
Searching in Metric Spaces

EDGAR CHÁVEZ
Escuela de Ciencias Fı́sico-Matemáticas, Universidad Michoacana

GONZALO NAVARRO, RICARDO BAEZA-YATES
Depto. de Ciencias de la Computación, Universidad de Chile

AND

JOSÉ LUIS MARROQUÍN
Centro de Investigación en Matemáticas (CIMAT)

The problem of searching the elements of a set that are close to a given query element
under some similarity criterion has a vast number of applications in many branches of
computer science, from pattern recognition to textual and multimedia information
retrieval. We are interested in the rather general case where the similarity criterion
defines a metric space, instead of the more restricted case of a vector space. Many
solutions have been proposed in different areas, in many cases without cross-knowledge.
Because of this, the same ideas have been reconceived several times, and very different
presentations have been given for the same approaches. We present some basic results
that explain the intrinsic difficulty of the search problem. This includes a quantitative
definition of the elusive concept of “intrinsic dimensionality.” We also present a unified

Categories and Subject Descriptors: F.2.2 [Analysis of algorithms and problem
complexity]: Nonnumerical algorithms and problems—computations on discrete
structures, geometrical problems and computations, sorting and searching; H.2.1
[Database management]: Physical design—access methods; H.3.1 [Information
storage and retrieval]: Content analysis and indexing—indexing methods; H.3.2
[Information storage and retrieval]: Information storage—file organization; H.3.3
[Information storage and retrieval]: Information search and retrieval—clustering,
search process; I.5.1 [Pattern recognition]: Models—geometric; I.5.3 [Pattern
recognition]: Clustering

General Terms: Algorithms

Additional Key Words and Phrases: Curse of dimensionality, nearest neighbors,
similarity searching, vector spaces

This project has been partially supported by CYTED VII.13 AMYRI Project (all authors), by CONACyT grant
R-28923A (first author) and by Fondecyt grant 1-000929 (second and third authors).

Authors’ addresses: E. Chávez, Escuela de Ciencias Fı́sico-Matemáticas, Universidad Michoacana,
Edificio “B”, Ciudad Universitaria, Morelia, Mich. México 58000; email: elchavez@fismat.umich.mx;
G. Navarro and R. Baeza-Yates, Depto. de Ciencias de la Computación, Universidad de Chile, Blanco
Encalada 2120, Santiago, Chile; email: {gnavarro,rbaeza}@dcc.uchile.cl; J. L. Marroquı́n, Centro de In-
vestigación en Matemáticas (CIMAT), Callejón de Jalisco S/N, Valenciana, Guanajuato, Gto. México 36000;
email: jlm@fractal.cimat.mx.

Permission to make digital/hard copy of part or all of this work for personal or classroom use is granted
without fee provided that the copies are not made or distributed for profit or commercial advantage,
the copyright notice, the title of the publication, and its date appear, and notice is given that copying is by
permission of the ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists,
requires prior specific permission and/or a fee.
c©2001 ACM 0360-0300/01/0900-0273 $5.00

ACM Computing Surveys, Vol. 33, No. 3, September 2001, pp. 273–321.

User
Le sezioni 1 e 2 danno una buona panoramica delle varie applicazioni del concetto di "similarita".Dalla sezione 3 in poi diventa molto matematico

User
None set by User

274 E. Chávez et al.

view of all the known proposals to organize metric spaces, so as to be able to
understand them under a common framework. Most approaches turn out to be
variations on a few different concepts. We organize those works in a taxonomy that
allows us to devise new algorithms from combinations of concepts not noticed before
because of the lack of communication between different communities. We present
experiments validating our results and comparing the existing approaches. We
finish with recommendations for practitioners and open questions for future
development.

1. INTRODUCTION

Searching is a fundamental problem in
computer science, present in virtually
every computer application. Simple ap-
plications pose simple search problems,
whereas a more complex application will
require, in general, a more sophisticated
form of searching.

The search operation traditionally has
been applied to “structured data,” that
is, numerical or alphabetical information
that is searched for exactly. That is, a
search query is given and the number or
string that is exactly equal to the search
query is retrieved. Traditional databases
are built around the concept of exact
searching: the database is divided into
records, each record having a fully com-
parable key. Queries to the database re-
turn all the records whose keys match the
search key. More sophisticated searches
such as range queries on numerical keys or
prefix searching on alphabetical keys still
rely on the concept that two keys are or
are not equal, or that there is a total lin-
ear order on the keys. Even in recent years,
when databases have included the ability
to store new data types such as images,
the search has still been done on a prede-
termined number of keys of numerical or
alphabetical types.

With the evolution of information
and communication technologies, unstruc-
tured repositories of information have
emerged. Not only new data types such as
free text, images, audio, and video have
to be queried, but also it is no longer pos-
sible to structure the information in keys
and records. Such structuring is very dif-
ficult (either manually or computation-
ally) and restricts beforehand the types of
queries that can be posed later. Even when
a classical structuring is possible, new

applications such as data mining re-
quire accessing the database by any field,
not only those marked as “keys.” Hence,
new models for searching in unstructured
repositories are needed.

The above scenarios require more gen-
eral search algorithms and models than
those classically used for simple data.
A unifying concept is that of “similarity
searching” or “proximity searching,” that
is, searching for database elements that
are similar or close to a given query
element.1 Similarity is modeled with
a distance function that satisfies the
triangle inequality, and the set of ob-
jects is called a metric space. Since the
problem has appeared in many diverse
areas, solutions have appeared in many
unrelated fields, such as statistics, compu-
tational geometry, artificial intelligence,
databases, computational biology, pattern
recognition, and data mining, to name a
few. Since the current solutions come from
such diverse fields, it is not surprising that
the same solutions have been reinvented
many times, that obvious combinations
of solutions have not been noticed, and
that no thorough comparisons have been
done. More important, there have been
no attempts to conceptually unify all
those solutions.

In some applications the metric space
turns out to be of a particular type called
“vector space,” where the elements consist
of k real-valued coordinates. A lot of work
has been done on vector spaces by exploit-
ing their geometric properties, but nor-
mally these cannot be extended to general
metric spaces where the only available

1 The term “approximate searching” is also used, but
it is misleading and we use it here only when refer-
ring to approximation algorithms.

ACM Computing Surveys, Vol. 33, No. 3, September 2001.

Searching in Metric Spaces 275

information is the distance among objects.
In this general case, moreover, the dis-
tance is normally quite expensive to com-
pute, so the general goal is to reduce the
number of distance evaluations. In con-
trast, the operations in vector spaces tend
to be simple and hence the goal is mainly
to reduce I/O. Some important advances
have been done for general metric spaces,
mainly around the concept of building
an index, that is, a data structure to re-
duce the number of distance evaluations
at query time. Some recent work [Ciaccia
et al. 1997; Prabhakar et al. 1998] tries
to achieve simultaneously the goals of re-
ducing the number of distance evaluations
and the amount of I/O performed.

The main goal of this work is to present
a unifying framework to describe and
analyze all the existing solutions to this
problem. We show that all the existing in-
dexing algorithms for proximity search-
ing consist of building a set of equiv-
alence classes, discarding some classes,
and exhaustively searching the rest. Two
main techniques based on equivalence re-
lations, namely, pivoting and compact par-
titions, are shown to encompass all the ex-
isting methods. As a consequence of the
analysis we are able to build a taxon-
omy on the existing algorithms for prox-
imity search, to classify them according
to their essential features, and to analyze
their efficiency. We are able to identify
essentially similar approaches, to point
out combinations of ideas that have not
previously been noticed, and to identify
the main open problems in this area.
We also present quantitative methods to
assert the intrinsic difficulty in search-
ing on a given metric space and provide
lower bounds on the search problem. This
includes a quantitative definition of the
previously conceptual notion of “intrin-
sic dimensionality,” which we show to be
very appropriate. We present some ex-
perimental results that help to validate
our assertions.

We remark that we are concerned with
the essential features of the search al-
gorithms for general metric spaces. That
is, we try to extract the basic features
from the wealth of existing solutions, so

as to be able to categorize and analyze
them under a common framework. We fo-
cus mainly on the number of distance eval-
uations needed to execute range queries
(i.e., with fixed tolerance radius), which
are the most basic ones. However, we also
pay some attention to the total CPU time,
time and space cost to build the indexes,
nearest neighbor queries, dynamic capa-
bilities of the indexes, and I/O consid-
erations. There are some features that
we definitely do not cover in order to
keep our scope reasonably bounded, such
as (1) complex similarity queries involv-
ing more than one similarity predicate
[Ciaccia et al. 1998b], as few works on
them exist and they are an elaboration
over the simple similarity queries (a par-
ticular case is polygon searching in vec-
tor spaces); (2) subqueries (i.e., searching
a small element inside a larger element)
since the solutions are basically the same
after a domain-dependent transformation
is done; and (3) inverse queries (i.e., find-
ing the elements for which q is their
closest neighbor) and total queries (e.g.,
finding all the closest neighbors) since
the algorithms are, again, built over the
simple ones.

This article is organized as follows. The
first part (Sections 2 through 5) is a pure
survey of the state of the art in search-
ing metric spaces, with no attempt to pro-
vide a new way of thinking about the prob-
lem. The second part (Sections 6 through
8) presents our basic results on the diffi-
culty of the search problem and our unify-
ing model that allows understanding the
essential features of the problem and its
existing solutions. Finally, Section 9 gives
our conclusions and points out future re-
search directions.

2. MOTIVATING APPLICATIONS

We now present a sample of applications
where the concept of proximity searching
appears. Since we have not presented a
formal model yet, we do not try to explain
the connections between the different ap-
plications. We rather delay this discussion
to Section 3.

ACM Computing Surveys, Vol. 33, No. 3, September 2001.

276 E. Chávez et al.

2.1. Query by Content in Structured
Databases

In general, the query posed to a database
presents a piece of a record of information,
and it needs to retrieve the entire record.
In the classical approach, the piece pre-
sented is fixed (the key). Moreover, it is
not allowed to search with an incomplete
or an erroneous key. On the other hand, in
the more general approach required nowa-
days the concept of searching with a key
is generalized to searching with an arbi-
trary subset of the record, allowing errors
or not.

Possible types of searches are point or
key search (all the key information is
given), range search (only some fields are
given or only a range of values is speci-
fied for them), and proximity search (in
addition, records “close” to the query are
considered interesting). These types of
search are of use in data mining (where
the interesting parts of the record can-
not be predetermined), when the informa-
tion is not precise, when we are looking
for a range of values, when the search key
may have errors (e.g., a misspelled word),
and so on.

A general solution to the problem of
range queries by any record field is the
grid file [Nievergelt and Hinterberger
1984]. The domain of the database is seen
as a hyperrectangle of k dimensions (one
per record field), where each dimension
has an ordering according to the domain
of the field (numerical or alphabetical).
Each record present in the database is
considered as a point inside the hyper-
rectangle. A query specifies a subrectan-
gle (i.e., a range along each dimension),
and all the points inside the specified
query are retrieved. This does not ad-
dress the problem of searching on non-
traditional data types, nor allowing errors
that cannot be recovered with a range
query. However, it converts the original
search problem to a problem of obtain-
ing, in a given space, all the points “close”
to a given query point. Grid files are es-
sentially a disk organization technique
to efficiently retrieve range queries in
secondary memory.

2.2. Query by Content in Multimedia Objects

New data types such as images, finger-
prints, audio, and video (called “multime-
dia” data types) cannot be meaningfully
queried in the classical sense. Not only
can they not be ordered, but they cannot
even be compared for equality. There is
no interest in an application for search-
ing an audio segment exactly equal to a
given one. The probability that two differ-
ent images are pixelwise equal is negli-
gible unless they are digital copies of the
same source. In multimedia applications,
all the queries ask for objects similar to
a given one. Some example applications
are face recognition, fingerprint match-
ing, voice recognition, and, in general,
multimedia databases [Apers et al. 1997;
Yoshitaka and Ichikawa 1999].

Think, for example, of a repository of im-
ages. Interesting queries are of the type,
“Find an image of a lion with a savanna
background.” If the repository is tagged,
and each tag contains a full description
of what is inside the image, then our ex-
ample query can be solved with a classi-
cal scheme. Unfortunately, such a classifi-
cation cannot be done automatically with
the available image processing technol-
ogy. The state of object recognition in real-
world scenes is still too immature to per-
form such complex tasks. Moreover, we
cannot predict all the possible queries that
will be posed so as to tag the image for ev-
ery possible query. An alternative to au-
tomatic classification consists of consid-
ering the query as an example image, so
that the system searches all the images
similar to the query. This can be built
inside a more complex feedback system
where the user approves or rejects the im-
ages found, and a new query is submit-
ted with the approved images. It is also
possible that the query is just part of an
image and the system has to retrieve the
whole image.

These approaches are based on the def-
inition of a similarity function among ob-
jects. Those functions are provided by an
expert, but they pose no assumptions on
the type of queries that can be answered.
In many cases, the distance is obtained via

ACM Computing Surveys, Vol. 33, No. 3, September 2001.

Searching in Metric Spaces 277

a set of k “features” that are extracted from
the object (e.g., in an image a useful fea-
ture is the average color). Then each ob-
ject is represented as its k features (i.e.,
a point in a k-dimensional space), and we
are again in a case of range queries on vec-
tor spaces.

There is a growing community of
scientists deeply involved with the de-
velopment of such similarity measures
[Cascia et al. 1998; Bhanu et al. 1998;
Bimbo and Vicario 1998].

2.3. Text Retrieval

Although not considered a multimedia
data type, unstructured text retrieval
poses similar problems to those of mul-
timedia retrieval. This is because textual
documents are in general not structured
to easily provide the desired informa-
tion. Text documents may be searched for
strings that are present or not, but in
many cases they are searched for semantic
concepts of interest. For instance, an ideal
scenario would allow searching a text dic-
tionary for a concept such as, “to free from
obligation,” retrieving the word “redeem.”
This search problem cannot be properly
stated with classical tools.

