides
the formal underpinnings for this claim.

1.2.2 Logical Rules and Structural Rules

The presentation of the antecedent part Γ in a sequent Γ ` A as a sequence of formulas
hides an implicit structural assumption about grammatical composition, viz. that it is
an associative operation, which ignores the hierarchical constituent structure of type
formulas. Lambek in his [Lam61] paper was the first to notice that this assumption is
too strong, and that it leads to overgeneration. The formulation of his [Lam61] system
removes the implicit structural assumption, which means that structural rules have to
be introduced in a fully explicit fashion. The type logics so obtained have a combination

10 Chapter 1. The Logical Approach in Linguistics

of logical rules for the connectives (Introduction and Elimination rules), plus structural
rules of inference for the manipulation of antecedent configurations. Structures are built
from the set of formulas FORM by means of the binary structural operator ◦ as follows.

i. If A ∈ FORM, then A ∈ STRUCT;

ii. If Γ and ∆ ∈ STRUCT, then (Γ ◦ ∆) ∈ STRUCT.

The separation of logical and structural rules makes it possible to generate a family of
logics with the same logical rules, but different structural rules. We refer to this family
as Categorial Type Logics (CTLs). The base logic for this family is the system presented
in [Lam61]: the type logic with absolutely no structural rules. It is usually abbreviated
as NL, because it is obtained from L by dropping associativity.

Definition 1.12. [The Lambek Family]. Logical rules for the base logic NL:

A ` A
[axiom]

∆ ` B/A Γ ` A

(∆ ◦ Γ) ` B
[/E]

Γ ` A ∆ ` A\B
(Γ ◦ ∆) ` B

[\E]

(∆ ◦ B) ` C

∆ ` C/B
[/I]

(B ◦ ∆) ` C

∆ ` B\C [\I]

Structural rules. Let us write Γ[∆] for a structure Γ contaning a distinguished occur-
rence of the substructure ∆. Adding a structural rule of Associativity [ass] to NL , one
obtains L . By adding commutativity [per] to L one obtains LP [Ben88]. The picture is
completed with the non associative and commutative Lambek calculus NLP.

Γ[∆1 ◦ (∆2 ◦ ∆3)] ` C

Γ[(∆1 ◦ ∆2) ◦ ∆3] ` C
[ass]

Γ[(∆2 ◦ ∆1)] ` C

Γ[(∆1 ◦ ∆2)] ` C
[per]

Multimodal systems. The structural rules above apply in a global fashion. While
discussing the linguistic application of L and of CCG, we have noted that we need
control over structural options. In the so-called multimodal version of CTL, the required
control is achieved by distinguishing different modes of composition, which can then
live together and interact within one grammatical logic. In the notation, we keep the
different modes apart by indexing the logical and the structural connectives, i.e. we now
write (\i, /i) and ◦i, where i ∈ I and I is a set of mode indices. The different modes
have the same logical rules, but they can differ in their structural properties. Thus, one
can introduce structural rules locally by restricting them to a certain family of logical
constants. Finally, the addition of modes increases the number of logics which can
be obtained from the base logic. Besides associativity and/or commutativity options
for individual composition modes, one can formulate inclusion and interaction rules for
configurations involving multiple modes.

i. Inclusion structural rules (also known as entropy principles), e.g. if Γ[∆ ◦1 ∆′] ` A
then Γ[∆ ◦2 ∆′] ` A;

1.2. A Logic of Types: Lambek 1958 11

ii. Interaction structural rules which mix distinct modes.

For an illustration of interaction principles, we can return to the non-peripheral extrac-
tion example in our toy fragment. Suppose we have the structural rules below for the
interaction between two modes, ◦ and ◦a.

Γ[∆1 ◦ (∆2 ◦a ∆3)] ` C

Γ[(∆1 ◦ ∆2) ◦a ∆3] ` C
[mixass]

Γ[(∆1 ◦a ∆2) ◦ ∆3] ` C

Γ[(∆1 ◦ ∆3) ◦a ∆2] ` C
[diss]

Example 1.13. [Non-Peripheral Extraction] We modify the lexicon in such a way that ◦
is used for regular phrasal composition, and ◦a for extraction. We need a type assignment
to introduce a wh dependency, and a type assignment to eliminate it. In this example,
these are (n\n)/(s/anp) for the relative pronoun, and (np\s)/anp for the transitive verb,
The derivation of which Sara wrote there is then as follows.

which ` (n\n)/(s/anp)

Sara ` np

wrote ` (np\s)/anp [np ` np]1

wrote ◦a np ` np\s [/aE]
there ` (np\s)\(np\s)

