Digital Libraries: Relevance Feedback and Query Expansion

RAFFAELLA BERNARDI

UNIVERSITÀ DEGLI STUDI DI TRENTO

P.ZZA VENEZIA, ROOM: 2.05, E-MAIL: BERNARDI@DISI.UNITN.IT
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.15 Pseudo-relevance feedback</td>
<td>25</td>
</tr>
<tr>
<td>2.16 Pseudo-relevance feedback at TREC4</td>
<td>26</td>
</tr>
<tr>
<td>3 Global method: Query Expansion</td>
<td>27</td>
</tr>
<tr>
<td>3.1 Types of user feedback</td>
<td>28</td>
</tr>
<tr>
<td>3.2 Query expansion: Example</td>
<td>29</td>
</tr>
<tr>
<td>3.3 Types of query expansion</td>
<td>30</td>
</tr>
<tr>
<td>3.4 Thesaurus-based query expansion</td>
<td>31</td>
</tr>
<tr>
<td>3.5 Example for manual thesaurus: PubMed</td>
<td>32</td>
</tr>
<tr>
<td>3.6 Automatic thesaurus generation</td>
<td>33</td>
</tr>
<tr>
<td>3.7 Co-occurrence-based thesaurus: Examples</td>
<td>34</td>
</tr>
<tr>
<td>3.8 Query expansion at search engines</td>
<td>35</td>
</tr>
<tr>
<td>4 What do user wants?</td>
<td>36</td>
</tr>
</tbody>
</table>
1. Improving Recall

- Consider query q: [aircraft] . . .
- . . . and document d containing “plane”, but not containing “aircraft”
- A simple IR system will not return d for q.
- Even if d is the most relevant document for q!
- We want to return relevant documents even if there is no term match with the (original) query
1.1. **Options for improving recall**

Loose definition of recall in this lecture: “increasing the number of relevant documents returned to user”

- **Local**: Do a “local”, on-demand analysis for a user query
 - Main local method: *relevance feedback*
 - Part 1

- **Global**: Do a global analysis once (e.g., of collection) to produce *thesaurus*
 - Use thesaurus for query expansion
 - Part 2
2. **Relevance feedback: Basics**

Idea: You may not know what you are looking for, but you’ll know when you see it.

- The user issues a (short, simple) query.
- The search engine returns a set of documents.
- User marks some docs as relevant, some as nonrelevant.
- Search engine computes a new representation of the information need. Hope: better than the initial query.
- Search engine runs new query and returns new results.
- New results have (hopefully) better recall.
- We can iterate this: several rounds of relevance feedback.
2.1. Rocchio’ algorithm

We want to find a query vector that maximizes similarity with relevant documents (C_r) while minimizing similarity with nonrelevant documents (C_{nr}).

- The Rocchio’ algorithm implements relevance feedback in the vector space model.
- Rocchio’ chooses the query \vec{q}_{opt} that maximizes

$$\vec{q}_{opt} = argmax_{\vec{q}} [\text{sim}(\vec{q}, C_r) - \text{sim}(\vec{q}, C_{nr})]$$

- Intent: \vec{q}_{opt} is the vector that separates relevant and nonrelevant docs maximally.

the optimal query is the vector difference between the centroids of the relevant and non-relevant documents. (note we only have a partial knowledge of these two sets.)
2.2. Rocchio in a picture

Rocchio in Pictures

Query vector: \(\alpha \cdot \text{original query vector} \) + \(\beta \cdot \text{positive feedback vector} \) - \(\gamma \cdot \text{negative feedback vector} \)

Typically, \(\gamma < \beta \)

| Original query | \(\alpha = 1.0 \) | New query | \(\beta = 0.5 \)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>([0, 4, 0, 8, 0, 0])</td>
<td>([0, 4, 0, 8, 0, 0])</td>
<td>(\text{Positive Feedback} [2, 4, 8, 0, 0, 2] (\text{+}))</td>
<td></td>
</tr>
<tr>
<td>([8, 0, 4, 4, 0, 16])</td>
<td>(\beta = 0.25)</td>
<td>(\text{Negative feedback} [8, 0, 4, 4, 0, 16] (\text{-}))</td>
<td></td>
</tr>
<tr>
<td>(-1, 6, 3, 7, 0, -3)</td>
<td></td>
<td></td>
<td>(Reduction)</td>
</tr>
</tbody>
</table>