A large community of researchers has
been working on this problem for a long
time [Salton and McGill 1983; Frakes
and Baeza-Yates 1992; Baeza-Yates and
Ribeiro-Neto 1999]. A number of measures
of similarity have emerged. The problem is
solved basically by retrieving documents
similar to a given query. The user can even
present a document as a query, so that
the system finds similar documents. Some
similarity approaches are based on map-
ping a document to a vector of real val-
ues, so that each dimension is a vocabulary
word and the relevance of the word to the
document (computed using some formula)
is the coordinate of the document along
that dimension. Similarity functions are
then defined in that space. Notice, how-
ever, that the dimensionality of the space
is very high (thousands of dimensions).

Another problem related to text re-
trieval is spelling. Since huge text

databases with low quality control are
emerging (e.g., the Web), and typing,
spelling, or OCR (optical character recog-
nition) errors are commonplace in the text
and the query, we have cases where doc-
uments that contain a misspelled word
are no longer retrievable by a correctly
written query. Models of similarity among
words exist (variants of the “edit distance”
[Sankoff and Kruskal 1983]) that capture
very well those types of errors. In this
case, we give a word and want to re-
trieve all the words close to it. Another
related application is spelling checkers,
where we look for close variants of the
misspelled word.

In particular, OCR can be done using
a low-level classifier, so that misspelled
words can be corrected using the edit
distance to find promising alternatives
to replace incorrect words [Chávez and
Navarro 2002].

2.4. Computational Biology

ADN and protein sequences are the ba-
sic object of study in molecular biology.
As they can be modeled as texts, we have
the problem of finding a given sequence of
characters inside a longer sequence. How-
ever, an exact match is unlikely to occur,
and computational biologists are more in-
terested in finding parts of a longer se-
quence that are similar to a given short
sequence. The fact that the search is not
exact is due to minor differences in the ge-
netic streams that describe beings of the
same or closely related species. The mea-
sure of similarity used is related to the
probability of mutations such as reversals
of pieces of the sequences and other rear-
rangements [Waterman 1995; Sankoff and
Kruskal 1983].

Other related problems are to build phy-
logenetic trees (a tree sketching the evolu-
tionary path of the species), to search pat-
terns for which only some properties are
known, and others.

2.5. Pattern Recognition and Function
Approximation

A simplified definition of pattern recog-
nition is the construction of a function

ACM Computing Surveys, Vol. 33, No. 3, September 2001.

278 E. Chávez et al.

approximator. In this formulation of the
problem one has a finite sample of the
data, and each data sample is labeled as
belonging to a certain class. When a fresh
data sample is provided, the system is re-
quired to label this new sample with one of
the known data labels. In other words, the
classifier can be thought of as a function
defined from the object (data) space to the
set of labels. In this sense all the classifiers
are considered as function approximators.

If the objects are m-dimensional vectors
of real numbers then the natural choices
are neural nets and fuzzy function approx-
imators. Another popular universal func-
tion approximator, the k-nearest-neighbor
classifier, consists of finding the k objects
nearest to the unlabeled sample, and as-
signing to this sample the label having
the majority among the k nearest objects.
Opposed to neural nets and fuzzy classi-
fiers, the k-nearest-neighbor rule has zero
training time, but if no indexing algorithm
is used it has linear complexity [Duda and
Hart 1973].

Other applications of this universal
function approximator are density esti-
mation [Devroye 1987] and reinforcement
learning [Sutton and Barto 1998]. In gen-
eral, any problem where we want to infer
a function based on a finite set of samples
is a potential application.

2.6. Audio and Video Compression

Audio and video transmission over a nar-
rowband channel is an important prob-
lem, for example, in Internet-based audio
and video conferencing or in wireless com-
munication. A frame (a static picture in
a video, or a fragment of the audio) can
be thought of as formed by a number of
(possibly overlapped) subframes (16 × 16
subimages in a video, for example). In
a very succinct description, the problem
can be solved by sending the first frame
as-is and for the next frames sending
only the subframes having a significative
difference from the previously sent sub-
frames. This description encompasses the
MPEG standard.

The algorithms use, in fact, a subframe
buffer. Each time a frame is about to be

sent it is searched (with a tolerance) in the
subframe buffer and if it is not found then
the entire subframe is added to the buffer.
If the subframe is found then only the in-
dex of the similar frame found is sent. This
implies, naturally, that a fast similarity
search algorithm has to be incorporated to
the server to maintain a minimum frames-
per-second rate.

3. BASIC CONCEPTS

All the applications presented in the pre-
vious section share a common framework,
which is in essence to find close objects,
under some suitable similarity function,
among a finite set of elements. In this sec-
tion we present the formal model compris-
ing all the above cases.

3.1. Metric Spaces

We now introduce the basic notation
for the problem of satisfying proximity
queries and for the model used to group
and analyze the existing algorithms.

The set X denotes the universe of valid
objects. A finite subset of it, U, of size n =
|U|, is the set of objects where we search.
U is called the dictionary, database, or
simply our set of objects or elements. The
function

d : X × X → R

denotes a measure of “distance” between
objects (i.e., the smaller the distance, the
closer or more similar are the objects).
Distance functions have the following
properties.

(p1) ∀x, y ∈ X, d (x, y) ≥ 0 positiveness,
(p2) ∀x, y ∈ X,

d (x, y) = d (y , x) symmetry,
(p3) ∀x ∈ X, d (x, x) = 0 reflexivity,

and in most cases

(p4) ∀x, y ∈ X, x '= y ⇒
d (x, y) > 0 strict

positiveness.

The similarity properties enumerated
above only ensure a consistent definition
of the function, and cannot be used to save

ACM Computing Surveys, Vol. 33, No. 3, September 2001.

Searching in Metric Spaces 279

comparisons in a proximity query. If d is
indeed a metric, that is, if it satisfies

(p5) ∀x, y , z ∈ X, d (x, y) ≤ d (x, z) + d (z, y)
triangle inequality,

then the pair (X, d) is called a metric space.
If the distance does not satisfy the strict

positiveness property (p4) then the space
is called a pseudometric space. Although
for simplicity we do not consider pseudo-
metric spaces in this work, all the pre-
sented techniques are easily adapted to
them by simply identifying all the objects
at distance zero as a single object. This
works because, if (p5) holds, one can eas-
ily prove that d (x, y) = 0 ⇒ ∀z, d (x, z) =
d (y , z).

In some cases we may have a quasi-
metric, where the symmetry property (p2)
does not hold. For instance, if the objects
are corners in a city and the distance cor-
responds to how much a car must travel
to move from one to the other, then the ex-
istence of one-way streets makes the dis-
tance asymmetric. There exist techniques
to derive a new, symmetric, distance func-
tion from an asymmetric one, such as
d ′(x, y) = d (x, y) + d (y , x). However, to
be able to bound the search radius of a
query when using the symmetric function
we need specific knowledge of the domain.

Finally, we can relax the triangle in-
equality (p5) to d (x, y) ≤ αd (x, z) + βd (z,
y) + δ, and after some scaling we can
search in this space using the same algo-
rithms designed for metric spaces. If the
distance is symmetric we need α = β for
consistency.

In the rest of the article we use the term
distance in the understanding that we re-
fer to a metric.

3.2. Proximity Queries

There are basically three types of queries
of interest in metric spaces.

Range query (q, r)d . Retrieve all elements
that are within distance r to q. This is
{u ∈ U/d (q, u) ≤ r}.

Nearest neighbor query N N (q). Retrieve
the closest elements to q in U. This is
{u ∈ U/∀v ∈ U, d (q, u) ≤ d (q, v)}. In

some cases we are satisfied with one
such element (in continuous spaces
there is normally just one answer
anyway). We can also give a maximum
distance r∗ such that if the closest
element is at distance more than r∗ we
do not want any one reported.

k-Nearest neighbor query NNk(q). Retrieve
the k closest elements to q in U. This
is, retrieve a set A ⊆ U such that
|A| = k and ∀u ∈ A, v ∈ U − A,
d (q, u) ≤ d (q, v). Note that in case of
ties we are satisfied with any set of k
elements satisfying the condition.

The most basic type of query is the range
query. The left part of Figure 1 illustrates
a query on a set of points which is our run-
ning example, using R2 as the metric space
for clarity.

A range query is therefore a pair (q, r)d
with q an element in X and r a real number
indicating the radius (or tolerance) of the
query. The set {u ∈ U, d (q, u) ≤ r} is called
the outcome of the range query.

We use “NN” as an abbreviation of
“nearest neighbor,” and give the generic
name “NN-query” to the last two types of
queries and “NN searching” to the tech-
niques to solve them. As we see later, NN-
queries can be systematically built over
range queries.

The total time to evaluate a query can
be split as

T = distance evaluations
× complexity of d ()
+ extra CPU time + I/O time

and we would like to minimize T . In many
applications, however, evaluating d () is
so costly that the other components of
the cost can be neglected. This is the
model we use in this article, and hence
the number of distance evaluations per-
formed is the measure of the complex-
ity of the algorithms. We can even allow
a linear in n (but reasonable) amount of
CPU work and a linear traversal over the
database on disk, as long as the number of
distance computations is kept low. How-
ever, we pay some marginal attention to

ACM Computing Surveys, Vol. 33, No. 3, September 2001.

280 E. Chávez et al.

Fig. 1. On the left, an example of a range query on a set of points. On the right, the set
of points at the same distance to a center point, for different Ls distances.

the so-called extra CPU time. The I/O time
can be the dominant factor in some appli-
cations and negligible in others, depend-
ing on the amount of main memory avail-
able and the relative cost to compute the
distance function. We cover the little ex-
isting work on relating metric spaces and
I/O considerations in Section 5.3.2.

It is clear that either type of query can
be answered by examining the entire dic-
tionary U. In fact if we are not allowed to
preprocess the data (i.e., to build an in-
dex data structure), then this exhaustive
examination is the only way to proceed.
An indexing algorithm is an offline proce-
dure to build beforehand a data structure
(called an index) designed to save distance
computations when answering proximity
queries later. This data structure can be
expensive to build, but this will be amor-
tized by saving distance evaluations over
many queries to the database. The aim is
therefore to design efficient indexing algo-
rithms to reduce the number of distance
evaluations. All these structures work on
the basis of discarding elements using the
triangle inequality (the only property that
allows saving distance evaluations).

4. THE CASE OF VECTOR SPACES

If the elements of the metric space (X, d)
are indeed tuples of real numbers (actu-

ally tuples of any field) then the pair is
called a finite-dimensional vector space, or
vector space for short.

A k-dimensional vector space is a par-
ticular metric space where the objects are
identified with k real-valued coordinates
(x1, . . . , xk). There are a number of options
for the distance function to use, but the
most widely used is the family of Ls dis-
tances, defined as

Ls((x1, . . . , xk), (y1, . . . , yk))

=
(

k∑

i=1

|xi − yi|s
)1/s

.

The right part of Figure 1 illustrates
some of these distances. For instance, the
L1 distance accounts for the sum of the dif-
ferences along the coordinates. It is also
called “block” or “Manhattan” distance,
since in two dimensions it corresponds to
the distance to walk between two points
in a city of rectangular blocks. The L2
distance is better known as “Euclidean”
distance, as it corresponds to our notion
of spatial distance. The other most used
member of the family is L∞, which corre-
sponds to taking the limit of the Ls for-
mula when s goes to infinity. The result is
that the distance between two points is the

ACM Computing Surveys, Vol. 33, No. 3, September 2001.

Searching in Metric Spaces 281

maximum difference along a coordinate:

L∞((x1, . . . , xk), (y1, . . . , yk))

= k
max

i=1
|xi − yi|.

Searching with the L∞ distance cor-
responds directly to a classical range
search query, where the range is the
k-dimensional hyperrectangle. This dis-
tance plays a special role in this survey.

In many applications the metric space is
indeed a vector space; that is, the objects
are k-dimensional points and the similar-
ity is interpreted geometrically. A vector
space permits more freedom than a gen-
eral metric space when designing search
approaches, since it is possible to use geo-
metric and coordinate information that is
unavailable in a general metric space.

In this framework optimal algorithms
(on the database size) exist in both the av-
erage and the worst case [Bentley et al.
1980] for closest point search. Search
structures for vector spaces are called spa-
tial access methods (SAM). Among the
most popular are kd -trees [Bentley 1975,
1979], R-trees [Guttman 1984], quad-
trees [Samet 1984], and the more recent
X -trees [Berchtold et al. 1996]. These
techniques make extensive use of coor-
dinate information to group and classify
points in the space. For example, kd-trees
divide the space along different coordi-
nates and R-trees group points in hy-
perrectangles. Unfortunately the existing
techniques are very sensitive to the vector
space dimension. Closest point and range
search algorithms have an exponential de-
pendency on the dimension of the space
[Chazelle 1994] (this is called the curse of
dimensionality).

Vector spaces may suffer from large dif-
ferences between their representational
dimension (k) and their intrinsic dimen-
sion (i.e., the real number of dimensions
in which the points can be embedded
while keeping the distances among them).
For example, a plane embedded in a 50-
dimensional space has intrinsic dimension
2 and representational dimension 50. This
is, in general, the case of real applications,
where the data are clustered, and it has

led to attempts to measure the intrinsic
dimension such as the concept of “fractal
dimension” [Faloutsos and Kamel 1994].
Despite the fact that no technique can cope
with intrinsic dimension higher than 20,
much higher representational dimensions
can be handled by dimensionality reduc-
tion techniques [Faloutsos and Lin 1995;
Cox and Cox 1994; Hair et al. 1995].