((wrote ◦a np) ◦ there) ` np\s [\E]

Sara ◦ ((wrote ◦a np) ◦ there) ` s
[\E]

Sara ◦ ((wrote ◦ there) ◦a np) ` s
[diss]

(Sara ◦ (wrote ◦ there)) ◦a np ` s
[mixass]

(Sara ◦ (wrote ◦ there)) ` s/anp
[/aI]

1

which ◦ (Sara ◦ (wrote ◦ there)) ` n\n [/E]

Note that the application of the structural rules is lexically anchored. The modes la-
belling the connectives of the types assigned to the transitive verb wrote and the relative
pronoun which drive the structural reasoning in the derivation. The structural rule [diss]
brings the np in the peripheral position and [mixass] makes it available to the abstrac-
tion. The application of these rules is restricted to the environments requiring them.

We have seen that in CCG the above expression is parsed by applying the combinator
[B×]. The latter is derivable in NL extended with the structural rules above. However, the
use of modes to account for long distance phenomena is still not completely satisfactory
since the application of the structural rules is tied to the lexical entries both of the
relative pronoun and the transitive verb, which now gets a special lexical entry that
allows its direct object to be extracted: (np\s)/anp in contrast with the linguistic facts.
We will come back to this point in Chapter 3 after we have explored the algebraic
structure of NL.

The example above illustrate how modes and structural rules can be used to account
for differences among contexts within the same languages. Similarly, these logical tools
are used to account for differences holding across languages. By way of illustration, we
look at Italian and English adjectives.

Example 1.14. [Italian vs. English Adjectives] English and Italian adjectives may differ
in their ordering possibilities with respect to a noun.

12 Chapter 1. The Logical Approach in Linguistics

(6) a. Sara wears a new dress.

b. *Sara wears a dress new.

(7) a. Sara
Sara

indossa
wears

un
a

nuovo
new

vestito.
dress

tr. Sara wears a new dress.

b. Sara
Sara

indossa
wears

un
a

vestito
dress

nuovo.
new

tr. Sara wears a new dress.

As the examples show, some adjectives in Italian require more freedom with respect
to word order than their English counterparts. This crosslinguistic difference can be
expressed by assigning different logical types to Italian and English adjectives. Since
the exhibited structural property is not shared by all Italian phrases, the structural
freedom of the adjectives must have been lexically anchored. This restriction can be
expressed by means of modes. Let us try to make things more concrete by looking at
the derivation of the relevant structures in (6) and (7). Let qp abbreviate the type of
quantifier phrases.

(i) (ii)

a ` qp/n

new ` n/n dress ` n

new ◦ dress ` n
[/E]

a ◦ (new ◦ dress) ` qp
[/E]

a ◦ (dress ◦ new) ` qp
[per•]

∗

un ` qp/n

nuovo ` n/cn vestito ` n

nuovo ◦c vestito ` n
[/cE]

un ◦ (nuovo ◦c vestito) ` qp
[/E]

un ◦ (vestito ◦c nuovo) ` qp
[per•]

The ∗ on the last step of the derivation in (i) marks where the derivation fails in ac-
counting for (6). On the other hand, the use of a commutative composition operator,
introduced by the lexical assignment of nuovo, allows the permutation required to build
the structures in (7).

The logical and structural modules of CTL have been used to account for the constants
of grammatical reasoning and the structural variations, respectively. In Chapter 2, we
show how NL is interpreted by a universal algebraic structure which can be restricted
so to capture the variations expressed by the other CTLs obtained from NL by adding
structural rules.

In this thesis, attention is focused on the logical module. To this end, in Chapter 2
we investigate the algebraic structure of NL and highlight other logical properties which
have not been investigated so far. When we make use of structural rules (Chapter 4), we
apply them to carry semantic information which are universally shared. On the other
hand, when we assume a crosslinguistic perspective, (Chapter 7), the differences across
languages are reduced to different lexical type assignments exploiting the expressivity
of the logical module.

1.2.3 Structural Constraints

It will be clear from the above that structural rules have an effect on the generative ca-
pacity of CTL systems. The base logic NL is strictly context free. By allowing structural

1.3. The Composition of Meaning 13

rules to copy or delete type formulas, the systems become Turing-complete [Car99]. But
it is shown in [Moo02] that with a linearity restriction on structural rules, one stays
within PSPACE, the complexity class of context-sensitive grammars. The linearity con-
straint requires structural rules to be non-expanding in the sense defined below.

Definition 1.15. [Non-Expanding Structural Rules] Given an antecedent configuration
Σ, the length of Σ is defined as follows:

length(∆1 ◦ ∆2) = length(∆1) + length(∆2) + 2
length(∆) = 0.