\(\text{New query} = \alpha \cdot \text{original query} + \beta \cdot \text{positive feedback} - \gamma \cdot \text{negative feedback}\)
2.3. Relevance Feedback: Example 1

Shopping related 607,000 images are indexed and classified in the database. Only one keyword is allowed!

bike

Search

Designed by Baris Sumengen and Shawn Newsam

Powered by JLAMP2000 (Java, Linux, Apache, Mysql, Perl, Windows2000)
2.4. Results for initial query

![Image of search results with various images of bikes and motorcycles]
2.5. User feedback: Select what is relevant
2.6. Results after relevance feedback
Example 2: A real (non-image) example

Initial query: [new space satellite applications]

Results for initial query: ($r = \text{rank}$)

<table>
<thead>
<tr>
<th>r</th>
<th>0.539</th>
<th>NASA Hasn’t Scrapped Imaging Spectrometer</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ 1</td>
<td></td>
<td>NASA Scratches Environment Gear From Satellite Plan</td>
</tr>
<tr>
<td>3</td>
<td>0.528</td>
<td>Science Panel Backs NASA Satellite Plan, But Urges Launches of Smaller Probes</td>
</tr>
<tr>
<td>4</td>
<td>0.526</td>
<td>A NASA Satellite Project Accomplishes Incredible Feat: Staying Within Budget</td>
</tr>
<tr>
<td>5</td>
<td>0.525</td>
<td>Scientist Who Exposed Global Warming Proposes Satellites for Climate Research</td>
</tr>
<tr>
<td>6</td>
<td>0.524</td>
<td>Report Provides Support for the Critics Of Using Big Satellites to Study Climate</td>
</tr>
<tr>
<td>7</td>
<td>0.516</td>
<td>Arianespace Receives Satellite Launch Pact From Telesat Canada</td>
</tr>
<tr>
<td>+ 8</td>
<td>0.509</td>
<td>Telecommunications Tale of Two Companies</td>
</tr>
</tbody>
</table>

User then marks relevant documents with “+”.
2.8. Expanded query after relevance feedback

2.074 new | 15.106 space
30.816 satellite | 5.660 application
5.991 nasa | 5.196 eos
4.196 launch | 3.972 aster
3.516 instrument | 3.446 arianespace
3.004 bundespost | 2.806 ss
2.790 rocket | 2.053 scientist
2.003 broadcast | 1.172 earth
0.836 oil | 0.646 measure

Compare to original query: [new space satellite applications]
2.9. Results for expanded query

<table>
<thead>
<tr>
<th>r</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>1</td>
<td>0.513 NASA Scratches Environment Gear From Satellite Plan</td>
</tr>
<tr>
<td>*</td>
<td>2</td>
<td>0.500 NASA Hasn’t Scrapped Imaging Spectrometer</td>
</tr>
<tr>
<td>3</td>
<td>0.493 When the Pentagon Launches a Secret Satellite, Space Sleuths Do Some Spy Work of Their Own</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.493 NASA Uses ‘Warm’ Superconductors For Fast Circuit</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>5</td>
<td>0.492 Telecommunications Tale of Two Companies</td>
</tr>
<tr>
<td>6</td>
<td>0.491 Soviets May Adapt Parts of SS-20 Missile For Commercial Use</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.490 Gaping Gap: Pentagon Lags in Race To Match the Soviets In Rocket Launchers</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.490 Rescue of Satellite By Space Agency To Cost $90 Million</td>
<td></td>
</tr>
</tbody>
</table>

* marks the documents which were judges as relevant.
2.10. Relevance feedback: Assumptions

- When can relevance feedback enhance recall?

- Assumption A1: The user knows the terms in the collection well enough for an initial query.

- Assumption A2: Relevant documents contain similar terms (so I can “hop” from one relevant document to a different one when giving relevance feedback).
2.11. **Violation of A1**

Assumption A1: The user knows the terms in the collection well enough for an initial query.
2.11. Violation of A1

Assumption A1: The user knows the terms in the collection well enough for an initial query.