Since efficient techniques to cope with
vector spaces exist, application design-
ers try to give their problems a vector
space structure. However, this is not al-
ways easy or feasible at all. For exam-
ple, experts in image processing try to ex-
press the similarity between images as the
distance between “vectors” of features ex-
tracted from the images, although in many
cases better results are obtained by cod-
ing specific functions that compare two
images, despite their inability to be eas-
ily expressed as the distance between two
vectors (e.g., crosstalk between features
[Faloutsos et al. 1994]). Another example
that resists conversion into a vector space
is similarity functions between strings, to
compare DNA sequences, for instance. A
step towards improving this situation is
Chávez and Navarro [2002].

For this reason several authors resort to
general metric spaces, even knowing that
the search problem is much more difficult.
Of course it is also possible to treat a vec-
tor space as a general metric space, by us-
ing only the distances between points. One
immediate advantage is that the intrinsic
dimension of the space shows up, indepen-
dent of any representational dimension
(this requires extra care in vector spaces).
It is interesting to remark that Ciaccia
et al. [1997] present preliminary results
showing that a metric space data struc-
ture (the M-tree) can outperform a well-
known vector space data structure (the
R∗-tree) when applied to a vector space.

Specific techniques for vector spaces are
a whole different world which we do not
intend to cover in this work (see Samet
[1984], White and Jain [1996], Gaede and
Günther [1998], and Böhm et al. [2002] for
good surveys). However, we discuss in the
next section a technique that, instead of
treating a vector space as a metric space,

ACM Computing Surveys, Vol. 33, No. 3, September 2001.

282 E. Chávez et al.

tries to embed a general metric space into
a vector space. This concept is central in
this survey, although specific knowledge of
specific techniques for vector spaces is, as
we shortly show, not necessary to under-
stand it.

4.1. Resorting to Vector Spaces

An interesting and natural reduction of
the similarity search problem consists of
a mapping $ from the original metric
space into a vector space. In this way,
each element of the original metric space
is represented as a point in the target
vector space. The two spaces are related
by two distances: the original one d (x, y)
and the distance in the projected space
D($(x), $(y)). If the mapping is contrac-
tive (i.e., D($(x), $(y)) ≤ d (x, y) for any
pair of elements), then one can process
range queries in the projected space with
the same radius. Since some spurious ele-
ments can be captured in the target space,
the outcome of the query in the projected
space is a candidate list, which is later
verified elementwise with the original dis-
tance to obtain the actual outcome of the
query.

Intuitively, the idea is to “invent” k co-
ordinates and map the points onto a vec-
tor space, using some vector space tech-
nique as a first filter to the actual answer
to a query. One of the main theses of this
work is that a large subclass of the ex-
isting algorithms can be regarded as re-
lying on some mapping of this kind. A
widely used method (explained in detail
in Section 6.6) is to select {p1, . . . , pk} ⊆ U
and map each u ∈ U to (Rk , L∞) using
$(u) = (d (u, p1), . . . , d (u, pk)). It can be
seen that this mapping is contractive but
not proximity preserving.

If, on the other hand, the mapping
is proximity preserving (i.e., d (x, y) ≤
d (x, z) ⇒ D($(x), $(y)) ≤ D($(x), $(z))),
then NN-queries can be directly per-
formed in the projected space. Indeed,
most current algorithms for NN-queries
are based in range queries, and with some
care they can be done in the projected
space if the mapping is contractive, even
if it is not proximity preserving.

This type of mapping is a special case of
a general idea in the literature that says
that one can find it cheaper to compute dis-
tances that lower-bound the real one, and
use the cheaper distance to filter out most
elements (e.g., for images, the average
color is cheaper to compute than the dif-
ferences in the color histograms). While
in general this is domain-dependent,
mapping onto a vector space can be done
without knowledge of the domain. After
the mapping is done and we have iden-
tified each data element with a point in
the projected space, we can use a general-
purpose spatial access method for vector
spaces to retrieve the candidate list. The
elements found in the projected space
must be finally checked using the original
distance function.

Therefore, there are two types of dis-
tance evaluations: first to obtain the co-
ordinates in the projected space and later
to check the final candidates. These are
called “internal” and “external” evalu-
ations, respectively, later in this work.
Clearly, incrementing internal evalua-
tions improves the quality of the filter and
reduces external evaluations, and there-
fore we seek a balance.

Notice finally that the search itself in
the projected space does not use evalua-
tions of the original distance, and hence it
is costless under our complexity measure.
Therefore, the use of kd -trees, R-trees, or
other data structures aims at reducing the
extra CPU time, but it makes no differ-
ence in the number of evaluations of the
d distance.

How well do metric space techniques
perform in comparison to vector space
methods? It is difficult to give a formal an-
swer because of the different cost models
involved. In metric spaces we use the num-
ber of distance evaluations as the basic
measure of complexity, while vector space
techniques may very well use many coordi-
nate manipulations and not a single eval-
uation of the distance. Under our model,
the cost of a method that maps to a vec-
tor space to trim the candidate list is mea-
sured as the number of distance evalua-
tions to realize the mapping plus the final
distances to filter the trimmed candidate

ACM Computing Surveys, Vol. 33, No. 3, September 2001.

Searching in Metric Spaces 283

list, whereas the work on the artificial co-
ordinates is seen as just extra CPU time.

A central question related to this reduc-
tion is: how well can a metric space be em-
bedded into a vector space? How many co-
ordinates have to be considered so that the
original metric space and the target vec-
tor spaces are similar enough so that the
candidate list given by the vector space is
not much larger than the actual outcome
of the query in the original space? This is
a very difficult question that lies behind
this entire article, and we return to it in
Section 7.

The issue is better developed in vector
spaces. There are different techniques to
reduce the dimensionality of a set of points
while preserving the original distances
as much as possible [Cox and Cox 1994;
Hair et al. 1995; Faloutsos and Lin 1995],
that is, to find the intrinsic dimension of
the data.

5. CURRENT SOLUTIONS FOR
METRIC SPACES

In this section we explain the existing in-
dexes to structure metric spaces and how
they are used for range and NN search-
ing. Since we have not yet developed the
concepts of a unifying perspective, the de-
scription is kept at an intuitive level, with-
out any attempt to analyze why some ideas
are better or worse. We add a final sub-
section devoted to more advanced issues
such as dynamic capabilities, I/O consider-
ations, and approximate and probabilistic
algorithms.

5.1. Range Searching

We divide the presentation in several
parts. The first one deals with tree in-
dexes for discrete distance functions, that
is, functions that deliver a small set of val-
ues. The second part corresponds to tree
indexes for continuous distance functions,
where the set of alternatives is infinite or
very large. Third, we consider other meth-
ods that are not tree-based.

Table I summarizes the complexities
of the different structures. These are ob-
tained from the source papers, which use

different (and incompatible) assumptions
and in many cases give just gross analyses
or no analysis at all (just heuristic con-
siderations). Therefore, we give the com-
plexities as claimed by the authors of each
paper, not as a proven fact. At best, the
results are analytical but rely on diverse
simplifying assumptions. At worst, the re-
sults are based on a few incomplete ex-
periments. Keep also in mind that there
are hidden factors depending (in many
cases exponentially) on the dimension of
the space, and that the query complexity
is always on average, as in the worst case
we can be forced to compare all the ele-
ments. Even in the simple case of orthogo-
nal range searching on vector spaces there
exist %(nα) lower bounds for the worst case
[Melhorn 1984].

5.1.1. Trees for Discrete Distance Functions.
We start by describing tree data structures
that apply to distance functions which re-
turn a small set of different values. At the
end we show how to cope with the general
case with these trees.

5.1.1.1. BKT. Probably the first general
solution to search in metric spaces was
presented in Burkhard and Keller [1973].
They propose a tree (thereafter called the
Burkhard–Keller Tree, or BKT), which is
suitable for discrete-valued distance func-
tions. It is defined as follows. An arbitrary
element p ∈ U is selected as the root of
the tree. For each distance i > 0, we de-
fine Ui = {u ∈ U, d (u, p) = i} as the set of
all the elements at distance i to the root
p. Then, for any nonempty Ui, we build a
child of p (labeled i), where we recursively
build the BKT for Ui. This process can be
repeated until there is only one element to
process, or until there are no more than b
elements (and we store a bucket of size b).
All the elements selected as roots of sub-
trees are called pivots.

When we are given a query q and a dis-
tance r, we begin at the root and enter into
all children i such that d (p, q) − r ≤ i ≤
d (p, q) + r, and proceed recursively. If we
arrive at a leaf (bucket of size one or more)
we compare sequentially all its elements.
Each time we perform a comparison

ACM Computing Surveys, Vol. 33, No. 3, September 2001.

284 E. Chávez et al.

Table I. Average Complexities of Existing Approachesa

Data Space Construction Claimed Query Extra CPU
Structure Complexity Complexity Complexity Query Time
BKT n ptrs n log n nα —
FQT n . .n log n ptrs n log n nα —
FHQT n . .nh ptrs nh log nb nα

FQA nhb bits nh log nb nα log n
VPT n ptrs n log n log n c —
MVPT n ptrs n log n log n c —
VPF n ptrs n2−α n1−α log n c —
BST n ptrs n log n not analyzed —
GHT n ptrs n log n not analyzed —
GNAT nm2 dsts nm logm n not analyzed —
VT n ptrs n log n not analyzed —
MT n ptrs n(m..m2) logm n not analyzed —
SAT n ptrs n log n/ log log n n1−&(1/ log log n) —
AESA n2 dsts n2 O(1) d n . .n2

LAESA kn dsts kn k + O(1) d log n . .kn
LC n ptrs n2/m not analyzed n/m

aTime complexity considers only n, not other parameters such as dimension. Space complexity mentions the
most expensive storage units used (“ptrs” is short for “pointers” and “dsts” for “distances”). α is a number
between 0 and 1, different for each structure, whereas the other letters are parameters particular to each
structure.
bIf h = log n.
cOnly valid when searching with very small radii.
dEmpirical conclusions without analysis, in the case of LAESA for “large enough” k.

(against pivots or bucket elements u)
where d (q, u) ≤ r, we report the element u.

The triangle inequality ensures that we
cannot miss an answer. All the subtrees
not traversed contain elements u that are
at distance d (u, p) = i from some node p,
where |d (p, q) − i| > r. By the triangle
inequality, d (p, q) ≤ d (p, u) + d (u, q), and
therefore d (u, q) ≥ d (p, q) − d (p, u) > r.

Figure 2 shows an example where the el-
ement u11 has been selected as the root. We
have built only the first level of the BKT
for simplicity. A query q is also shown,
and we have emphasized the branches of
the tree that would have to be traversed.
In this and all the examples of this section
we discretize the distances of our example,
so that they return integer values.

The results of Table I for BKTs are
extrapolated from those made for fixed
queries trees [Baeza-Yates et al. 1994],
which can be easily adapted to this case.
The only difference is that the space over-
head of BKTs is O(n) because there is ex-
actly one element of the set per tree node.

5.1.1.2. FQT. A further development
over BKTs is the fixed queries tree or FQT
[Baeza-Yates et al. 1994]. This tree is basi-

cally a BKT where all the pivots stored in
the nodes of the same level are the same
(and of course do not necessarily belong to
the set stored in the subtree). The actual
elements are all stored at the leaves. The
advantage of such construction is that
some comparisons between the query and
the nodes are saved along the backtrack-
ing that occurs in the tree. If we visit many
nodes of the same level, we do not need
to perform more than one comparison
because all the pivots in that level are the
same. This is at the expense of somewhat
taller trees. FQTs are shown experimen-
tally in Baeza-Yates et al. [1994] to per-
form fewer distance evaluations at query
time using a couple of different metric
space examples. Under some simplifying
assumptions (experimentally validated in
the paper) they show that FQTs built over
n elements are O(log n) height on aver-
age, are built using O(n log n) distance
evaluations, and that the average number
of distance computations is O(nα), where
0 < α < 1 is a number that depends on the
range of the search and the structure of
the space (this analysis is easy to extend
to BKTs as well). The space complexity is
superlinear since, unlike BKTs, it is not

ACM Computing Surveys, Vol. 33, No. 3, September 2001.

Searching in Metric Spaces 285

Fig. 2. On the left, the division of the space obtained when u11 is taken as a pivot. On the right, the first
level of a BKT with u11 as root. We also show a query q and the branches that it has to traverse. We have
discretized the distances so they return integer values.

true that a different element is placed at
each node of the tree. An upper bound
is O(n log n) since the average height is
O(log n).

5.1.1.3. FHQT. In Baeza-Yates et al.
[1994] and Baeza-Yates [1997], the au-
thors propose a variant called “fixed-
height FQT” (or FHQT for short), where
all the leaves are at the same depth
h, regardless of the bucket size. This
makes some leaves deeper than neces-
sary, which makes sense because we may
have already performed the comparison
between the query and the pivot of an
intermediate level, therefore eliminating
for free the need to consider the leaf. In
Baeza-Yates [1997] and Baeza-Yates and
Navarro [1998] it is shown that by using
O(log n) pivots, the search takes O(log n)
distance evaluations (although the cost
depends exponentially on the search ra-
dius r). The extra CPU time, that is, the
number of nodes traversed, remains how-
ever, O(nα). The space, like FQTs, is some-
where between O(n) and O(nh). In prac-
tice the optimal h = O(log n) cannot be
achieved because of space limitations.

5.1.1.4. FQA. In Chávez et al. [2001],
the fixed queries array (FQA) is presented.
The FQA, although not properly a tree,
is no more than a compact representation
of the FHQT. Imagine that an FHQT of
fixed height h is built on the set. If we tra-

verse the leaves of the tree left to right and
put the elements in an array, the result is
the FQA. For each element of the array
we compute h numbers representing the
branches to take in the tree to reach the
element from the root (i.e., the distances
to the h pivots). Each of these h numbers
is coded in b bits and they are concate-
nated in a single (long) number so that the
higher levels of the tree are the most sig-
nificant digits.