A structural rule

Γ[Σ′[∆1, . . . , ∆n]] ` C

Γ[Σ[∆π1 , . . . , ∆πn]] ` C

where Σ′ is non empty, is non-expanding if

length(Σ[∆π1 , . . . , ∆πn]) ≤ length(Σ′[∆1, . . . , ∆n]).

1.3 The Composition of Meaning

Linguistic signs have a form and a meaning component. The discussion so far has con-
centrated on the form aspect of grammatical composition. Let us turn now to meaning
assembly and the relation between natural language form and meaning. See [Gam91]
for an introduction to the field of formal semantics. Montague’s Universal Grammar
program [Tho74] provides a general framework to study these issues. The core of this
program is an algebraic formulation of Frege’s principle of compositionality [Fre84]. In-
tuitively, the principle says that the meaning of a complex syntactic expression is a
function of the meaning of its constituent parts and of the derivational steps that have
put them together. Montague formalizes the principle as a mapping between a syntactic
and a semantic algebra. The mapping is a homomorphism, i.e. it preserves structure in
the following sense [Jan97].

Definition 1.16. [Homomorphism] Let A = (A, F) and B = (B, G) be algebras. A
mapping m : A → B is called a homomorphism if there is a mapping m′ : F → G s.t.
for all f ∈ F and all a1, . . . , am ∈ A holds m(f(a1, . . . , an)) = m′(f)(m(a1), . . . , m(an)).

1.3.1 Semantic Types and Typed Lambda Terms

The definition above requires the syntactic algebra and the semantic algebra of a gram-
mar to work in tandem. Syntactic combinatorics is determined by the syntactic cate-
gories, similarly the semantic laws of composition are governed by semantic types. To
set up the form-meaning correspondence, it is useful to build a language of semantic
types in parallel to the syntactic type language.

14 Chapter 1. The Logical Approach in Linguistics

Definition 1.17. [Types] Given a non-empty set of basic types Base, the set of types
TYPE is the smallest set such that

i. Base ⊆ TYPE;

ii. (a, b) ∈ TYPE, if a and b ∈ TYPE.

Note that this definition closely resembles the one of the syntactic categories of CG.
The only difference is the lack of directionality of the functional type (a, b). A function
mapping the syntactic categories into TYPE can be given as follows.

Definition 1.18. [Categories and Types] Let us define a function type : CAT → TYPE
which maps syntactic categories to semantic types.

type(np) = e; type(A/B) = (type(B), type(A));
type(s) = t; type(B\A) = (type(B), type(A));
type(n) = (e, t).

To represent meaning assembly, we use the tools of the typed λ-calculus. Terms are
built out of variables and constants of the various types.

Definition 1.19. [Typed λ-terms] Let VARa be a countably infinite set of variables of
type a and CONa a collection of constants of type a. The set TERMa of λ-terms of type
a is defined by mutual recursion as the smallest set such that the following holds:

i. VARa ⊆ TERMa,

ii. CONa ⊆ TERMa,

iii. (α(β)) ∈ TERMa if α ∈ TERM(a,b) and β ∈ TERMb,

iv. λx.α ∈ TERM(a,b), if x ∈ VARa and α ∈ TERMb.

We represent with αa a term α of type a.

The relevant items are iii. and iv. The former defines function application, the latter
abstraction over variables. The λ is an operator which binds variables following specific
constraints for which it is important to distinguish free and bound variables.

Definition 1.20. [Free and Bound Variables] The set Free(α) of free variables of the
λ-term α is defined by

i. Free(xb) = {xb} if xb ∈ VARb,

ii. Free(cb) = {} if cb ∈ CONb,

iii. Free(α(a,b)(βa)) = Free(α(a,b)) ∪ Free(βa),

iv. Free(λxa.αb) = Free(αb) − {xa}.
A variable v′ is free for v in the expression β iff no free occurrence of v in β is within
the scope of λv′.

Reduction rules determine the equivalence among λ-terms.

1.3. The Composition of Meaning 15

Definition 1.21. [Reduction Rules] The λ-calculus is characterized by the following
reduction rules, where αb([βa/xa])) stands for the result of substituting a term βa for xa

in αb.

(λxa.αb)(βa) ⇒ αb[βa/xa] xa is free for βa in αb β-reduction
λxa.α(a,b)(xa) ⇒ α(a,b) xa is not free in α(a,b) η-reduction

These rules reduce a term into a simpler one. Applying this re-writing system we can
determine whether two terms are logically equivalent, viz. whether they reduce to a com-
mon result. An important theorem concerning λ-calculus is that reduction eventually
terminates with a term that can no longer be reduced using the above reduction rules.
Such a term is said to be in β, η normal form.