- Violation: Mismatch of searcher’s vocabulary and collection vocabulary
- Example: cosmonaut / astronaut
2.12. Violation of A2

Assumption A2: Relevant documents are not similar.
2.12. Violation of A2

Assumption A2: Relevant documents are not similar.

- Example for violation: [contradictory government policies]
- Why is relevance feedback unlikely to increase recall substantially for this query?
- Several unrelated “prototypes”
 - Subsidies for tobacco farmers vs. anti-smoking campaigns
 - Aid for developing countries vs. high tariffs on imports from developing countries
- Relevance feedback on tobacco docs will not help with finding docs on developing countries.
2.13. Relevance feedback: Evaluation

- Pick one of the evaluation measures from last lecture, e.g., precision in top 10: $P@10$
- Compute $P@10$ for original query q_0
- Compute $P@10$ for modified relevance feedback query q_1
- In most cases: q_1 is spectacularly better than q_0!
- Is this a fair evaluation?

- Fair evaluation must be on “residual” collection: docs not yet judged by user.
- Studies have shown that relevance feedback is successful when evaluated this way.
- Empirically, one round of relevance feedback is often very useful. Two rounds are marginally useful.

- Fair evaluation must be on “residual” collection: docs not yet judged by user.
- Studies have shown that relevance feedback is successful when evaluated this way.
- Empirically, one round of relevance feedback is often very useful. Two rounds are marginally useful.

Evaluation: Caveat

- True evaluation of usefulness must compare to other methods taking the same amount of time.
- Alternative to relevance feedback: User revises and resubmits query.
- Users may prefer revision/resubmission to having to judge relevance of documents.
- There is no clear evidence that relevance feedback is the “best use” of the user’s time.
2.15. **Relevance feedback: Problems**

- Relevance feedback is expensive.
 - Relevance feedback creates long modified queries.
 - Long queries are expensive to process.

- Users are reluctant to provide explicit feedback.

- It’s often hard to understand why a particular document was retrieved after applying relevance feedback.

- The search engine Excite had full relevance feedback at one point, but abandoned it later.
2.16. **Pseudo-relevance feedback**

- Pseudo-relevance feedback automates the “manual” part of true relevance feedback.

- Pseudo-relevance algorithm:
 - Retrieve a ranked list of hits for the user’s query
 - Assume that the top \(k \) documents are relevant.
 - Do relevance feedback (e.g., Rocchio)

- Works very well on average

- But can go horribly wrong for some queries.

- Several iterations can cause *query drift*.
2.17. Pseudo-relevance feedback at TREC4

- Cornell SMART system

- Results show number of relevant documents out of top 100 for 50 queries (so total number of documents is 5000):

<table>
<thead>
<tr>
<th>method</th>
<th>number of relevant documents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inc.ltc</td>
<td>3210</td>
</tr>
<tr>
<td>Inc.ltc-PsRF</td>
<td>3634</td>
</tr>
<tr>
<td>Lnu.ltu</td>
<td>3709</td>
</tr>
<tr>
<td>Lnu.ltu-PsRF</td>
<td>4350</td>
</tr>
</tbody>
</table>

- Results contrast two length normalization schemes (L vs. l) and pseudo-relevance feedback (PsRF).

- The pseudo-relevance feedback method used added only 20 terms to the query. (Rocchio will add many more.)

- This demonstrates that pseudo-relevance feedback is effective on average.
3. **Global method: Query Expansion**

- Query expansion is another method for increasing recall.
- We use “global query expansion” to refer to “global methods for query reformulation”.
3. **Global method: Query Expansion**

- Query expansion is another method for increasing recall.
- We use “global query expansion” to refer to “global methods for query reformulation”.
- In global query expansion, the query is modified based on some global resource, i.e. a resource that is not query-dependent.
- Main information we use: (near-)synonymy
- A publication or database that collects (near-)synonyms is called a thesaurus.
3. **Global method: Query Expansion**

- Query expansion is another method for increasing recall.
- We use “global query expansion” to refer to “global methods for query reformulation”.
- In global query expansion, the query is modified based on some global resource, i.e. a resource that is not query-dependent.
- Main information we use: (near-)synonymy
- A publication or database that collects (near-)synonyms is called a thesaurus.
- We will look at two types of thesauri: manually created and automatically created.
3.1. Types of user feedback