As a result the FQA is sorted by the re-
sulting hb-bits number, each subtree of the
FHQT corresponds to an interval in the
FQA, and each movement in the FHQT
is simulated with two binary searches in
the FQA (at O(log n) extra CPU cost fac-
tor, but no extra distances are computed).
There is a similarity between this idea and
suffix trees versus suffix arrays [Frakes
and Baeza-Yates 1992]. This idea of using
fewer bits to represent the distances ap-
peared also in the context of vector spaces
[Weber et al. 1998].

Using the same memory, the FQA simu-
lation is able to use many more pivots than
the original FHQT, which improves the ef-
ficiency. The b bits needed by each pivot
can be lowered by merging branches of the
FHQT, trying that about the same num-
ber of elements lies in each cell of the next
level. This allows using even more pivots
with the same space usage. For reasons
that are made clear later, the FQA is also
called FMVPA in this work.

ACM Computing Surveys, Vol. 33, No. 3, September 2001.

286 E. Chávez et al.

Fig. 3. Example BKT, FQT, FHQT, and FQA for our set of points. We use b = 2 for the BKT and FQT, and
h = 2 for FHQT and FQA.

Figure 3 shows an arbitrary BKT, FQT,
FHQT, and FQA built on our set of points.
Notice that, while in the BKT there is a
different pivot per node, in the others
there is a different pivot per level, the
same for all the nodes of that level.

5.1.1.5. Hybrid. In Shapiro [1977], the
use of more than one element per node of
the tree is proposed. Those k elements al-
low eliminating more elements per level
at the cost of doing more distance evalua-
tions. The same effect would be obtained
if we had a mixture between BKTs and
FQTs, so that for k levels we had fixed keys
per level, and then we allowed a different
key per node of the level k + 1, continu-
ing the process recursively on each sub-
tree of the level k + 1. The authors conjec-
ture that the pivots should be selected to
be outside the clusters.

5.1.1.6. Adapting to Continuous Functions.
If we have a continuous distance or if it
gives too many different values, it is not
possible to have a child of the root for any
such value. If we did that, the tree would
degenerate into a flat tree of height 2,
and the search algorithm would be almost
like sequential searching for the BKT and

FQT. FHQTs and FQAs do not degenerate
in this sense, but they lose their sublinear
extra CPU time.

In Baeza-Yates et al. [1994] the au-
thors mention that the structures can be
adapted to a continuous distance by as-
signing a range of distances to each branch
of the tree. However, they do not specify
how to do this. Some approaches explic-
itly defined for continuous functions are
explained later (VPTs and others), which
assign the ranges trying to leave the same
number of elements at each class.

5.1.2. Trees for Continuous Distance Func-
tions. We now present the data structures
designed for the continuous case. They
also can be used for discrete distance func-
tions with virtually no modifications.

5.1.2.1. VPT. The “metric tree” is pre-
sented in Uhlmann [1991b] as a tree
data structure designed for continuous
distance functions. More complete work
on the same idea [Yianilos 1993; Chiueh
1994] calls them “vantage-point trees” or
VPTs. They build a binary tree recursively,
taking any element p as the root and
taking the median of the set of all dis-
tances, M = median{d (p, u)/u ∈ U}. Those

ACM Computing Surveys, Vol. 33, No. 3, September 2001.

Searching in Metric Spaces 287

Fig. 4. Example VPT with root u11. We plot the radius M used for the root. For the first levels we show
explicitly the radii used in the tree.

elements u such that d (p, u) ≤ M are in-
serted into the left subtree, while those
such that d (p, u) > M are inserted into
the right subtree. The VPT takes O(n)
space and is built in O(n log n) worst case
time, since it is balanced. To solve a query
in this tree, we measure d = d (q, p). If
d − r ≤ M we enter into the left subtree,
and if d + r > M we enter into the right
subtree (notice that we can enter into both
subtrees). We report every element consid-
ered that is close enough to the query. See
Figure 4.

The query complexity is argued to be
O(log n) in Yianilos [1993], but as pointed
out, this is true only for very small search
radii, too small to be an interesting case.

In trees for discrete distance functions,
the exact distance between an element in
the leaves and any pivot in the path to
the root can be inferred. However, here we
only know that the distance is larger or
smaller than M . Unlike the discrete case,
it is possible that we arrive at an element
in a leaf which we do not need to compare,
but the tree has not enough information
to discover that. Some of those exact dis-
tances lost can be stored explicitly, as pro-
posed in Yianilos [1993], to prune more
elements before checking them. Finally,
Yianilos [1993] considers the problem of
pivot selection and argues that it is better
to take elements far away from the set.

5.1.2.2. MVPT. The VPT can be ex-
tended to m-ary trees by using the m − 1

uniform percentiles instead of just the
median. This is suggested in Brin [1995]
and Bozkaya and Ozsoyoglu [1997]. In
the latter, the “multi-vantage-point tree”
(MVPT) is presented. They propose the
use of many elements in a single node,
much as in Shapiro [1977]. It can be
seen that the space is O(n), since each
internal node needs to store the m per-
centiles but the leaves do not. The con-
struction time is O(n log n) if we search the
m percentiles hierarchically at O(n log m)
instead of O(mn) cost. Bozkaya and
Ozsoyoglu [1997] show experimentally
that the idea of m-ary trees slightly im-
proves over VPTs (and not in all cases),
while a larger improvement is obtained by
using many pivots per node. The analysis
of query time for VPTs can be extrapolated
to MVPTs in a straightforward way.

5.1.2.3. VPF. Another generalization of
the VPT is given by the VPF (shorthand
for excluded middle vantage point for-
est) [Yianilos 1999]. This algorithm is de-
signed for radii-limited NN search (an
N N (q) query with a maximum radius r∗),
but in fact the technique is perfectly com-
patible with a range search query. The
method consists of excluding, at each level,
the elements at intermediate distances to
their pivot (this is the most populated part
of the set): if r0 and rn stand for the closest
and farthest elements to the pivot p, the
elements u ∈ U such that d (p, r0) + δ ≤
d (p, u) ≤ d (p, rn) − δ are excluded from

ACM Computing Surveys, Vol. 33, No. 3, September 2001.

288 E. Chávez et al.

Fig. 5. Example of the first level of a BST or GHT and a query q. Either using covering radii
(BST) or hyperplanes (GHT), both subtrees have to be considered in this example.

the tree. A second tree is built with the ex-
cluded “middle part” of the first tree, and
so on to obtain a forest. With this idea they
eliminate the backtracking when search-
ing with a radius r∗ ≤ (rn − r0 − 2δ)/2,
and in return they have to search all the
trees of the forest. The VPF, of O(n) size,
is built using O(n2−ρ) time and answers
queries in O(n1−ρ log n) distance evalua-
tions, where 0 < ρ < 1 depends on r∗. Un-
fortunately, to achieve ρ > 0, r∗ has to be
quite small.

5.1.2.4. BST. In Kalantari and
McDonald [1983], the “bisector trees”
(BSTs) are proposed. The BST is a binary
tree built recursively as follows. At each
node, two “centers” c1 and c2 are selected.
The elements closer to c1 than to c2 go
into the left subtree and those closer
to c2 into the right subtree. For each of
the two centers, its “covering radius” is
stored, that is, the maximum distance
from the center to any other element in
its subtree. At search time, we enter into
each subtree if d (q, ci) − r is not larger
than the covering radius of ci. That is,
we can discard a branch if the query ball
(i.e., the hypersphere of radius r centered
in the query) does not intersect the ball
that contains all the elements inside that
branch. In Noltemeier et al. [1992], the
“monotonous BST” is proposed, where
one of the two elements at each node
is indeed the parent center. This makes
the covering radii decrease as we move

downward in the tree. Figure 5 illustrates
the first step of the tree construction.

5.1.2.5. GHT. Proposed in Uhlmann
[1991b], the “generalized-hyperplane
tree” (GHT) is identical in construc-
tion to a BST. However, the algorithm
uses the hyperplane between c1 and c2
as the pruning criterion at search time,
instead of the covering radius. At search
time we enter into the left subtree if
d (q, c1) − r < d (q, c2) + r and into the
right subtree if d (q, c2) − r ≤ d (q, c1) + r.
Again, it is possible to enter into both
subtrees. In Uhlmann [1991b] it is argued
that GHTs could work better than VPTs in
high dimensions. The same idea of reusing
the parent node is proposed in Bugnion et
al. [1993], this time to avoid performing
two distance evaluations at each node.

5.1.2.6. GNAT. The GHT is extended in
Brin [1995] to an m-ary tree, called GNAT
(geometric near-neighbor access tree),
keeping the same essential idea. We se-
lect, for the first level, m centers c1, . . . , cm,
and define Ui = {u ∈ U, d (ci, u) < d (c j , u),
∀ j '= i}. That is, Ui are the elements
closer to ci than to any other c j . From
the root, m children numbered i = 1 . . m
are built, each one recursively as a GNAT
for Ui. Figure 6 shows a simple exam-
ple of the first level of a GNAT. Notice
the relationship between this idea and a
Voronoi-like partition of a vector space
[Aurenhammer 1991].

ACM Computing Surveys, Vol. 33, No. 3, September 2001.

Searching in Metric Spaces 289

Fig. 6. Example of the first level of a GNAT with m = 4.

The search algorithm, however, is quite
different. At indexing time, the GNAT
stores at each node an O(m2) size table
rangeij = [minu∈U j (ci, u), maxu∈U j (ci, u)],
which stores minimum and maximum dis-
tances from each center to each class.
At search time the query q is compared
against some center ci and then it discards
any other center c j such that d (q, ci) ± r
does not intersect rangei, j . All the subtree
U j can be discarded using the triangle in-
equality. The process is repeated with ran-
dom centers until none can be discarded.
The search then enters recursively in each
nondiscarded subtree. In the process, any
center close enough to q is reported.

The authors use a gross analysis to show
that the tree takes O(nm2) space and is
built in close to O(nm logm n) time. Ex-
perimental results show that the GHT is
worse than the VPT, which is only beaten
with GNATs of arities between 50 and 100.
Finally, they mention that the arities of
the subtrees could depend on their depth
in the tree, but give no clear criteria to
do this.

5.1.2.7. VT. The “Voronoi tree” (VT) is
proposed in Dehne and Noltemeier [1987]
as an improvement over BSTs, where this
time the tree has two or three elements
(and children) per node. When a new tree
node has to be created to hold an inserted
element, its closest element from the par-
ent node is also inserted in the new node.

VTs have the property that the covering
radius is reduced as we move downwards
in the tree, which provides better pack-
ing of elements in subtrees. It is shown in
Dehne and Noltemeier [1987] that VTs are
superior and better balanced than BSTs.
In Noltemeier [1989] they show that bal-
anced VTs can be obtained by insertion
procedures similar to those of B-trees, a
fact later exploited in M-trees (see next).

5.1.2.8. MT. The M-tree (MT) data
structure is presented in Ciaccia et al.
[1997], aiming at providing dynamic ca-
pabilities and good I/O performance in
addition to few distance computations.
The structure has some resemblances
to a GNAT, since it is a tree where a
set of representatives is chosen at each
node and the elements closer to each
representative2 are organized into a sub-
tree rooted by that representative. The
search algorithm, however, is closer to
BSTs. Each representative stores its cov-
ering radius. At query time, the query is
compared to all the representatives of the
node and the search algorithm enters re-
cursively into all those that cannot be dis-
carded using the covering radius criterion.

The main difference of the MT is the
way in which insertions are handled.
An element is inserted into the “best”

2 There are many variants but this is reported as the
most effective.

ACM Computing Surveys, Vol. 33, No. 3, September 2001.

290 E. Chávez et al.

subtree, defined as that causing the
subtree covering radius to expand less
(zero expansion is the ideal), and in case
of ties selecting the closest representa-
tive. Finally, the element is added to
the leaf node and if the node overflows
(i.e., becomes of size m + 1) it is split in
two and one node element is promoted
upwards, as in a B-tree or an R-tree
[Guttman 1984]. Hence the MT is a
balanced data structure, much as the VP
family. There are many criteria to select
the representative and to split the node,
the best results being obtained by trying a
split that minimizes the maximum of the
two covering radii obtained. They show
experimentally that the MT is resistant
to the dimensionality of the space and
that it is competitive against R∗-trees.

5.1.2.9. SAT. The SAT algorithm (spa-
tial approximation tree) [Navarro 1999]
does not use centers to split the set of
candidate objects, but rather relies on
“spatial” approximation. An element p is
selected as the root of a tree, and it is
connected to a set of “neighbors” N , de-
fined as a subset of elements u ∈ U such
that u is closer to p than to any other el-
ement in N (note that the definition is
self-referential). The other elements (not
in N ∪ {p}) are assigned to their clos-
est element in N . Each element in N is
recursively the root of a new subtree con-
taining the elements assigned to it.

This allows searching for elements with
radius zero by simply moving from the root
to its “neighbor” (i.e., connected element)
which is closest to the query q. If a radius
r > 0 is allowed, then we consider that an
unknown element q′ ∈ U is searched with
tolerance zero, from which we only know
that d (q, q′) ≤ r. Hence, we search as be-
fore for q and consider that any distance
measure may have an “error” of at most
±r. Therefore, we may have to enter into
many branches of the tree (not only the
closest one), since the measuring “error”
could permit a different neighbor to be the
closest one. That is, if c ∈ N is the clos-
est neighbor of q, we enter into all c′ ∈ N
such that d (q, c′) − r ≤ d (q, c) + r. The tree
is built in O(n log n/ log log n) time, takes

Fig. 7. Example of a SAT and the traversal
towards a query q, starting at u11.

O(n) space, and inspects O(n1−&(1/ log log n))
elements at query time. Covering radii are
also used to increase pruning. Figure 7
shows an example and the search path for
a query.