The main novelty introduced by Montague is that the interpretation of the type-
theoretical logical system may also serve as the interpretation of natural language ex-
pressions. To this end, he adopted a model theoretic semantics. When applied to natural
language, model theory can be thought of as a theory designed to explain entailment
relations among sentences and consequently to account for truth conditions of meanings.
In order to capture these relations, meanings are seen as objects in an abstract model. A
bit more formally, this is expressed by saying that natural language sentences refer to or
denote objects in the model. In other words, the denotation assigned to typed lambda
terms serve as a bridge to interpret linguistic expressions. Models are pairs consisting
of a frame and a valuation. They are defined below.

Definition 1.22. [Frame] A frame D consists of the collection of basic domains, i.e.
∪α∈BaseDomα and the domains for functional types. The latter are as follows

Dom(a,b) = DomDoma

b = {f | f : Doma → Domb}.
In words, expressions corresponding to functional types, like verb phrases, denote in the
set of functions from the domain of their argument to the domain of their value. In
our case, given the set of individuals E, the domains of functions are built up from the
primitive ones below:

Dome = E and Domt = {1, 0}.

Besides the set of typed domains, a model must include an interpretation function I
mapping the items of the lexicon to elements of the domains.

Definition 1.23. [Model] A model is a pair M = 〈D, I〉 in which the interpretation
of the constant terms lex in the lexicon Lexicon of a given language are obtained as
follow

i. D is a frame;

ii. The interpretation function is I : Lexicon → D, s.t. if α is of type a, I(α) ∈ Doma.

The interpretation function over lexical expressions is extended by the denotation func-
tion which recursively assigns an interpretation to all expressions.

16 Chapter 1. The Logical Approach in Linguistics

Definition 1.24. [Denotation] The denotation [[αa]]
f
M of a λ-term αa with respect to

the model M = 〈D, I〉 and assignment f , where f : VARa → Doma, is given by

i. [[xa]]
f
M = f(xa) if xa ∈ VARa.

ii. [[αa]]
f
M = I(αa) if αa ∈ CONa.

iii. [[α(a,b)(βa)]]
f
M = [[α(a,b)]]

f
M([[βa]]

f
M).

iv. [[λxa.αb]]
f
M = g such that g(d) = [[αb]]

f [xa:=d]
M .

where f [xa := d] stands for the assignment that maps xa to d ∈ Doma and maps ya 6= xa

to f(ya).

Intuitively, the denotation of a term formed by the λ-operator says that applying the
denotation of a functional term λx.α to an object d is the result of evaluating α in an
assignment where x takes the value d.

Remark 1.25. The form and meaning components of linguistic signs are inhabitants of
their corresponding syntactic and semantic types, respectively. The definitions above
say that two signs may differ in their form (belong to different syntactic types) despite
being similar in their meaning (belonging to the same semantic type). Consequently,
the two signs receive the same interpretation denoting the same object in the domain.
For instance, this is the case of signs whose forms are in the syntactic type A/B and
B\A and, therefore, their meanings are in the semantic type (type(B), type(A)) and
are interpreted in the domain Dom(b,a).

1.3.2 Interpretations for the Sample Grammar

Natural language expressions can be interpreted by assuming either a relational or a
functional perspective. We briefly illustrate the two approaches and their connection
by discussing some examples. As a notational convention, we represent the constants in
TERM with special fonts. For the ease of presentation, we do not indicate the semantic
types unless necessary. For instance, the individual Lori is assigned a denotation in
the domain of entities, and is represented by the term lori. The meaning of complex
phrases is built out of the meaning of the lexical items. Thus we must start by adding
the semantic information in the lexicon.

Definition 1.26. [Term Labelled Lexicon] Given a set of basic expressions of a natural
language Σ, a term labeled categorial lexicon is a relation,

LEX ⊆ Σ × (CAT × TERM) such that if (w, (A, α)) ∈ LEX, then α ∈ TERMtype(A)

This constraint on lexical entries enforces the requirement that if the expression w is
assigned a syntactic category A and term α, then the term α is of the appropriate type
for the category A.

