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UNIVERSITÀ DEGLI STUDI DI TRENTO

P.ZZA VENEZIA, ROOM: 2.05, E-MAIL: BERNARDI@DISI.UNITN.IT

Contents First Last Prev Next J



Contents

Contents First Last Prev Next J



1. Recall: Inverted Index

We gave per granted we know:

• what a document is.

• how to “machine-read” each document.
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2. Text Processing: tools
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3. Text Processing: Pre-processing

Contents First Last Prev Next J



4. Definitions: Word, Term, Token, Type
Word A delimited string of characters as it appears in the text.

Term A “normalized” word (case, morphology, spelling etc); an equivalence class of
words.

Token An instance of a word or term occurring in a document.

Type The same as a term in most cases: an equivalence class of tokens.
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Example: Tokens vs. Words Example: “andarci veramente piano”

• 3 token: “andarci veramente piano” [graphical words]

• 4 words: “andare ci veramente piano” [inflected form]

• 2 lexical unit: “andarci piano veramente” [unitary meaning]

• Tokens: token in different position are different.

• Types: token with no repetitions (position is not relevant)

• Lemmas: the normalized form of a word (e.g. infinitive for verbs,)
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5. Document transformation for indexing
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5.1. Normalization

Need to “normalize” terms in indexed text as well as query terms into the same form. E.g.

• U.S.A vs. USA

• Accent: naive vs. naı̈ve, resume vs. résumé.

• Case folding: Fed vs. fed

We most commonly implicitly define equivalence classes of terms (windows, window,
Windows, etc.)

Most important criterion: How are users likely to write their queries for these words?

Even in languages that standardly have accents, users often do not type them.

Most often users use lowercase, hence it’s better to lowercase everything.
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5.2. Tokenization

Each token is a candidate for a postings entry.
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5.3. Tokenkization difficulties

One word or two (or several)?

• Hewlett-Packard

• State-of-the-art

• co-education

• data base

• San Francisco

Numbers

• 3/20/91 vs. 20/3/91

• Mar 20, 1991

• 100.2.86.144

• 800.234.2333
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5.4. Lemmatization

Definition Reduce inflectional/variant forms to base form. E.g.:

• am, are, is→ be

• car, cars, car’s, cars’→ car

• the boy’s cars are different colors→ the boy car be different color

Lemmatization implies doing “proper” reduction to dictionary headword form (the lemma).
Inflectional morphology (cutting→ cut) vs. derivational morphology (destruction→ de-
stroy)
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5.5. Stemming

Definition Crude heuristic process that chops off the ends of words in the hope of achiev-
ing what “principled” lemmatization attempts to do with a lot of linguistic knowledge.
It’s language dependent. E.g.:

• automate(s), automatic, automation all reduce to automat.

• “for example compressed and compression are both accepted as equivalent to com-
press”→ “for exampl compress and compress ar both accept as equival to compress”

Downloadable, eg. www.tartarus.org/˜martin/PorterStemmer Sample rules:

• sses→ ss

• ies→ i

• ational→ ate
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5.6. Sentence splitting

Statistics based methods:

• Lexical category of preceding word

• Lexical category of following word

• Case of preceding word

• Case of following word

• . . .
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5.7. Stop word list

Definition stop words are extremely common words which would appear to be of little
value in helping select documents matching a user need. E.g. a, an, and, are, as, at, be,
by, for, from, has, he, in, is, it, its, of, on, that, the, to, was, were, will, with

250-300 most common words in English account for 50% or more of a given text

E.g. “the” and “of” represent 10% of tokens in a corpus. “and” “to”, “a” and “in” another
10%. etc.

Moby Dick Ch1: 859 unique words (types), 2256 word occurrences (tokens)

However, if good compression techniques are used stop words can be considered too and
in same cases may turn out to be useful. E.g. “let it be”. Hence, nowadays, most web
search engines index stop words.
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5.8. LT and Inverted Index construction
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6. Problem with Boolean search
• Boolean queries often result in either too few (=0) or too many (1000s) results. In

Boolean retrieval, it takes a lot of skill to come up with a query that produces a
manageable number of hits.

• We wish to be able to rank documents, and rank higher the relevant ones.

• Hence, we need to assign a score to each query-document pair, say in [0,1]. This
score measures how well document and query “match”.
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7. Query-document matching scores I
How do we compute the score of a query-document pair?

Let’s start with a one-term query.

• If the query term does not occur in the document: score should be 0.