5.1.3. Other Techniques

5.1.3.1. AESA. An algorithm that is
close to many of the presented ideas but
performs surprisingly better by an or-
der of magnitude is that of Vidal [1986]
(called AESA, for approximating eliminat-
ing search algorithm). The structure is
simply a matrix with the n(n − 1)/2 pre-
computed distances among the elements
of U. At search time, they select an ele-
ment p ∈ U at random and measure rp =
d (p, q), eliminating all elements u of U
that do not satisfy rp − r ≤ d (u, p) ≤ rp + r.
Notice that all the d (u, p) distances are
precomputed, so only d (p, q) has been cal-
culated at search time. This process of tak-
ing a random pivot among the (not yet
eliminated) elements of U and eliminating
more elements from U is repeated until the
candidate set is empty and the query has
been satisfied. Figure 8 shows an example
with a first pivot u11.

Although this idea seems very similar
to FQTs, there are some key differences.
The first one, only noticeable in continu-
ous spaces, is that there are no predefined
“rings” so that all the intersected rings

ACM Computing Surveys, Vol. 33, No. 3, September 2001.

Searching in Metric Spaces 291

Fig. 8. Example of the first iteration of AESA.
The points between both rings centered at u11
qualify for the next iteration.

qualify (recall Figure 2). Instead, only
the minimal necessary area of the rings
qualifies. The second difference is that the
second element to compare against q is se-
lected from the qualifying set, instead of
from the whole set as in FQTs. Finally,
the algorithm uses every distance com-
putation as a pivoting operation, while
FQTs must precompute that decision (i.e.,
bucket size).

The problem with the algorithm [Vidal
1986] is that it needs O(n2) space and con-
struction time. This is unacceptably high
for all but very small databases. In this
sense the approach is close to Sasha and
Wang [1990], although in this latter case
they may take fewer distances and bound
the unknown ones. AESA is experimen-
tally shown to have O(1) query time.

5.1.3.2. LAESA and Variants. In a newer
version of AESA, called LAESA (for linear
AESA), Micó et al. [1994] propose using
k fixed pivots, so that the space and con-
struction time is O(kn). In this case, the
only difference with an FHQT is that fixed
rings are not used, but the exact set of el-
ements in the range is retrieved. FHQT
uses fixed rings to reduce the extra CPU
time, while in this case no such algorithm
is given. In LAESA, the elements are sim-
ply linearly traversed, and those that can-
not be eliminated after considering the
k pivots are directly compared against
the query.

A way to reduce the extra CPU time
is presented later in Micó et al. [1994],
which builds a GHT-like structure using
the same pivots. The algorithm is argued
to be sublinear in CPU time. Alternative
search structures to reduce CPU time not
losing information on distances are pre-
sented in Nene and Nayar [1997] and
Chávez et al. [1999], where the distances
to each pivot are sorted separately so that
the relevant range [d (q, p)−r, d (q, p) + r]
can be binary searched.3 Extra pointers
are added to be able to trace an element
across the different orderings for each
pivot (this needs more space, however).

5.1.3.3. Clustering and LCs. Clustering
is a very wide area with many applications
[Jain and Dubes 1988]. The general goal
is to divide a set into subsets of elements
close to each other in the same subset.
A few approaches to index metric spaces
based on clustering exist.

One of them, LC (for “list of clusters”)
[Chávez and Navarro 2000] chooses an el-
ement p and finds the m closest elements
in U. This is the cluster of p. The process
continues recursively with the remaining
elements until a list of n/(m + 1) clus-
ters is obtained. The covering radius cr()
of each cluster is stored. At search time
the clusters are inspected one by one. If
d (q, pi) − r > cr(pi) we do not enter the
cluster of pi, otherwise we verify it ex-
haustively. If d (q, pi) + r < cr(pi) we do
not need to consider subsequent clusters.
The authors report unbeaten performance
on high dimensional spaces, at the cost of
O(n2/m) construction time.

5.2. Nearest-Neighbor Queries

We have concentrated in range search
queries up to now. This is because, as we
show in this section, most of the existing
solutions for NN-queries are built system-
atically over range searching techniques,
and indeed can be adapted to any of the
data structures presented (despite having
been originally designed for specific ones).

3Although Nene and Nayar [1997] consider only vec-
tor spaces, the same technique can be used here.

ACM Computing Surveys, Vol. 33, No. 3, September 2001.

292 E. Chávez et al.

5.2.1. IncreasingRadius. The simplest NN
search algorithm is based on using a range
searching algorithm as follows. Search q
with fixed radii r = aiε (a > 1), starting
with i = 0 and increasing it until at least
the desired number of elements (1 or k)
lies inside the search radius r = aiε.

Since the complexity of the range
searching normally grows sharply on the
search radius, the cost of this method
can be very close to the cost of a range
searching with the appropriate r (which
is not known in advance). The increas-
ing steps can be made smaller (a → 1) to
avoid searching with a radius much larger
than necessary.

5.2.2. Backtracking with Decreasing Radius.
A more elaborate technique is as follows.
We first explain the search for the clos-
est neighbor. Start the search on any data
structure using r∗ = ∞. Each time q is
compared to some element p, update the
search radius as r∗ ← min(r∗, d (q, p)) and
continue the search with this reduced ra-
dius. This has been proposed, for exam-
ple, for BKTs and FQTs [Burkhard and
Keller 1973; Baeza-Yates et al. 1994] as
well as for vector spaces [Roussopoulos
et al. 1995].

As closer and closer elements to q are
found, we search with smaller radius and
the search becomes cheaper. For this rea-
son it is important to try to find quickly el-
ements that are close to the query (which
is unimportant in range queries). The way
to achieve this is dependent on the partic-
ular data structure. For example, in BKTs
and FQTs we can begin at the root and
measure i = d (p, q). Now, we consider the
edges labeled i, i − 1, i + 1, i − 2, i + 2, and
so on, and proceed recursively in the chil-
dren (other heuristics may work better).
Therefore, the exploration ends just after
considering the branch i + r∗ (r∗ is reduced
along the process). At the end r∗ is the dis-
tance to the closest neighbors and we have
already seen all of them.

N Nk(q) queries are solved as an exten-
sion of the above technique, where we keep
the k elements seen that are closest to q
and set r∗ as the maximum distance be-
tween those elements and q (clearly we are

not interested in elements farther away
than the current kth closest element).
Each time a new element is seen whose
distance is relevant, it is inserted as one of
the k nearest neighbors known up to now
(possibly displacing one of the old candi-
dates from the list) and r∗ is updated. In
the beginning we start with r∗ = ∞ and
keep this value until the first k elements
are found.

A variant of this type of query is the lim-
ited radius NN searching. Here we start
with the maximum expected distance be-
tween the query element and its nearest
neighbor. This type of query has been the
focus of Yianilos [1999, 2000].

5.2.3. Priority Backtracking. The previous
technique can be improved by a smarter
selection of which elements to consider
first. For clarity we consider backtracking
in a tree, although the idea is general. In-
stead of following the normal backtrack-
ing order of the range query, modifying at
most the order in which the subtrees are
traversed, we give much more freedom to
the traversal order. The goal is to increase
the probability of quickly finding elements
close to q and therefore reduce r∗ fast.
This technique has been used in vector
and metric spaces several times [Uhlmann
1991a; Hjaltason and Samet 1995; Ciaccia
et al. 1997].

At each point of the search we have a set
of possible subtrees that can be traversed
(not necessarily all at the same level). For
each subtree, we know a lower bound to
the distance between q and any element
of the subtree. We first select subtrees with
the smallest lower bound. Once a subtree
has been selected we compare q against
its root, update r∗ and the candidates for
output if necessary, and determine which
of the children of the considered root de-
serve traversal. Unlike the normal back-
tracking, those children are not immedi-
ately traversed but added to the set of
subtrees that have to be traversed at some
moment. Then we select again a subtree
from the set.

The best way to implement this search
is with a priority queue ordered by the
heuristic “goodness,” where the subtrees

ACM Computing Surveys, Vol. 33, No. 3, September 2001.

Searching in Metric Spaces 293

are inserted and removed. We start with
an empty queue where we insert the root
of the tree. Then we repeat the step of re-
moving the most promising subtree, pro-
cessing it, and inserting the relevant sub-
trees until the lower bound of the best
subtree exceeds r∗.

If applied to a BKT or a FQT, this
method yields the same result as the previ-
ous section, but this technique is superior
for dealing with continuous distances.

5.2.4. Specific NN Algorithms. The tech-
niques described above cover almost
all the existing proposals for solving
NN-queries. The only exception we are
aware of was presented in Clarkson
[1999], which is a GNAT-like data struc-
ture where the points are inserted into
more than one subtree to limit back-
tracking (hence the space requirement
is superlinear).

After selecting the representatives for
the root of the tree, each element u is not
only inserted into the subtree of its clos-
est representative p, but also in the tree
of any other representative p′ such that
d (u, p′) ≤ 3d (u, p). At search time, the
query q enters not only into its nearest
representative p but also into every other
representative p′ such that d (q, p′) ≤
3d (q, p). As shown in Clarkson [1999] this
is enough to guarantee that the nearest
neighbor will be reached.

By using subsets of size n1/2k+1 at depth
k in the tree, the search time is polyloga-
rithmic in n and the space requirement is
O(n polylog n) if some conditions hold in
the metric space.

5.3. Extensions

We cover in this section the work that has
been pursued on extensions of the basic
problems or in alternative models. None
of these are the main focus of our survey.

5.3.1. Dynamic Capabilities. Many of the
data structures for metric spaces are de-
signed to be built on a static data set.
In many applications this is not reason-
able because elements have to be inserted
and deleted dynamically. Some data struc-

tures tolerate insertions well, but not
deletions.

We first consider insertions. Among the
structures that we have surveyed, the
least dynamic is SAT, which needs full
knowledge of the complete set at index
construction time and has difficulty in
handling later insertions (some solutions
are described in Navarro and Reyes
[2001]). The VP family (VPT, MVPT,
VPF) has the problem of relying on global
statistics (such as the median) to build the
tree, so later insertions can be performed
but the performance of the structure may
deteriorate. Finally, the FQA needs, in
principle, insertion in the middle of an
array, but this can be handled by using
standard techniques. All the other data
structures can handle insertions in a rea-
sonable way. There are some structure pa-
rameters that may depend on n and thus
require periodical structural reorganiza-
tion, but we disregard this issue here (e.g.,
adding or removing pivots is generally
problematic).

Deletion is a little more complicated. In
addition to the above structures, which
present the same problems as for inser-
tion, BKTs, GHTs, BSTs, VTs, GNATs,
and the VP family cannot tolerate deletion
of an internal tree node because it plays an
essential role in organizing the subtree. Of
course this can be handled as just marking
the node as removed and actually keep-
ing it for routing purposes, but the qual-
ity of the data structure is affected over
time.

Therefore, the only structures that fully
support insertions and deletions are in
the FQ family (FQT, FQHT, FQA, since
there are no truly internal nodes), AESA
and LAESA approaches (since they are
just vectors of coordinates), the MT (which
is designed with dynamic capabilities in
mind and whose insertion/deletion algo-
rithms are reminiscent of those of the B-
tree), and a variant of GHTs designed
to support dynamic operations [Verbarg
1995]. The analysis of this latter struc-
ture shows that dynamic insertions can
be done in O(log2 n) amortized worst case
time, and that deletions can be done at
similar cost under some restrictions.

ACM Computing Surveys, Vol. 33, No. 3, September 2001.

294 E. Chávez et al.

5.3.2. I/O Considerations. Most of the re-
search on metric spaces deals with reduc-
ing the number of distance evaluations or
at most the total CPU time. However, de-
pending on the application, the I/O cost
may play an important role. As most of the
research on metric spaces has focused on
algorithms to discard elements, I/O con-
siderations have been normally left aside.

The only exception to the rule is MT, de-
signed specifically for secondary memory.
The tree nodes in the MT are to be stored
in a single disk page (indeed, the MT does
not fix an arity but rather a node capac-
ity in bytes). Earlier balanced trees exist
(such as the VP family), but the purpose
of this balancing is to keep the extra CPU
costs low. As we show later, unbalanced
data structures perform much better in
high dimensions and it is unlikely that the
reduced CPU costs may play an important
role. The purpose of balancing the MT, on
the other hand, is to keep I/O costs low, and
depending on the application this may be
even more important than the number of
distance evaluations.

Other data structures could probably
be adapted to perform well in secondary
memory, but the authors simply have not
considered the problem. For instance, it
is not hard to imagine strategies for the
tree data structures to pack “compact”
subtrees in disk pages, so as to make as
good use as possible of a page that is
read from disk. When a subtree grows
larger than a page it is split into two
pages of approximately the same number
of nodes. Of course, a B-tree-like scheme
such as that of MT has to be superior
in this respect. Finally, array-oriented ap-
proaches such as FQA, AESA, and LAESA
are likely to read all the disk pages of the
index for each query, and hence have bad
I/O performance.

5.3.3. Approximate and Probabilistic Algo-
rithms. For the sake of a complete overview
we include a brief description of an im-
portant branch of similarity searching,
where a relaxation on the query preci-
sion is allowed to obtain a speedup in
the query time complexity. This is reason-

able in some applications because the met-
ric space modelization already involves an
approximation to the true answer (recall
Section 2), and therefore a second approx-
imation at search time may be acceptable.

Additionally to the query one specifies a
precision parameter ε to control how far
away (in some sense) we want the out-
come of the query from the correct result.
A reasonable behavior for this type of al-
gorithm is to asymptotically approach the
correct answer as ε goes to zero, and com-
plementarily to speed up the algorithm,
losing precision, as ε moves in the opposite
direction.

This alternative to exact similarity
searching is called approximate similar-
ity searching, and encompasses approxi-
mate and probabilistic algorithms. We do
not cover them in depth here but present a
few examples. Approximation algorithms
for similarity searching are considered in
depth in White and Jain [1996].