Example 1.27. [Extended Lexical Entries] Labelled lexical entries are for instance the
ones below,

1.3. The Composition of Meaning 17

Sara np : sara which (n\n)/(np\s) : λxyz.x(z) ∧ y(z)
Pim np : pim which (n\n)/(np\s) : λxyz.x(z) ∧ y(z)
Lori np : lori some (s/(np\s))/n : λxy.∃z(x(z) ∧ y(z))
knows (np\s)/np : know some ((s/np)\s)/n : λxy.∃z(x(z) ∧ y(z))
student n : student some (tv\(np\s))/n : λxyu.∃z(x(z) ∧ y(z)(u))
professor n : professor every (s/(np\s))/n : λxy.∀z(x(z) → y(z))
tall n/n : tall every ((s/np)\s)/n : λxy.∀z(x(z) → y(z))

Notice the different term assignment for the logical (the determiners and the relative
pronoun) and the non-logical constants.

The denotations of the linguistic expressions are illustrated by the examples below.

Example 1.28. [Relational Interpretation of Non-Logical Constants] Let our model be
based on the set of entities E = {lori, ale, sara, pim} which represent Lori, Ale, Sara
and Pim, respectively. Assume that they all know themselves, plus Ale and Lori know
each other, but they do not know Sara or Pim; Sara does know Lori but not Ale or
Pim. The first three are students whereas Pim is a professor, and both Lori and Pim
are tall. This is easily expressed set theoretically. Let [[w]] indicate the interpretation of
w :

[[sara]] = sara;
[[pim]] = pim;
[[lori]] = lori;
[[know]] = {〈lori, ale〉, 〈ale,lori〉, 〈sara, lori〉,

〈lori, lori〉, 〈ale, ale〉, 〈sara, sara〉, 〈pim, pim〉};
[[student]] = {lori, ale, sara};
[[professor]] = {pim};
[[tall]] = {lori, pim}.

which is nothing else to say that, for example, the relation know is the set of pairs 〈α, β〉
where α knows β; or that ‘student’ is the set of all those elements which are a student.

Alternatively, one can assume a functional perspective and interpret, for example, know
as a function f : Dome → (Dome → Domt). The shift from the relational to the
functional perspective is made possible by the fact that the sets and their characteristic
functions amount to the same thing: if fX is a function from Y to {0, 1}, then X = {y |
fX(y) = 1}. In other words, the assertion ‘y ∈ X’ and ‘fX(y) = 1’ are equivalent.4

The interpretation of complex phrases is obtained by interpreting the corresponding
lambda terms. For example, if walk ∈ CON(e,t) and x ∈ VARe, then walk(x) expresses
the fact that x has the property of walking, whereas λx.walk(x) is an abstraction over
x and it represents the property itself. Moreover, due to the reduction rules of the
lambda calculus the constant walk(e,t) is equivalent to the term λxe.(walk(x))t. Applying
Definition 1.24 this term is denoted by a function g such that for each entity d ∈ Dome,
gives g(d) = 1 iff [[walk(x)]]

f [x:=d]
M = 1, or in other words iff x has the property expressed

by walk.
The logical constants are interpreted by using set theoretical operations as illustrated

below.

4Consquently, the two notations y(z)(u) and y(u, z) are equivalent.

18 Chapter 1. The Logical Approach in Linguistics

Example 1.29. [Logical Constants] By evaluating the lambda expressions in Exam-
ple 1.27 in a model, one obtains the interpretations below:

[[no N]] = {X ⊆ E | [[N]] ∩ X = ∅}.
[[some N]] = {X ⊆ E | [[N]] ∩ X 6= ∅}.
[[every N]] = {X ⊆ E | [[N]] ⊆ X}.
[[N which VP]] = [[N]] ∩ [[VP]].

Generalized quantifiers have attracted the attention of many researchers working on the
interaction between logic and linguistics [KF85, Eij85]. We will come back to them in
Chapter 6.

Taking advantage of the fact that the denotation of all natural language expressions
can be reduced to sets, we can extend our model with a partial order recursively defined
again by means of types [GS84, Ben86].

Definition 1.30. [Partially Ordered Domains] Let M = 〈D,≤, I〉 be our model, where
≤ is defined recursively as follows

If β, γ ∈ Dome, then [[β]] ≤e [[γ]] iff [[β]] = [[γ]]
If β, γ ∈ Domt, then [[β]] ≤t [[γ]] iff [[β]] = 0 or [[γ]] = 1
If β, γ ∈ Dom(a,b), then [[β]] ≤(a,b) [[γ]] iff ∀α ∈ Doma, [[β(α)]] ≤b [[γ(α)]].

Let us look at our toy-model again and check the order relations holding among its
expressions. Establishing such an order is quite immediate when working with sets, and
only appears more complex when using the recursive Definition 1.30.

Example 1.31. [Order Relations] The set denoting the expression tall student, ob-
tained by taking all elements which are in both the sets [[tall]] and [[student]], viz.
[[tall student]] = {lori}, is clearly a subset of the set denoting student, viz. [[student]] =
{lori, ale, sara}. Using functional denotation the proof of [[tall student]] ≤(e,t) [[student]]
is as follows.