• The more frequent the query term in the document, the higher the score

We will look at a number of alternatives for doing this.
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7.1. Take 1: Jaccard coefficient

A commonly used measure of overlap of two sets. Let A and B be two sets, such that
A 6= /0 or B 6= /0, Jaccard coefficient:

JACCARD(A,B) =
|A∩B|
|A∪B|

JACCARD(A,A) = 1, JACCARD(A,B) = 0 if A∩B = 0 A and B don’t have to be the same
size. It always assigns a number between 0 and 1.

Jaccard coefficient: Example What is the query-document match score that the Jaccard
coefficient computes for:

• Query: “ides of March”

• Document “Caesar died in March”

• JACCARD(q,d) = 1/6
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7.2. What’s wrong with Jaccard?

• It doesn’t consider term frequency (how many occurrences a term has).

• Rare terms are more informative than frequent terms. Jaccard does not consider this
information.

• We need a more sophisticated way of normalizing for the length of a document.
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8. Term weights
We need a way to compute the weight of a term in the term-document matrix.
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8.1. Term Frequency (tf)

Definition The term frequency tft,d of term t in document d is defined as the number of
times that t occurs in d.

We want to use tf when computing query-document match scores. But raw term frequency
is not what we want because:

Normalized tf tf count is usually normalized to prevent a bias towards longer documents
(which may have a higher term count regardless of the actual importance of that term in
the document) to give a measure of the importance of the term ti within the particular
document d j.

tfi,j =
ni, j

∑k nk, j

where ni, j is the number of occurrences of the considered term (ti) in document d j, and
the denominator is the sum of number of occurrences of all terms in document d j, that is,
the size of the document |d j|.

• A document with tf = 10 occurrences of the term is more relevant than a document
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with tf = 1 occurrence of the term.

• But not 10 times more relevant.

• Relevance does not increase proportionally with term frequency.
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8.2. Log frequency weighting

The log frequency weight of term t in d is defined as follows

wt,d =

{
1+ log10 tft,d if tft,d > 0
0 otherwise

• tft,d → wt,d:
0→ 0, 1→ 1, 2→ 1.3, 10→ 2, 1000→ 4, etc.

• Score for a document-query pair: sum over terms t in both q and d:

tf-matching-score(q,d) = ∑t∈q∩d(1+ log tft,d)

• The score is 0 if none of the query terms is present in the document.

Recall: The logarithm of a number y with respect to base b (logby) is the exponent to
which b has to be raised in order to yield y. In other words, the logarithm of y to base b is
the solution x of the equation

bx = y
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8.3. Exercise: Jaccard and tf measure

Compute the Jaccard matching score and the tf matching score for the following query-
document pairs.

• q: [information on cars] d: “all you’ve ever wanted to know about cars”

• q: [information on cars] d: “information on trucks, information on planes, informa-
tion on trains”

• q: [red cars and red trucks] d: “cops stop red cars more often”
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8.4. Problem: Rare vs. Frequent terms

In addition, to term frequency (the frequency of the term in the document), we also want
to use the frequency of the term in the collection for weighting and ranking.

• Desired weight for rare terms

– Rare terms are more informative than frequent terms.

– Consider a term in the query that is rare in the collection (e.g., arachnocentric).

– A document containing this term is very likely to be relevant.

– →We want high weights for rare terms like arachnocentric.

• Desired weight for frequent terms

– Frequent terms are less informative than rare terms.

– Consider a term in the query that is frequent in the collection (e.g., increase).

– A document containing these terms is more likely to be relevant than a document that
doesn’t but frequent terms are not sure indicators of relevance.

– → For frequent terms we want positive weights but lower weights than for rare terms.
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8.5. Document Frequency

• We want high weights for rare terms like arachnocentric.

• We want low (positive) weights for frequent words like good, increase, and line.

• We will use document frequency to factor this into computing the matching score.

Document frequency is the number of documents in the collection that the term occurs
in.
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8.6. Inverse Document Frequency (idf)

It estimates the rarity of a term in the whole document collection. (If a term occurs in all
the documents of the collection, its IDF is zero.)

• idf affects the ranking of documents for queries with at least two terms.

• For example, in the query “arachnocentric line”, idf weighting increases the relative
weight of arachnocentric and decreases the relative weight of line.

• idf has little effect on ranking for one-term queries.
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idfi = log
|D|

|{ j : ti ∈ d j}|

with |D| : cardinality of D, or the total number of documents in the corpus |{ j : ti ∈ d j}|:
number of documents where the term ti appears (viz. the document frequency) (that is
ni, j 6= 0). If the term is not in the corpus, this will lead to a division-by-zero. It is therefore
common to use 1+ |{ j : ti ∈ d j}|
Example |D|= 1,000,000 idft = log10

1,000,000
dft

term dft idft
calpurnia 1 6
animal 100 4
sunday 1000 3
fly 10,000 2
under 100,000 1
the 1,000,000 0
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8.7. Collection Frequency vs. Document Frequency

word collection frequency document frequency
insurance 10440 3997
try 10422 8760

• Collection frequency of t: number of tokens of t in the collection

• Document frequency of t: number of documents t occurs in

• Which word is a better search term?