As a first example, we mention an ap-
proximate algorithm for NN search in
real vector spaces using any Ls metric by
Arya et al. [1994]. They propose a data
structure, the BBD-tree, inspired in kd -
trees, that can be used to find “(1 + ε)
nearest neighbors”: instead of finding
u such that d (u, q) ≤ d (v, q) ∀v ∈ U,
they find an element u∗, an (1+ ε)-nearest
neighbor, differing from u by a factor of
(1 + ε), that is, u∗ such that d (u∗, q) ≤
(1 + ε) d (v, q) ∀v ∈ U.

The essential idea behind this algorithm
is to locate the query q in a cell (each leaf
in the tree is associated with a cell in the
decomposition). Every point inside the cell
is processed to obtain the current nearest
neighbor (u). The search stops when no
promising cells are encountered, that is,
when the radius of any ball centered at q
and intersecting a nonempty cell exceeds
the radius d (q, p)/(1 + ε). The query time
is O(11 + 6k/ε2kk log n).

A second example is a probabilistic al-
gorithm for vector spaces [Yianilos 2000].
The data structure is like a standard kd -
tree, using “aggressive pruning” to im-
prove the performance. The idea is to in-
crease the number of branches pruned

ACM Computing Surveys, Vol. 33, No. 3, September 2001.

Searching in Metric Spaces 295

Fig. 9. The unified model for indexing and querying metric spaces.

at the expense of losing some candidate
points in the process. This is done in a
controlled way, so the probability of suc-
cess is always known. In spite of the vec-
tor space focus of the algorithm, it could be
generalized to metric spaces as well. The
data structure is useful for finding only
limited radius nearest neighbors, that is,
neighbors within a fixed distance to the
query.

Finally, an example of a probabilistic
NN algorithm for general metric spaces
is that of Clarkson [1999]. The original
intention is to build a Voronoi-like data
structure on a metric space. As this is
not possible in general because there is
not enough knowledge of the character-
istics of the queries that will come later
[Navarro 1999], Clarkson [1999] chooses
to have a “training set” of queries and to
build a data structure able to answer cor-
rectly only queries belonging to the train-
ing set. The idea is that this is enough
to answer correctly an arbitrary query
with high probability. Under some prob-
abilistic assumptions on the distribution
of the queries, it is shown that the proba-
bility of not finding the nearest neighbor
is O(log n)2/K), where K can be made ar-
bitrarily large at the expense of O(K nρ)
space and O(Kρ log n) expected search

time. Here ρ is the logarithm of the ra-
tio between the farthest and the nearest
pairs of points in the union of U and the
training set.

6. A UNIFYING MODEL

At first sight, the indexes and the search
algorithms seem to emerge from a great
diversity, and different approaches are an-
alyzed separately, often under different
assumptions. Currently, the only realistic
way to compare two different algorithms
is to apply them to the same data set.

In this section we make a formal intro-
duction to our unifying model. Our inten-
tion is to provide a common framework
to analyze all the existing approaches to
proximity searching. As a result, we are
able to capture the similarities of appar-
ently different approaches. We also obtain
truly new ways of viewing the problem.

The conclusion of this section can be
summarized in Figure 9. All the indexing
algorithms partition the set U into subsets.
An index is built that allows determining
a set of candidate subsets where the el-
ements relevant to the query can appear.
At query time, the index is searched to find
the relevant subsets (the cost of doing this
is called “internal complexity”) and those

ACM Computing Surveys, Vol. 33, No. 3, September 2001.

296 E. Chávez et al.

subsets are checked exhaustively (which
corresponds to the “external complexity”
of the search).

The last two subsections describe the
two main approaches to similarity search-
ing in abstract terms.

6.1. Equivalence Relations

The relevance of equivalence classes for
this survey comes from the possibility
of partitioning a metric space so that a
new metric space is derived from the quo-
tient set. Readers familiar with equiva-
lence relations can safely skip this short
section.

Given a set X, a partition π (X) =
{π1, π2, . . . } is a collection of pairwise dis-
joint subsets whose union is X; that is,
∪πi = X and ∀i '= j , πi ∩ π j = ∅.

A relation, denoted by ∼, is a subset of
the crossproduct X × X (the set of ordered
pairs) of X. Two elements x, y are said to
be related, denoted by x ∼ y , if the pair
(x, y) is in the subset. A relation ∼ is said
to be an equivalence relation if it satisfies,
for all x, y , z ∈ X, the properties of reflex-
ivity (x ∼ x), symmetry (x ∼ y ⇔ y ∼ x),
and transitivity (x ∼ y ∧ y ∼ z ⇒ x ∼ z).

Every partition π (X) induces an equiv-
alence relation ∼ and, conversely, every
equivalence relation induces a partition:
two elements are related if they belong
to the same partition element. Every el-
ement πi of the partition is then called
an equivalence class. An equivalence class
is often named after one of its represen-
tatives (any element of πi can be taken
as a representative). An alternative def-
inition of an equivalence class of an ele-
ment x is the set of all y such that x ∼ y .
We denote the equivalence class of x as
[x] = { y , x ∼ y}.

Given the set X and an equivalence rela-
tion ∼, we obtain the quotient π (X) = X/∼.
It indicates the set of equivalence classes
(or just classes), obtained when applying
the equivalence relation to the set X.

6.2. Indexing and Partitions

The equivalence classes in the quotient set
π (X) of a metric space X can be consid-

ered themselves as objects in a new metric
space, provided we define a distance func-
tion in π (X).

We introduce a new function D0 : π (X)×
π (X) → R now defined in the quotient.

Definition 1. Given a metric space (X, d)
and a partition π (X), the extension of
d to π (X) is defined as D0([x], [y]) =
infx∈[x], y∈[y]{d (x, y)}.

D0 gives the maximum possible values
that keep the mapping contractive (i.e.,
D0([x], [y]) ≤ d (x, y) for any x, y). Unfor-
tunately, D0 does not satisfy the triangle
inequality, just (p1) to (p3), and in most
cases (p4) (recall Section 3.1). Hence, D0
itself is not suitable for indexing purposes.

However, we can use any metric D
that lower bounds D0 (i.e., D([x], [y]) ≤
D0([x], [y])). Since D is a metric, (π (X), D)
is a metric space and therefore we can
make queries in π (X) in the same way
we have done in X. We redefine the out-
come of a query in π (X) as ([q], r)D = {u ∈
U, D([u], [q]) ≤ r} (although formally we
should retrieve classes, not elements).

Since the mapping is contractive
(D([x], [y]) ≤ d (x, y)) we can convert
one search problem into another, it is
hoped simpler, search problem. For a
given query (q, r)d we find out to which
equivalence class the query q belongs
(i.e., [q]). Then, using the new distance
function D the query is transformed into
([q], r)D. As the mapping is contractive,
we have (q, r)d ⊆ ([q], r)D. That is, ([q], r)D
is indeed a candidate list, so it is enough
to perform an exhaustive search on that
candidate list (now using the original
distance d), to obtain the actual outcome
of the query (q, r)d .

Our main thesis is that the above pro-
cedure is in fact used in virtually every
indexing algorithm (recall Figure 9).

PROPOSITION. All the existing indexing
algorithms for proximity searching consist
of building an equivalence relation, so that
at search time some classes are discarded
and the others are exhaustively searched.

As we show shortly, the most important
tradeoff when designing the partition is to

ACM Computing Surveys, Vol. 33, No. 3, September 2001.

Searching in Metric Spaces 297

Fig. 10. Two points x and y , and their equivalence
classes (the shaded rings). D gives the minimal dis-
tance among rings, which lower bounds the distance
between x and y .

balance the cost to find ([q], r)D and the
cost to verify this candidate list.

In Figure 10 we can see a schematic ex-
ample of the idea. We divide the space in
several regions (equivalence classes). The
objects inside each region become indistin-
guishable. We can consider them as ele-
ments in a new metric space. To find the
answer, instead of exhaustively examin-
ing the entire dictionary we just examine
the classes that contain potentially inter-
esting objects. In other words, if a class
can contain an element that should be re-
turned in the outcome of the query, then
the class will be examined (see also the
rings considered in Figure 2).

We recall that this property is not
enough for an arbitrary NN search algo-
rithm to work (since the mapping would
have to preserve proximity instead), but
most existing algorithms for NN are based
on range queries (recall Section 5.2), and
these algorithms can be applied as well.

Some examples may help to understand
the above definitions, for both the concept
of equivalence relation and the obtained
distance function.

Example 1. Say that we have an ar-
bitrary reference pivot p ∈ X and the
equivalence relation is given by x ∼ y ⇔
d (p, x) = d (p, y). In this case D([x],[y]) =
|d (x, p) − d (y , p)| is a safe lower bound
for the D0 distance (guaranteed by the tri-
angle inequality). For a query of the form

(q, r)d the candidate list ([q], r)D consists
of all elements x such that D([q],[x]) ≤ r,
or which is the same, |d (q, p) − d (x, p)| ≤
r. Graphically, this distance represents a
ring centered at p containing a ball cen-
tered at q with radius r (recall Figures 10
and 8). This is the familiar rule used in
many independent algorithms to trim the
space.

Example 2. As explained, the similarity
search problem was first introduced in vec-
tor spaces, and the very first family of al-
gorithms used there was based on a par-
tition operation. These algorithms were
called bucketing methods, and consisted
of the construction of cells or buckets
[Bentley et al. 1980] Searching for an ar-
bitrary point in Rk is converted into an ex-
haustive search in a finite set of cells. The
procedure uses two steps: they find which
cell the query point belongs to and build
a set of candidate cells using the query
range; then they inspect this set of can-
didate cells exhaustively to find the actual
points inside the query range.4 In this case
the equivalence classes are the cells, and
the tradeoff is that the larger the cells, the
cheaper it is to find the appropriate ones,
but the more costly is the final exhaustive
search.

6.3. Coarsening and Refining a Partition

We start by defining the concepts of refine-
ment and coarsening.

Definition 2. Let ∼1 and ∼2 be two
equivalence relations over a set X. We say
that ∼1 is a refinement of ∼2 or that ∼2 is
a coarsening of ∼1 if for any pair x, y ∈ X
such that x ∼1 y it holds x ∼2 y . The same
terms can be applied to the corresponding
partitions π1(X) and π2(X).

Refinement and coarsening are impor-
tant concepts for the topic we are dis-
cussing. The following lemma shows the
effect of coarsening on the effectiveness of
the partition for searching purposes.

4 The algorithm is in fact a little more sophisticated
because they try to find the nearest neighbor of a
point. However, the version presented here for range
queries is in the same spirit as the original one.

ACM Computing Surveys, Vol. 33, No. 3, September 2001.

298 E. Chávez et al.

LEMMA 1. If ∼1 is a coarsening of
∼2 then their extended distances D1
and D2 have the property D1([x], [y]) ≤
D2([x], [y]).

PROOF. Let us denote [x]i and [y]i the
equivalence classes of x and y under
equivalence relation ∼i. Then

D1([x], [y]) = inf
x∈[x]1, y∈[y]1

{d (x, y)}

≤ inf
x∈[x]2, y∈[y]2

{d (x, y)} = D2([x], [y]),

since [x]2 ⊆ [x]1 and [y]2 ⊆ [y]1.

An interesting idea arising from the
above lemma is to build a hierarchy of
coarsening operations. Using this hierar-
chy we could proceed downwards from a
very coarse level building a candidate list
of equivalence classes of the next level.
This candidate list will be refined using
the next distance function and so on until
we reach the bottom level.

6.4. Discriminative Power

As sketched previously, most indexing al-
gorithms rely on building an equivalence
relation. The corresponding search algo-
rithms have the following parts.

1. Find the classes that may be relevant
for the query.

2. Exhaustively search all the elements of
these classes.

The first part involves performing some
evaluations of the d distance, as shown
in Example 1 above. It may also involve
some extra CPU time (which although not
the central point in this article, must be
kept reasonable). The second part consists
of directly comparing the query against
the candidate list. The following defini-
tion gives a name to both parts of the
search cost.

Definition 3. Let A be a search algo-
rithm over (X, d) based on a mapping to
(π (X), D), and let (q, r)d be a range query.
Then the internal complexity of A is the
number of evaluations of d necessary to
compute ([q], r)D, and the external com-
plexity is |([q], r)D|.

We recall that |([q], r)D| refers to the
number of elements in the original metric
space, not the number of classes retrieved.

There is a concept related to the ex-
ternal complexity of a search algorithm,
which we define next.

Definition 4. The discriminative power
of a search algorithm based on a mapping
from (X, d) to (π (X), D), with regard to a
query (q, r)d of nonempty outcome, is de-
fined as |(q, r)d |/|([q], r)D|.

Although the definition depends on q
and r, we can speak in general terms of the
discriminative power by averaging over
the qs and rs of interest. The discrimina-
tive power serves as an indicator of the
performance or fitness of the equivalence
relation.

In general, it will be more costly to have
more discriminative power. The indexing
scheme needs to find a balance between
the complexity to find the relevant classes
and the discriminative power.

Let us consider Example 1. The inter-
nal complexity is one distance evaluation
(the distance from q to p), and the external
complexity will correspond to the number
of elements that lie in the selected ring. We
could intersect it with more rings (increas-
ing internal complexity) to reduce the ex-
ternal complexity.

The tradeoff is partially formalized with
this lemma.

LEMMA 2. If A1 and A2 are search algo-
rithms based on equivalence relations ∼1
and ∼2, respectively, and ∼1 is a coarsen-
ing of ∼2, then A1 has higher external com-
plexity than A2.