[[tall student]] ≤(e,t) [[student]] iff ∀α ∈ De

[[tall student(α)]] ≤t [[student(α)]] iff
[[tall student]]([[α]]) ≤t [[student]]([[α]]) iff
[[tall student]]([[α]]) = 0 or [[student]]([[α]]) = 1.

Assume this is not true, viz. [[tall student]]([[α]]) = 1 and [[student]]([[α]]) = 0. Then
∃d ∈ Dome s.t. d ∈ [[tall student]], but d 6∈ [[student]], which is obviously impossible.
Note, that the inclusion relation is due to the presence of the intersective predicate tall.

Finally, having a formal definition of the domains of interpretation and a partial order
over them, one can distinguish expressions interpreted in the same domain but which
differ with respect to the partial order. For instance, we can distinguish upward (↑Mon)
and downward (↓Mon) monotone functions, where the former preserve and the latter
reverse the partial order. We illustrate this concept by means of the example below.

Example 1.32. [Monotonicity in Natural Language] Let W be our domain of inter-
pretation. Consider the generalized quantifier every N, which has a syntactic category
s/(np\s). It is interpreted as a function in D(e,t) → Dt, defined by

1.4. Putting Things Together 19

[[every N(X)]] = 1 iff card([[N]] − [[X]]) = 0.

To prove that every N is an ↑Mon function, we have to show that whenever [[X]] ≤
[[Y]] then [[every N(X)]] ≤ [[every N(Y)]]. Assume [[every N(X)]] = 1, then it holds
that card([[N]] − [[X]]) = 0 by definition. This implies that for every superset Y of X,
card([[N]]−[[Y]]) = 0. Hence [[X]] ≤ [[Y]] and [[every N(X)]] = 1 implies [[every N(Y)]] = 1
and we are done.

In a similar way, one can prove that, for instance, nobody is a downward monotone
function.

The connection between syntactic categories and semantic types seems to be lost when
looking at the current research in CTL and in the Montagovian school. The catego-
rial grammarians are mostly interested in the grammaticality of linguistic structures,
whereas the Montagovians are focused on their interpretation and entailment relations.
The system presented in Chapter 4 combines again the two traditions by exploiting
their logical connection. In particular, we encode the different monotonicity properties
of GQs in the logical types of a CTL and make use of Definition 1.30 to achieve a proof
theoretical account of natural reasoning.

1.4 Putting Things Together

In this section we explain how the syntactic derivations of the formal grammars discussed
in Sections 1.1 and 1.2 are associated with instructions for meaning assembly.

1.4.1 Rule-Based Approach vs. Deductive Approach

In CG and CCG , the syntactic rules for category combination have the status of non-
logical axioms. To obtain a Montague-style compositional interpretation, we have to
associate them with instructions for meaning assembly in a rule-by-rule fashion. Below
are the combination schemata we have been using paired rule-by-rule with their semantic
interpretation.

Forward Application A/B : f B : x ⇒ A : f(x) [FA]
Backward Application B : x B\A : f ⇒ A : f(x) [BA]
Lifting A : x ⇒ B/(A\B) : λy.yx [T]
Forward Composition A/B : f B/C : g ⇒ A/C : λx.f(gx) [B]
Backward Crossed Composition A/B : g A\C : f ⇒ C/B : λx.f(gx) [B×]

Example 1.33. [Meaning Assembly in CCG] Given the lexical assignments of the la-
belled lexicon above, CCG builds the meaning of which Sara wrote as follows.

which
(n\n)/(s/np) : λxyu.x(u) ∧ y(u)

Sara
np : sara

s/(np\s) : λz.z(sara)
[T] wrote

(np\s)/np : λyx.wrote(x, y)
s/np : λy.wrote(sara, y)

[B]

n\n : λyu.wrote(sara, u) ∧ y(u)
[FA]

20 Chapter 1. The Logical Approach in Linguistics

Note that in the derivation we have hidden the β-conversion rules.

Example 1.34. [Ambiguous Sentences] Let some, some’ and every abbreviate the
lambda terms from our labelled lexicon λx.∃zstudent(z) ∧ x(z), λxu.∃zstudent(z) ∧
x(u, z), and λx.∀zstudent(z) → x(z), respectively. CCG builds the meaning of every
student knows some book as following.