- User gives feedback on documents.
 - More common in relevance feedback
- User gives feedback on words or phrases.
 - More common in query expansion
- Relevance feedback can also be thought of as a type of query expansion.
- We add terms to the query.
- The terms added in relevance feedback are based on “local” information in the result list.
- The terms added in query expansion are often based on “global” information that is not query-specific.
3.2. Query expansion: Example
3.3. Types of query expansion

- Manual thesaurus (maintained by editors, e.g., PubMed)
- Automatically derived thesaurus (e.g., based on co-occurrence statistics)
- Query-equivalence based on query log mining (common on the web as in the “palm” example)
3.4. Thesaurus-based query expansion

- For each term t in the query, expand the query with words the thesaurus lists as semantically related with t.

- Example: hospital \rightarrow medical

- Generally increases recall

- May significantly decrease precision, particularly with ambiguous terms
 - interest rate \rightarrow interest rate fascinate

- Widely used in specialized search engines for science and engineering

- It’s very expensive to create a manual thesaurus and to maintain it over time.

- A manual thesaurus has an effect roughly equivalent to annotation with a controlled vocabulary.
3.5. Example for manual thesaurus: PubMed
3.6. **Automatic thesaurus generation**

- Attempt to generate a thesaurus automatically by analyzing the distribution of words in documents

- Fundamental notion: similarity between two words

- Definition 1: Two words are similar if they co-occur with similar words.
3.6. Automatic thesaurus generation

- Attempt to generate a thesaurus automatically by analyzing the distribution of words in documents

- Fundamental notion: similarity between two words

- Definition 1: Two words are similar if they co-occur with similar words.
 - “car” ≈ “motorcycle” because both with “road”, “gas” and “license”, so they must be similar.

- Definition 2: Two words are similar if they occur in a given grammatical relation with the same words.
 - You can harvest, peel, eat, prepare, etc. apples and pears, so apples and pears must be similar.

- Co-occurrence is more robust, grammatical relations are more accurate.
3.7. Co-occurrence-based thesaurus: Examples

<table>
<thead>
<tr>
<th>Word</th>
<th>Nearest neighbors</th>
</tr>
</thead>
<tbody>
<tr>
<td>absolutely</td>
<td>absurd whatsoever totally exactly nothing</td>
</tr>
<tr>
<td>bottomed</td>
<td>dip copper drops topped slide trimmed shimer stunningly superbly plucky witty</td>
</tr>
<tr>
<td>captivating</td>
<td>dog porch crawling beside downstairs repellant lotion glossy sunscreen skin gel</td>
</tr>
<tr>
<td>doghouse</td>
<td>reconciliation negotiate case concilation hoping bring wiping could some would</td>
</tr>
<tr>
<td>makeup</td>
<td>drawings Picasso Dali sculptures Gauguin toxins bacteria organisms bacterial parasite</td>
</tr>
<tr>
<td>mediating</td>
<td>grasp psyche truly clumsy naive innate</td>
</tr>
<tr>
<td>keeping</td>
<td></td>
</tr>
<tr>
<td>lithographs</td>
<td></td>
</tr>
<tr>
<td>pathogens</td>
<td></td>
</tr>
<tr>
<td>senses</td>
<td></td>
</tr>
</tbody>
</table>
3.8. Query expansion at search engines

- Main source of query expansion at search engines: query logs

- Example 1: After issuing the query [herbs], users frequently search for [herbal remedies].

 → “herbal remedies” is potential expansion of “herb”.

- Example 2: Users searching for [flower pix] frequently click on the URL photobucket.com/flower. Users searching for [flower clipart] frequently click on the same URL.

 → “flower clipart” and “flower pix” are potential expansions of each other.
4. What do user wants?

Which feature(s) do you suggest to libraries?

- Faceted browser: 60
- Relevance ranking: 30
- Spell checker: 20
- User who also borrow: 15
- User who are unavailable?: 10
- Try these: 10
- User comments & ratings: 5
- RSS feeds: 5
- Tag cloud: 5
- Book jacket: 5