PROOF. We have to show that, for any
r, ([q], r)D2 ⊆ ([q], r)D1 . But this is clear,
since D1([x], [y]) ≤ D2([x], [y]) implies
([q], r)D2 = { y ∈ U, D2([q], [y]) ≤ r} ⊆
{ y ∈ U, D1([q], [y]) ≤ r} = ([q], r)D1 .

Although having more discriminative
power normally costs more internal eval-
uations, one can make better or worse use
of the internal complexity. We elaborate
more on this next.

ACM Computing Surveys, Vol. 33, No. 3, September 2001.

Searching in Metric Spaces 299

Fig. 11. An equivalence relation induced by intersecting rings centered in two pivots, and how a query is
transformed.

6.5. Locality of a Partition

The equivalence classes can be thought
of as a set of nonintersecting cells in the
space, where every element inside a given
cell belongs to the same equivalence class.
However, the mathematical definition of
an equivalence class is not confined to a
single cell. We define “locality” as a prop-
erty of a partition that stands for how
much the classes resemble cells.

Definition 5. The nonlocality of a par-
tition π (X) = {π1, π2, . . . } with respect
to a finite dictionary U is defined as
maxi{maxx, y∈πi∩U d (x, y)}, that is, as the
maximum distance between elements
lying in the same class.

We say that a partition is “local” or “non-
local” meaning that it has high or low lo-
cality. Figure 11 shows an example of a
nonlocal partition (u5 and u12 lie in sepa-
rate fragments of a single class). It is nat-
ural to expect more discriminative power
from a local partition than from a nonlo-
cal one. This is because in a nonlocal par-
tition the candidate list tends to contain
elements actually far away from the query.

Notice that in Figure 11 the locality
would improve sharply if we added a third
pivot. In a vector space of k dimensions, it
suffices to consider k + 1 pivots in general
position5 to obtain a highly local partition.

5 That is, not lying on a (k − 1)-hyperplane.

In general metric spaces we can also take a
sufficient number of pivots so as to obtain
highly local partitions.

However, obtaining local partitions may
be expensive in internal complexity and
not enough to achieve low external com-
plexity, otherwise the bucketing method
for vector spaces [Bentley et al. 1980] ex-
plained in Example 2 would have excellent
performance. Even with such a local par-
tition and assuming uniformly distributed
data, a number of empty cells are ver-
ified, whose volume grows exponentially
with the dimension. We return later to
this issue.

6.6. The Pivot Equivalence Relation

A large class of algorithms to build the
equivalence relations is based on pivot-
ing. This consists of considering the dis-
tances between an element and a num-
ber of preselected “pivots” (i.e., elements
of U or even X, also called reference points,
vantage points, keys, queries, etc. in the
literature).

The equivalence relation is defined in
terms of the distances of the elements to
the pivots, so that two elements are equiv-
alent if they are at the same distance from
all the pivots. If we consider one pivot p,
then this equivalence relation is

x ∼p y ⇔ d (x, p) = d (y , p).

ACM Computing Surveys, Vol. 33, No. 3, September 2001.

300 E. Chávez et al.

Fig. 12. Mapping from a metric space onto a vector space under the L∞ metric, using two pivots.

The equivalence classes correspond to
the intuitive notion of the family of sphere
shells with center p. Points falling in the
same sphere shell (i.e., at the same dis-
tance from p) are equivalent from the
viewpoint of p.

The above equivalence relation is easily
generalized to k pivots.

Definition 6. The pivot equivalence re-
lation based on elements {p1, . . . , pk} (the
k pivots) is defined as

x ∼{pi} y ⇔ ∀i, d (x, pi) = d (y , pi).

A graphical representation of the class
in the general case corresponds to the
intersection of several sphere shells cen-
tered at the points pi (recall Figure 11).

The distance d (x, y) cannot be smaller
than |d (x, p) − d (y , p)| for any element p,
because of the triangle inequality. Hence
D([x], [y]) = |d (x, p) − d (y , p)| is a safe
lower bound to the D0 function corre-
sponding to the class of sphere shells cen-
tered in p. With k pivots, this becomes
D([x], [y]) = maxi{|d (x, pi) − d (y , pi)|}.
This D distance lower bounds d and
hence can be used as our distance in the
quotient space.

Alternatively, we can consider the
equivalence relation as a projection to
the vector space Rk , k being the num-
ber of pivots used. The ith coordinate of

an element is the distance of the ele-
ment to the ith pivot. Once this is done,
we can identify points in Rk with ele-
ments in the original space with the L∞
distance. As we have described in Sec-
tion 6, the indexing algorithm will consist
of finding the set of equivalence classes
such that they fall inside the radius of
the search when using D in the quo-
tient space. In this particular case for
a query of the form (q, r)d we have to
find the candidate list as the set ([q], r)D,
that is, the set of equivalence classes [y]
such that D([q], [y]) ≤ r. In other words,
we want the set of objects y such that
maxi{|d (q, pi) − d (y , pi)|} ≤ r. This is
equivalent to search with the L∞ distance
in the vector space Rk where the equiv-
alence classes are projected. Figure 12
illustrates this concept (Figure 11 is
also useful).

Yet a third way to see the technique, less
formal but perhaps more intuitive, is as
follows. To check if an element u ∈ U be-
longs to the query outcome, we try a num-
ber of random pivots pi. If, for any such pi,
we have |d (q, pi)−d (u, pi)| > r, then by the
triangle inequality we know that d (q, u) >
r without the need to actually evalu-
ate d (q, u). At indexing time we precom-
pute the d (u, pi) values and at search time
we compute the d (q, pi) values. Only those
elements u that cannot be discarded by
looking at the pivots are actually checked
against q.

ACM Computing Surveys, Vol. 33, No. 3, September 2001.

Searching in Metric Spaces 301

Fig. 13. A compact partition using four centers
and two query balls intersecting some classes.
Note that the class of c3 could be excluded
from consideration for q1 by using the covering
radius criterion but not the hyperplane crite-
rion, whereas the opposite happens to discard c4
for q2.

6.7. The Compact Equivalence Relation

A different type of equivalence relation,
used by another large class of algorithms,
is defined with respect to the proximity to
a set of elements (which we call “centers”
to distinguish them from the pivots of the
previous section).

Definition 7. The compact equivalence
relation based on {c1, . . . , cm} (the centers)
is

x ∼{ci} y ⇔ closest(x, {ci}) = closest(y , {ci}),

where closest(z, S) = {w ∈ S, ∀w′ ∈ S,
d (z, w) ≤ d (z, w′)}. The associated parti-
tion is called a compact partition.

That is, we divide the space with one
partition element for each ci and the class
of ci is that of the points that have ci as
their closest center. Figure 13 shows an ex-
ample in (R2, L2). In particular, note that
we can select U as the set of centers, in
which case the partition has optimal local-
ity. Even if {ci} is not U, compact partitions
have good locality.

In vector spaces the compact partition
coincides with the Voronoi partition if the

whole set U is the set of centers. Its as-
sociated concept, the “Delaunay tessela-
tion,” is a graph whose nodes are the
elements of U and whose edges connect
nodes whose classes share a border. The
Delaunay tesselation is the basis of very
good algorithms for proximity searching
[Aurenhammer 1991; Yao 1990]. For ex-
ample, an O(log n) time NN algorithm ex-
ists in two dimensions. Unfortunately, this
algorithm does not generalize efficiently to
more than two dimensions. The Delaunay
tesselation, which has O(n) edges in two
dimensions, can have O(n2) edges in three
and more dimensions.

In a general metric space, the
D0([x], [y]) distance in the space π (X)
of the compact classes is, as before, the
smallest distance between points x ∈ [x]
and y ∈ [y]. To find [q] we basically need
to find the nearest neighbor of q in the
set of centers. The outcome of the query
([q], r)D0 is the set of classes intersected
by a query ball (see Figure 13).

A problem in general metric spaces is
that it is not easy to bound a class so as to
determine whether the query ball inter-
sects it. From the many possible criteria,
two are the most popular.

6.7.1. Hyperplane Criterion. This is the
most basic one and the one that best
expresses the idea of compactness. In
essence, if c is the center of the class
[q] (i.e., the center closest to q), then (1)
the query ball of course intersects [c]; (2)
the query ball does not intersect [ci] if
d (q, c) + r < d (q, ci) − r. Graphically, if
the query ball does not intersect the hy-
perplane dividing its closest neighbor and
another center ci, then the ball is totally
outside the class of ci.

6.7.2. Covering Radius Criterion. This
tries to bound the class [ci] by considering
a ball centered at ci that contains all the
elements of U that lie in the class.

Definition 8. The covering radius of c
for U is cr(c) = maxu∈[c]∩U d (c, u).

Now it is clear that we can discard ci if
d (q, ci) − r > cr(ci).

ACM Computing Surveys, Vol. 33, No. 3, September 2001.

302 E. Chávez et al.

Fig. 14. A low-dimensional (left) and high-dimensional (right) histogram of distances, showing
that on high dimensions virtually all the elements become candidates for exhaustive evaluation.
Moreover, we should use a larger r in the second plot in order to retrieve some elements.

7. THE CURSE OF DIMENSIONALITY

As explained, one of the major obstacles for
the design of efficient search techniques on
metric spaces is the existence and ubiq-
uity in real applications of the so-called
high-dimensional spaces. Traditional in-
dexing techniques for vector spaces (such
as kd-trees) have an exponential depen-
dency on the representational dimension
of the space (as the volume of a box or hy-
percube containing the answers grows ex-
ponentially with the dimension).

More recent indexing techniques for vec-
tor spaces and those for generic metric
spaces can get rid of the representational
dimension of the space. This makes a
big difference in many applications that
handle vector spaces of high represen-
tational dimension but low intrinsic di-
mension (e.g., a plane immersed in a
50-dimensional vector space, or simply
clustered data). However, in some cases
even the intrinsic dimension is very high
and the problem becomes intractable for
exact algorithms, and we have to resort
to approximate or probabilistic algorithms
(Section 5.3.3).

Our aim in this section is (a) to show
that the concept of intrinsic dimensional-
ity can be conceived even in a general met-
ric space; (b) to give a quantitative defi-
nition of the intrinsic dimensionality; (c)
to show analytically the reason for the so-
called “curse of dimensionality;” and (d) to
discuss the effects of pivot selection tech-

niques. This is partially based on previous
work [Chávez and Navarro 2001a].

7.1. Intrinsic Dimensionality

Let us start with a well-known example.
Consider a distance such that d (x, x) = 0
and d (x, y) = 1 for all x '= y . Under this
distance (in fact an equality test), we do
not obtain any information from a compar-
ison except that the element considered is
or is not our query. It is clear that it is
not possible to avoid a sequential search
in this case, no matter how smart our in-
dexing technique is.

Let us consider the histogram of dis-
tances between points in the metric space
X. This can be approximated by using
the dictionary U as a random sample of
X. This histogram is mentioned in many
papers, for example, Brin [1995], Chávez
and Marroquı́n [1997], and Ciaccia et al.
[1998a], as a fundamental measure re-
lated to the intrinsic dimensionality of the
metric space. The idea is that, as the space
has higher intrinsic dimension, the mean
µ of the histogram grows and its variance
σ 2 is reduced. Our previous example is an
extreme case.

Figure 14 gives an intuitive explanation
of why the search problem is harder when
the histogram is concentrated. If we con-
sider a random query q and an indexing
scheme based on random pivots, then the
possible distances between q and a pivot p
are distributed according to the histogram

ACM Computing Surveys, Vol. 33, No. 3, September 2001.

Searching in Metric Spaces 303

of the figure. The elimination rule says
that we can discard any point u such that
d (p, u) '∈ [d (p, q) − r, d (p, q) + r]. The
grayed areas in the figure show the points
that we cannot discard. As the histogram
is more and more concentrated around its
mean, fewer points can be discarded using
the information given by d (p, q).

This phenomenon is independent of the
nature of the metric space (vectorial or not,
in particular) and gives us a way to quan-
tify how hard it is to search on an arbitrary
metric space.

Definition 9. The intrinsic dimension-
ality of a metric space is defined as ρ =
µ2/2σ 2, where µ and σ 2 are the mean and
variance of its histogram of distances.

The technical convenience of the exact
definition is made clear shortly. The impor-
tant part is that the intrinsic dimension-
ality grows with the mean and decreases
with the variance of the histogram.

The particular cases of the Ls distances
in vector spaces are useful illustrations. As
shown in Yianilos [1999], a uniformly dis-
tributed k-dimensional vector space under
the Ls distance has mean &(k1/s) and stan-
dard deviation &(k1/s−1/2). Therefore its
intrinsic dimensionality is &(k) (although
the constant is not necessarily 1). So the
intuitive concept of dimensionality in vec-
tor spaces matches our general concept of
intrinsic dimensionality.

7.2. A Lower Bound for Pivoting Algorithms

Our main result in this section relates
the intrinsic dimensionality with the
difficulty of searching with a given search
radius r using a pivoting equivalence re-
lation that chooses the pivots at random.
As we show next, the difficulty of the
problem is related to r and the intrinsic
dimensionality ρ.

We are considering independent identi-
cally distributed random variables for the
distribution of distances between points.
Although not accurate, this simplification
is optimistic and hence can be used to
lower bound the performance of the
indexing algorithms. We come back to
this shortly.

Let (q, r)d be a range query over a met-
ric space indexed by means of k random
pivots, and let u be an element of U. The
probability that u cannot be excluded
from direct verification after considering
the k pivots is exactly

(a) Pr(|d (q, p1) − d (u, p1)|
≤ r, . . . , |d (q, pk) − d (u, pk)| ≤ r).

