Logical Structures in Natural Language: Exercises (to be done in class on Monday 10th) Propositional Logic

Università di Trento

1 Tableaux: Satisfiability of a formula

$$\begin{array}{c} A \land (B \land \neg A) \\ A \\ B \\ \neg A \\ X \end{array}$$

All the branches are closed, the formula is unsatisfiable.

$$\begin{array}{c} (A \rightarrow B) \rightarrow \neg B \\ \neg (A \rightarrow B) & \neg B \\ A \\ \neg B \end{array}$$

The formula is satisfiable.

$$\begin{array}{ccc} A \to (B \to A) \\ \neg A & & B \to A \\ & \neg B & A \end{array}$$

The formula is satisfiable.

$$\begin{array}{cc} (B \rightarrow A) \rightarrow A \\ \neg (B \rightarrow A) & & A \\ B & & \\ \neg A & & \end{array}$$

The formula is satisfiable.

$$\begin{array}{cc} A \to (B \lor \neg C) \\ \neg A & B \lor \neg C \\ B & \neg C \end{array}$$

The formula is satisfiable.

2 Tableaux: Satisfiability of a set of formulas

1.
$$\neg B \rightarrow B$$

2. $\neg (A \rightarrow B)$
3. $\neg A \lor \neg B$
4. A from 2
5. $\neg B$ from 2
6. B B from 1
7. X $\neg A$ $\neg B$ from 3.
 X X

The set of formulas is unsatisfiable.

The second set of formulas is also unsatisfiable.

3 Tableaux: Tautology

We look at those formulas that we have shown to be satisfiable and check whether they are a tautology. We negate the formula, if its negation is unsatasifiable (all branches close) the formula is a tautology.

P.S. Notice, there is typo in the premise. I did the tablueax starting from a different premise than the one used above. There is a negation more.

$$\neg(\neg(A \rightarrow B) \rightarrow \neg B)$$
$$\neg(A \rightarrow B)$$
$$B$$
$$A$$
$$\neg B$$
$$X$$

 $\neg(\neg(A \to B) \to \neg B)$ is unsatisfiable. Hence $\neg(A \to B) \to \neg B$ is a tautology.

$$\neg((B \to A) \to A)$$
$$B \to A$$
$$\neg A$$
$$\neg B$$
$$A$$
X

 $\neg((B \to A) \to A)$ is satisfiable, hence $(B \to A) \to A$ is falsifiable.