(i)

every student

s/(np\s) : every

knows
(np\s)/np : know

some book
((np\s)/np)\(np\s) : some′

np\s : some′(know)
[BA]

s : every(some′(know))
[FA]

(ii)

every student

s/(np\s) : every
knows

(np\s)/np : know

s/np : λx.every(know x)
[B] some book

(s/np)\s : some

s : some(λx.every(know x))
[BA]

The derivation in (i) (resp. (ii)) gives the subject wide (resp. narrow) scope reading.

1.4.2 Curry-Howard Correspondence

In the Lambek calculus framework, syntactic rules are replaced by logical rules of in-
ference. Therefore, the semantic rules are obtained deductively by exploiting the corre-
spondence between proofs and terms. The famous Curry-Howard correspondence tells
us that every proof in the natural deduction calculus for intuitionistic implicational logic
can be encoded by a typed λ-term and vice versa [How80]. The categorial interpretation
of derivations can be modelled directly on the Curry-Howard result, with the proviso
that in the absence of structural rules in the categorial systems, the obtainable terms
will be a sublanguage of the full λ-calculus.

Let us define the correspondence between the logical rules of NL and the applica-
tion and abstraction rules of the lambda calculus. In a few words, the elimination of
the functional connectives \ and / produces functional application terms, whereas the
abstraction over variables corresponds to the introduction of the functional operators.

Definition 1.35. [Term Assignment for Natural Deduction] Let Γ ` t : A stand for a
deduction of the formula A decorated with the term t from a structured configuration
of undischarged term-decorated assumptions Γ.

x : A ` x : A

Γ ` t : A/B ∆ ` u : B

Γ ◦ ∆ ` t(u) : A
[/E]

(Γ ◦ x : B) ` t : A

Γ ` λx.t : A/B
[/I]

∆ ` u : B Γ ` t : B\A
∆ ◦ Γ ` t(u) : A

[\E]
(x : B ◦ Γ) ` t : A

Γ ` λx.t : B\A [\I]

1.4. Putting Things Together 21

The Lambek calculi are fragments of intuitionistic implicational logic [Abr90]. Conse-
quently, the lambda terms computed by it form a fragment of the full language of lambda
terms. First of all, since empty antecedents are not allowed and the Lambek calculi are
resource sensitive, viz. each assumption is used exactly once, the system reasons about
lambda terms with specific properties: (i) each subterm contains a free variable; and (ii)
no multiple occurrences of the same variable are present. The latter could seem to be
too strong constraint when thinking of linguistic applications. However, this is not the
case as we will discuss at the end of this section (Example 1.42). A formal definition of
the lambda calculus fragment corresponding to LP is given below5.

Definition 1.36. [Fragment of the Lambda Terms for LP] Let Λ(LP) be the largest
LAMBDA ⊆ TERM such that

i. each subterm of α ∈ LAMBDA contains a free variable;

ii. no subterm of α ∈ LAMBDA contains more than one free occurrence of the same
variable;

iii. each occurrence of the λ abstractor in α ∈ TERM binds a variable within its scope.

Derivations for the various Lambek calculi are all associated with LP term recipes.
Therefore, we move from an isomorphism to a weaker correspondence. The correspon-
dence between LP proofs and the lambda calculus was given in [Ben87a, Bus87, Wan92].

Theorem 1.37. Given an LP derivation of a sequent A1, . . . , An ` B one can find a
corresponding construction αa ∈ Λ(LP), and conversely. A term αa ∈ Λ(LP) is called a
construction of a sequent A1, . . . , An ` B iff α has exactly the free variable occurrences
x1
type(An), . . . , x

n
type(An).

While introducing the lambda calculus we spoke of terms in normal forms. These terms
are obtained proof theoretically by defining normal form derivations as following.

Definition 1.38. [Normal Form for Natural Deduction Derivations)] A derivation in
natural deduction format is in normal form when there are no detours in it. A detour
is formed when

i. a connective is introduced and immediately eliminated at the next step.

ii. an elimination rule is immediately followed by the introduction of the same con-
nective.

The rules eliminating these two detours are called reduction rules.

Remark 1.39. The reductions of the detours in i. and in ii. correspond to β-reduction
and η-reduction, respectively. Moreover, note that the above rewriting rules hold for all
Lambek calculi, regardless of their structural rules.

5Again, for the sake of simplicity here we restrict attention to product-free Lambek calculi.
See [Moo97] for the definition of the full systems.

22 Chapter 1. The Logical Approach in Linguistics

By means of example, we give the reduction rule corresponding to η-reduction. The
reader is referred to [Res00] for an extensive presentation of normalization.