• Which frequency is more relevant?

This example suggests that df (and idf) is better for weighting than cf: we want the few
documents containing “insurance” to get higher boost for a query on “insurance”, than
the many documents containing “try” should get from a query on “try”.
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8.8. Tf-idf weighting

The tf-idf weight of a term is the product of its tf weight and its idf weight.

It’s the best weighting scheme in IR.

• It increases with the number of occurrences within a document. [term frequency]

• It increases with the rarity of the term in the collection. [inverse document
frequency]
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8.9. Summing up: Weights

Term Frequency As first approximation we can consider the frequency of the term in the
document.

Inverse Document Frequency Estimate the rarity of a term in the whole document col-
lection. (If a term occurs in all the documents of the collection, its IDF is zero.)

TF-IDF A combination of the term frequency (TF) and the inverse document frequency
(IDF).

Others: http://www.lans.ece.utexas.edu/˜strehl/diss/note52.html
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8.10. Summing up: Binary, Count, Weight Matrix

d1 d2 d3 d4 d5 d6 . . .
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0

d1 d2 d3 d4 d5 d6 . . .
Brutus 4 157 0 2 0 0
Caesar 232 227 0 2 1 0
Calpurnia 0 10 0 0 0 0

d1 d2 d3 d4 d5 d6 . . .
Brutus 1.21 6.10 0.0 1.0 0.0 0.0
Caesar 8.59 2.54 0.0 1.51 0.25 0.0
Calpurnia 0.0 1.54 0.0 0.0 0.0 0.0
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9. Background: Vector Space
A vector space is a mathematical structure formed by a collection of vectors: objects
that may be added together and multiplied (“scaled”) by numbers, called scalars in this
context.

Vector an n-dimensional vector is represented by a column: v1
. . .
vn


or for short as~v = (v1, . . .vn).
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9.1. Operations on vectors

Vector addition:

~v+~w = (v1 +w1, . . .vn +wn)

similarly for the −.

Vectors are visualized by arrows. They correspond to points (the point where the arrow
ends.)
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9.2. Dot product or inner product

~v ·~w = (v1w1 + . . .+ vnwn) =
n

∑
i=1

viwi

Example We have three goods to buy and sell, their prices are (p1, p2, p3) (price vector
~p). The quantities we are buy or sell are (q1,q2,q3) (quantity vector ~q, their values are
positive when we sell and negative when we buy.) Selling the quantity q1 at price p1
brings in q1 p1. The total income is the dot product

~q ·~p = (q1,q2,q3) · (p1, p2, p3) = q1 p1 +q2 p2 +q3 p3
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9.3. Length

Dimension of a vector the number of the components of a vector. We take all vectors to
have the same dimension N (N is the terms of the vocabulary of the collection)

Length ||~v||=
√
~v ·~v =

√
∑

n
i=1 v2

i

For instance, given the vector:

~d = (4,4,4,4)

its length is computed as:

|~d|=
√

∑
n
i=1 d2

i =
√

16+16+16+16 =
√

64 = 8
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9.4. Unit vector

is a vector whose length equals one.

~u =
~v
||~v||

is a unit vector in the same direction as~v. (normalized vector)
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9.5. Cosine formula
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10. Vector Space Model: Document as vectors
Each document is now represented as a real-valued vector of tf-idf weights ∈ R|V |.

• So we have a |V |-dimensional real-valued vector space.

• Terms are axes of the space.

• Documents are points or vectors in this space.

• Very high-dimensional: tens of millions of dimensions when you apply this to web
search engines

• Each vector is very sparse - most entries are zero.

~dJ = (t1J, . . . , tn j)

~d j stands for a certain document j, and tiJ stands for a term that occurs in j at position i
of the vector.
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10.1. Assumption

Documents that are “close together” in the vector space talk about the same thing.
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11. Query-document matching scores II
• Key idea 1: Do the same for queries: represent them as vectors in the high-dimensional

space, ~qk = (t1k, . . . , tnk)

• Key idea 2: Rank documents according to their proximity to the query
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11.1. Proximity: Angle and Cosine

• Rank documents according to angle with query

• Thought experiment: take a document d and append it to itself. Call this document
d′. d′ is twice as long as d.

• “Semantically” d and d′ have the same content.

• The angle between the two documents is 0, corresponding to maximal similarity . . .

• . . . even though the Euclidean distance (which is based on their length) between the
two documents can be quite large.

From angles to cosines The following two notions are equivalent.

