1 Evaluation Measures for ranked results

Reminder: Precision and Recall

 $\label{eq:precision} \ensuremath{\mathsf{precision}} = \frac{|\{\ensuremath{\mathsf{retrieved}}\ \ensuremath{\mathsf{documents}}\}| \\ |\{\ensuremath{\mathsf{retrieved}}\ \ensuremath{\mathsf{documents}}\}|$

 $\label{eq:recall} \operatorname{recall} = \frac{|\{\operatorname{relevant} \operatorname{documents}\} \cap \{\operatorname{retrieved} \operatorname{documents}\}|}{|\{\operatorname{relevant} \operatorname{documents}\}|}$

P/R for ranked lists Precision and recall are single-value metrics based on the whole list of documents returned by the system. For systems that return a ranked sequence of documents, it is desirable to also consider the order in which the returned documents are presented by providing the P/R curve.

Average Precision Average precision emphasizes ranking relevant documents higher. It is the average of precisions computed at the point of each of the relevant documents in the ranked sequence:

 $AP = \frac{\text{Sum of all precision values at relevant documents}}{\text{Number of relevant document in the list}}$

Interpolated Precision Interpolation is used to remove the P/R curve's jiggles:

$$P_{interp}(r) = max_{r' \ge r} P(r')$$

the interpolated precision at a certain recall level r is defined as the highest precision found for any recall level $r' \ge r$.

usually the recall levels are fixed (11 point interpolated precision $-0, 10, 20 \dots 100$ percent)

Mean Average Precision for a set of queries is the mean of the average precision scores for each query.

$$MAP = (\sum_{i=1}^Q AP(q))/Q$$

where Q is the number of queries and AP is the average precision.

2 Inter-annotator Agreement

Kappa agreement how much judges agree or disagree.

$$\kappa = \frac{P(A) - P(E)}{1 - P(E)}$$

[0.8 - 1] (good agreement) – [0.67 - 0.8] (fair agreement) – $[\cdot - 0.67]$ (dubious basis for an evaluation).

Example

		Judge 2 Relevance		
		Yes	No	Total
Judge 1	Yes	300	20	320
Relevance	No	10	70	80
	Total	310	90	400

Observed proportion of the times the judges agreed P(A) = (300 + 70)/400 = 370/400 = 0.925

Pooled marginals P(nonrelevant) = (80 + 90)/(400 + 400) = 170/800 = 0.2125

P(relevant) = (320 + 310)/(400 + 400) = 630/800 = 0.7878

Probability that the two judges agreed by chance

 $P(E) = P(nonrelevant)^2 + P(relevant)^2 = 0.2125^2 + 0.7878^2 = 0.665$

Kappa statistic $\kappa = (P(A) - P(E))/(1 - P(E)) = (0.925 - 0.665)/(1 - 0.665) = 0.776$ (still in acceptable range)

3 Exercises

Exercise 1 Consider an information need for which in a collection there are 4 relevant documents. Contrast two systems, A and B; their results have been judged for relevance as below.

Rank	А	В
1	R	Ν
2	Ν	R
3	R	Ν
4	Ν	Ν
5	Ν	R
6	Ν	R
7	Ν	R
8	Ν	Ν
9	R	Ν
10	R	Ν

Compute of each system:

- The P and R without considering the ranking.
- The P and R curve (i.e. considering the ranking.)
- The AP
- The interpolated precision
- The 11 point interpolation precision

Compare the different results.

Exercise 2 Consider the ranked list below retrieved out of a collection of 10,000 documents. The system has retrieved 6 relevant documents but there were 8 relevant documents in the whole collection.

Rank	Judgment
1	R
2	R
3	Ν
4	Ν
5	Ν
6	Ν
7	Ν
8	Ν
9	R
10	Ν
11	R
12	Ν
13	Ν
14	Ν
15	R
16	Ν
17	Ν
18	Ν
19	Ν
20	R

- What is the P@20?
- What is the uniterpolated precision of the system at 25% recall?
- What is the interpolated precision at 33% recall?

Exercise 3 Assume that you have run a system over 4 queries and obtained the following results

Queries			Ra	nk			Tot doc rel
	1	2	3	4	5	6	
1	R	R	R	R	R	R	6
2	R	Ν	Ν	Ν	Ν	Ν	5
3	R	R	Ν	Ν	Ν	Ν	5
4	N	Ν	Ν	\mathbf{R}	Ν	R	7

Compute the MAP.

Exercise 4 Below is a table showing how two human judges rate the relevant of a set of 12 documents to a particular information need. Let us assume that you've written a system that for this query returns the set of documents $\{4, 5, 6, 7, 8\}$.

docID	Judge 1	Judge 2
1	Ν	Ν
2	Ν	Ν
3	R	R
4	R	R
5	R	Ν
6	R	Ν
7	R	Ν
8	R	Ν
9	Ν	R
10	Ν	Ν
11	Ν	R
12	Ν	R

Calculate:

- the kappa agreement between the two judges.
- calculate the P and R of your system if a document is considered relevant only if the two judges agree.
- calculate the P and R of your system if a document is considered relevant only if either judge thinks it is relevant.