[B ` x : B]1

D1....
Γ ` t : B\A

B, Γ ` t(x) : A
[\E]

Γ ` λx.t(x) : B\A [\I]1
rewrites to

D1....
Γ ` t : B\A

in the lambda-calculus the reduction above corresponds to the rewrite rule λx.t(x) ⇒η t
The correspondence between proofs and lambda terms is completed by the following
theorem [Pra65, Gir87, GLT89].

Theorem 1.40. [Normalization] If D is a normal form derivation of x1 : A1, . . . xn :
An ` α : C, then α is in β, η normal form.

Let us now check how this framework accounts for the assembly of form-meaning pairs.
Starting from the labelled lexicon, the task for the Lambek derivational engine is

to compute the lambda term representing the meaning assembly for a complex struc-
ture as a by-product of the derivation that establishes its grammaticality. The crucial
distinction here is between the derivational meaning and the lexical meaning. The
derivational meaning fully abstracts from lexical semantics: it is a general recipe for
meaning assembly from assumptions of the given types.

Practically, one can proceed in two ways: (i) either one starts labeling the axioms of
a derivation with the actual lambda terms assigned in the lexicon, or (ii) one labels the
leaves of the derivation with variables, computes the proof term for the final structure
and then replaces the variables by the actual lambda terms assigned in the lexicon to
the basic constituents. We illustrate the two methods below in Examples 1.41 and 1.42,
respectively.

Example 1.41. [Lifting] Starting from the type assignment Lori ∈ np : lori, one de-
rives the higher order assignments as following:

Lori ` np : lori [np\s ` np\s : x]1

Lori ◦ np\s ` s : x(lori)
[\E]

Lori ` s/(np\s) : λx.x(lori)
[/I]1

[s/np ` s/np : x]1 Lori ` np : lori
s/np ◦ Lori ` s : x(lori)

[/E]

Lori ` (s/np)\s : λx.x(lori)
[\I]1

First of all, note how the system assigns a variable to the hypothesis. The latter is
discharged by means of [/I] (or [\I]) which corresponds to the abstraction over the
variable. Moreover, note that the higher order types in the two derivations are different,
but they correspond to the same lambda terms, i.e. the two structures are correctly
assigned the same meaning.

This example shows how in the CTL framework, the assembly of meaning is a byproduct
of the proof theoretical analysis. In particular, the type-lifting, stipulated in the Mon-
tagovian tradition and explicitly expressed by the [T] combinator in CCG, is obtained
simply by means of logical rules. See [Oeh99] for a discussion about the advantages of
having the lifting as a derivable theorem in the system.

1.5. Key Concepts 23

The relative clause examples in our toy fragment offer a nice illustration of the divi-
sion of labor between lexical and derivational semantics. Intuitively, a relative pronoun
has to compute the intersection of two properties: the common noun property obtained
from the n that is modified, and the property obtained from the body of the rela-
tive clause, a sentence with a np hypothesis missing. In the logical form, this would
come down to binding two occurrences of a variable by one λ binder. On the level of
derivational semantics, one cannot obtain this double binding: the Lambek systems are
resource sensitive, which means that every assumption is used exactly once. But on the
level of lexical semantics, we can overcome this expressive limitation (which is syntacti-
cally well-justified!) by assigning the relative pronoun a double-bind term as its lexical
meaning recipe: which ∈ (n\n)/(s/np) : λxyz.x(z) ∧ y(z). In this way, we obtain the
proper recipe for the relative clause which Sara wrote, namely λyz.wrote(Sara, z)∧y(z),
as shown below.

Example 1.42. [Relative Clause]

which ` (n\n)/(s/np) : X4

Sara ` np : X3

wrote ` (np\s)/np : X1 [x ` np : X2]
1

wrote ◦ x ` np\s : X1X2
[/E]

Sara ◦ (wrote ◦ x) ` s : (X1X2)X3
[\E]

(Sara ◦ wrote) ◦ x ` s : (X1X2)X3
[ass]

Sara ◦ wrote ` s/np : λX3.(X1X2)X3
[/I]1

which ◦ (Sara ◦ wrote) ` n\n : X4(λX3.(X1X2)X3)
[/E]

Note that the structural rules do not effect the meaning assembly. By replacing the vari-
ables X1, . . . , X4 with the corresponding lexical assignments, and applying the reduction
rules, one obtains the proper meaning of the analyzed structure.

1.5 Key Concepts

The main points of this chapter to be kept in mind are the following:

1. Linguistic signs are pairs of form and meaning, and composed phrases are struc-
tures rather than strings.

2. When employing a logic to model linguistic phenomena, grammatical derivations
are seen as theorems of the grammatical logic.

3. The correspondence between proofs and natural language models, via the lambda
terms, properly accounts for the natural language syntax semantics interface.