• Rank documents according to the angle between query and document in decreasing
order

• Rank documents according to cosine(query,document) in increasing order
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11.2. Vectors inner product

Recall: The inner product of two vectors is:

~x ·~y = ∑
i

xi× yi

anna, mario, apple, home, fabio, paola, school, lecture
D1 = (3, 3, 3, 3, 0, 0, 0, 0)
D2 = (1, 1, 1, 1, 0, 0, 0, 0)

−→
D1 ·−→D2 = ∑i D1i×D2i = (3×1)+(3×1)+(3×1)+(3×1) = 12
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11.3. Cosine Similarity

cos(~x,~y) =
~x ·~y
|~x||~y|

=
∑

n
i=1 xi× yi√

∑
n
i=1 x2

i ×
√

∑
n
i=1 y2

i

• xi is the tf-idf weight of term i in x.

• yi is the tf-idf weight of term i in y

• ||~x|| and ||~y|| are the lengths of~x and~y.

• This is the cosine similarity of ~x and ~y or, equivalently, the cosine of the angle be-
tween~x and~y.

In short, the similarity between two vectors is computed by the cosine of the angle be-
tween them.
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11.4. Example: Length

D1: Anna and Mario eat the apple at home. Anna and Mario have not an apple at home.
Anna and Mario go out of home to buy an apple.

D2: Anna and Mario eat the apple at home.

D3: Fabio and Paola went to school and took a lecture.

anna, mario, apple, home, fabio, paola, school, lecture
D1 = (3, 3, 3, 3, 0, 0, 0, 0)
D2 = (1, 1, 1, 1, 0, 0, 0, 0)
D3 = (0, 0, 0, 0, 1, 1, 1, 1)

Recall definition: ||~x||=
√

∑
n
i=1 x2

i

||−→D1||=
√

9+9+9+9 =
√

36 = 6
||−→D2||=

√
1+1+1+1 =

√
4 = 2

||−→D3||=
√

1+1+1+1 =
√

4 = 2
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11.5. Example: Cosine Similarity

cos(~x,~y) =
~x ·~y
||~x||||~y||

=
∑

n
i=1 xi× yi√

∑
n
i=1 x2

i ×
√

∑
n
i=1 y2

i

anna, mario, apple, home, fabio, paola, school, lecture
D1 = (3, 3, 3, 3, 0, 0, 0, 0)
D2 = (1, 1, 1, 1, 0, 0, 0, 0)
D3 = (0, 0, 0, 0, 1, 1, 1, 1)

cos( ~D1, ~D2) =
~D1 · ~D2

|| ~D1||× || ~D2||
=

(3×1)+(3×1)+(3×1)+(3×1)
6×2

=
12
12

= 1

cos( ~D1, ~D3) =
~D1 · ~D3

|| ~D1||× || ~D3||
=

0
6×2

=
0

12
= 0
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11.6. Example: Query-Document Matching

Query: “best car insurance”. Document: “car insurance auto insurance”.

word query document product
tf-raw tf-wght df idf weight tf-raw tf-wght weight n’lized

auto 0 0 5000 2.3 0 1 1 1 0.52 0
best 1 1 50000 1.3 1.3 0 0 0 0 0
car 1 1 10000 2.0 2.0 1 1 1 0.52 1.04
insurance 1 1 1000 3.0 3.0 2 1.3 1.3 0.68 2.04

Key to columns: tf-raw: raw (unweighted) term frequency, tf-wght: logarithmically
weighted term frequency, df: document frequency, idf: inverse document frequency,
weight: the final weight of the term in the query or document, n’lized: document weights
after cosine normalization, product: the product of final query weight and final document
weight

Final similarity score between query and document: ∑i wqi ·wdi = 0+0+1.04+2.04 =
3.08
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12. Summary: Ranked retrieval in the vector space model
• Represent the query as a weighted tf-idf vector

• Represent each document as a weighted tf-idf vector

• Compute the cosine similarity between the query vector and each document vector

• Rank documents with respect to the query

• Return the top K (e.g., K = 10) to the user
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13. LT: much more
The processing of the text can be much more elaborate:

• Pos Tagging

• Parsing

• Named Entity Recognition

• From unstructured to structured data

• Ontology Learning

• . . .

Some of these tools are useful to build Language Resources encoding the knowledge need
to better capture the user information need.
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14. Your presentation
Possible topics:

• http://disi.unitn.it/˜bernardi/Courses/DL/clir.pdfCross-Language In-
formation Retrieval

• http://disi.unitn.it/˜bernardi/Courses/DL/faceted_search.pdf

• http://disi.unitn.it/˜bernardi/Courses/DL/automated_metadata.pdf
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