Since all the pivots are assumed to
be random and their distance distribu-
tions independent identically distributed
random variables, this expression is the
product of probabilities

(b) Pr(|d (q, p1) − d (u, p1)| ≤ r) × · · ·
× Pr(|d (q, pk) − d (u, pk)| ≤ r)

which for the same reason can be simpli-
fied to

Pr(not discarding u)
= Pr(|d (q, p) − d (u, p)| ≤ r)k .

for a random pivot p.
If X and Y are two independent iden-

tically distributed random variables with
mean µ and variance σ 2, then the mean of
X − Y is 0 and its variance is 2σ 2. Using
Chebyschev’s inequality6 we have that
Pr(|X − Y | > ε) < 2σ 2/ε2. Therefore,

Pr(|d (q, p) − d (u, p)| ≤ r) ≥ 1 − 2σ 2

r2 ,

where σ 2 is precisely the variance of the
distance distribution in our metric space.
The argument that follows is valid for
2σ 2/r2 < 1, or r >

√
2σ (large enough

radii); otherwise the lower bound is zero.
Then, we have

Pr(not discarding u) ≥
(

1 − 2σ 2

r2

)k

.

We have now that the total search
cost is the number of internal distance

6 For an arbitrary distribution Z with mean µz and
variance σ 2

z , Pr(|Z − µz | > ε) < σ 2
z /ε2.

ACM Computing Surveys, Vol. 33, No. 3, September 2001.

304 E. Chávez et al.

evaluations (k) plus the external eval-
uations, whose number is on average
n × Pr(not discarding u). Therefore

Cost ≥ k + n
(

1 − 2σ 2

r2

)k

is a lower bound to the average search
cost by using random pivots. Optimizing
we obtain that the best k is

k∗ = ln n + ln ln(1/t)
ln(1/t)

,

where t = 1 − 2σ 2/r2. Using this optimal
k∗, we obtain an absolute (i.e., indepen-
dent on k) lower bound for the average
cost of any random pivot-based algorithm:

Cost ≥ ln n + ln ln(1/t) + 1
ln(1/t)

≥ ln n
ln(1/t)

≥ r2

2σ 2 ln n

which shows that the cost depends
strongly on σ/r. As r increases t tends
to 1 and the scheme requires more and
more pivots and it is anyway more and
more costly.

A nice way to represent this result is to
assume that we are interested in retriev-
ing a fixed fraction of at most f of the
elements, in which case r can be written as
r = µ − σ/

√
f by Chebyschev’s inequality.

In this case the lower bound becomes

r2

2σ 2 ln n = (µ − σ/
√

f)2

2σ 2 ln n

= ρ

(
1 − 1√

2ρ f

)2

ln n

=
(

√
ρ − 1√

2 f

)2

ln n

which is valid for f ≥ 1/(2ρ). We have
just proved the following.

THEOREM 1. Any pivot-based algo-
rithm using random pivots has a lower
bound (√ρ − 1/

√
2 f)2 ln n in the average

number of distance evaluations performed

for a random range query retrieving at
most a fraction f of the set, where ρ is the
intrinsic dimension of the metric space.

This result matches that of Baeza-Yates
[1997] and Baeza-Yates and Navorro
[1998] on FHQTs, about obtaining &(log n)
search time using &(log n) pivots, but here
we are more interested in the “constant”
term, which depends on the dimension.

The theorem shows clearly that the
parameters governing the performance
of range-searching algorithms are ρ and
f . One can expect that f keeps constant
as ρ grows, but it is possible that in some
applications the query q is known to be
a perturbation of some element of U and
therefore we can keep a constant search
radius r as the dimension grows. Even in
those cases the lower bound may grow if
σ shrinks with the dimension, as in the
Ls vector spaces with s > 2.

We have considered independent iden-
tically distributed random variables
for each pivot and the query. This is a
reasonable approximation, as we do not
expect much difference between the “view
points” from the general distribution of
distances to the individual distributions
(see Section 7.4). The expression given
in Equation (7.2b) cannot be obtained
without this simplification.

A stronger assumption comes from con-
sidering all the variables as independent.
This is an optimistic consideration equiv-
alent to assuming that in order to discard
each element u of the set we take k new
pivots at random. The real algorithm fixes
k random pivots and uses them to try to
discard all the elements u of the set. The
latter alternative can suffer from depen-
dencies from a point u to another, which
cannot happen in the former case (e.g., if u
is close to the third pivot and u′ is close to u
then the distance from u′ to the third pivot
carries less information). Since the as-
sumption is optimistic, using it to reduce
the joint distribution in Equation (7.2a) to
the expression given in Equation (7.2b)
keeps the lower bound valid.

Figures 15 and 16 show an experiment
on the search cost in (R+, L2) using a differ-
ent number of pivots k and dimensions +.

ACM Computing Surveys, Vol. 33, No. 3, September 2001.

Searching in Metric Spaces 305

Fig. 15. Internal, external, and overall distance evaluations in eight dimensions, using differ-
ent numbers of pivots k.

Fig. 16. Overall distance evaluations as the dimension grows for fixed k.

ACM Computing Surveys, Vol. 33, No. 3, September 2001.

306 E. Chávez et al.

The n = 100, 000 elements are generated
at random and the pivots are randomly
chosen from the set. We average over 1,000
random queries whose radius is set to re-
trieve 10 elements of the set. We count the
number of distance evaluations. Figure 15
shows the existence of an optimum k∗ =
110, and Figure 16 shows the predicted
O(n(1 − 1/&(+))k) behavior. We have not
enough memory in our machine to show
the predicted growth in k∗ ≈ &(+) ln(n).

Figure 17 shows the effect in a dif-
ferent way. As the dimension grows,
the histogram of L2 moves to the right
(µ = &(

√
+)). Yet the pivot distance D

(in the projected space (Rk , L∞)) remains
about the same for fixed k. Increasing
k from 32 to 512 moves the histogram
slightly to the right. This shift is effective
in low-dimensional metric spaces, but it is
uneffective in high dimensions. The plots
of these two histograms can measure how
good are the pivoting algorithms. Intu-
itively, the overlap between the histogram
for the pivot distance and the histogram
for the original distance is directly propor-
tional to the discriminative power of the
pivot mapping. As the overlap increases
the algorithms become more effective.

The particular behavior of D in
Figure 17 is due to the fact that D is the
maximum of k random variables whose
mean is &(σ) (i.e., |d (p, q) − d (p, x)|). The
fact that D does not grow with + means
that, as a lower bound for d , it gets less
effective in higher dimensions.

7.3. A Lower Bound for Compact
Partitioning Algorithms

We now try to obtain a lower bound to
the search cost of algorithms based on the
compact partition. The result is surpris-
ingly similar to that of the previous sec-
tion. Our lower bound considers only the
hyperplane criterion, which is the most
purely associated with the compact parti-
tion. We assume just the same facts about
the distribution of distances as in the pre-
vious section: all of them are independent
identically distributed random variables.

Let (q, r)d be a range query over a
metric space indexed by means of m ran-

dom centers {c1, . . . , cm}. The m distances
d (q, ci) can be considered as random
variables X 1, . . . , X m whose distribution
is that of the histogram of the metric
space. The distribution of the distance
from q to its closest center c is that of
Y = min{X 1, . . . , X m}. The hyperplane
criterion specifies that a class [ci] cannot
be excluded if d (q, c)+r ≥ d (q, ci)−r. The
probability that this happens is Pr(Y ≥
X i −2r). But since Y is the minimum over
m variables with the same distribution,
the probability is Pr(Z ≥ X − 2r)m, where
X and Z are two random variables dis-
tributed according to the histogram. Using
Chebyschev’s inequality and noticing that
if Z < X − 2r then X or Z are at distance
at least r from their mean, we can say that

Pr(not discarding [ci])

= Pr(Z ≥ X − 2r)m ≥
(

1 − σ 2

r2

)m

.

On average each class has n/m ele-
ments, so that the external complexity
is n × Pr (not discarding [ci]). The inter-
nal cost to find the intersected classes
deserves some discussion. In all the hier-
archical schemes that exist, we consider
that the real partition is that induced by
the leaves of the trees, that is, the most
refined ones. We see all the rest of the
hierarchy as a mechanism to reduce the
internal complexity of finding the small
classes (hence the m we use here is not,
say, the m of GNATs, but the total number
of final classes). It is difficult to determine
this internal complexity (an upper bound
is m), so we call it CI (m), knowing that
it is between %(log m) and O(m). Then a
lower bound to the search complexity is

Cost ≥ CI (m) + n
(

1 − σ 2

r2

)m

which indeed is very similar to the
lower bound on pivot-based algorithms.
Optimizing on m yields

m∗ = ln n + ln ln(1/t ′) − ln C ′
I (m∗)

ln(1/t ′)
,

ACM Computing Surveys, Vol. 33, No. 3, September 2001.

Searching in Metric Spaces 307

Fi
g.
17

.
H

is
to

gr
am

s
co

m
pa

ri
ng

th
e

L
2

di
st

an
ce

in
di

ff
er

en
t

+-
di

m
en

si
on

al
E

uc
lid

ea
n

sp
ac

es
an

d
th

e
pi

vo
t

di
st

an
ce

(M
ax

D
is

t)
ob

ta
in

ed
us

in
g

di
ff

er
en

t
nu

m
be

rs
k

of
pi

vo
ts

.I
n

th
e

to
p

ro
w

+
=

16
an

d
in

th
e

bo
tt

om
ro

w
+

=
12

8.
O

n
th

e
le

ft
k

=
32

an
d

on
th

e
ri

gh
t

k
=

51
2.

ACM Computing Surveys, Vol. 33, No. 3, September 2001.

308 E. Chávez et al.

Fig. 18. Overall distance evaluations using a hierarchical compact partitioning with different
arities.

where t ′ = 1 − σ 2/r2. Using the optimal
m∗ the search cost is lower bounded by

Cost = %(CI (log1/t ′ n)) = %

(
CI

(
r2

σ 2 ln n
))

which also shows an increase in the cost
as the dimensionality grows. As before
we can write r = µ − σ/

√
f . We have just

proved the following.

THEOREM 2. Any compact partitioning
algorithm based on random centers has
a lower bound CI (2(√ρ − 1/

√
2 f)2) in the

average number of distance evaluations
performed for a random range query
retrieving a fraction of at most f of the
database, where ρ is the intrinsic dimen-
sion of the space and CI () is the internal
complexity to find the relevant classes,
satisfying %(log m) = CI (m) = O(m).

This result is weaker than Theorem 1
because of our inability to give a good
lower bound on CI , so we cannot ensure
more than a logarithmic increase with
respect to ρ. However, even assuming
CI (m) = &(m) (i.e., exhaustive search of

the classes), when the theorem becomes
very similar to Theorem 1, there is an
important reason that explains why the
compact partitioning algorithms can in
practice be better than pivot-based ones.
We can in this case achieve the optimal
number of centers m∗, which is impossible
in practice for pivot-based algorithms. The
reason is that it is much more economical
to represent the compact partition using
m centers than the pivot partition using
k pivots.

Figure 18 shows an experiment on the
same dataset, where we have used differ-
ent m values and a hierarchical compact
partitioning based on them. We have used
the hyperplane and the covering radius
criteria to prune the search. As can be
seen, the dependency on the dimension of
the space is not so sharp as for pivot-based
algorithms, and is closer to a dependency
of the form &(+).

The general conclusion is that, even
if the lower bounds using pivot-based
or compact partitioning algorithms look
similar, the first ones need much more
space to store the classes resulting from k
pivots than the last ones using the same

ACM Computing Surveys, Vol. 33, No. 3, September 2001.

Searching in Metric Spaces 309

number of partitions. Hence, the latter
can realistically use the optimal number
of classes, whereas the former cannot. If
pivot-based algorithms are given all the
necessary memory, then using the optimal
number of pivots they can improve over
compact partitioning algorithms, because
t is better than t ′, but this is more and
more difficult as the dimension grows.

Figure 19 compares both types of
partitioning. As can be seen, the pivoting
algorithm improves over the compact
partitioning if we give it enough pivots.
However, “enough” is a number that
increases with the dimension and with
the fraction retrieved (i.e., ρ and f). For ρ
and f large enough, the required number
of pivots will be unacceptably high in
terms of memory requirements.

7.4. Pivot and Center Selection Techniques

In Faragó et al. [1993], they prove formally
that if the dimension is constant, then
after properly selecting (not at random!)
a constant number k of pivots the exhaus-
tive search costs O(1). This contrasts with
our %(log n) lower bound. The difference is
that they do not take the pivots at random
but select a set of pivots that is assumed
to have certain selectivity properties. This
shows that the way in which the pivots
are selected can affect the performance.
Unfortunately, their pivot selection tech-
nique works for vector spaces only.

Little is known about pivot/center (let
us call them collectively, “references”)
selection policies, and in practice most
methods choose them at random, with a
few exceptions. For instance, in Shapiro
[1977] it is recommended to select pivots
outside the clusters, and Baeza-Yates
et al. [1994] suggest using one pivot from
each cluster. All authors agree in that
the references should be far apart from
each other, which is evident since close
references will give almost the same in-
formation. On the other hand, references
selected at random are already far apart
in a high-dimensional space.

The histogram of distances gives a for-
mal characterization of good references.
Let us start with a definition.

Definition 10. The local histogram
of an element u is the distribution of
distances from u to every x ∈ X.

A good reference has a flatter histogram,
which means that it will discard more
elements at query time. The measure
ρ = µ2/(2σ 2) of intrinsic dimensionality
(now defined on the local histogram of u)
can be used as a good parameter to eval-
uate how good a reference is (good refer-
ences have local histograms with small ρ).

This is related to the difference in
viewpoints (histograms) between differ-
ent references, a subject discussed in
depth in Ciaccia et al. [1998a]. The idea
is that the local histogram of a reference
u may be quite different from the global
histogram (especially if u is not selected
at random). This is used in Ciaccia et al.
[1998a] to show that if the histograms
for different references are similar then
they can accurately predict the behavior
of instances of their data structure (the
MT), a completely different issue.

Note also that good reference selection
becomes harder as the intrinsic dimension
grows. As the global histogram reduces
its variance, it becomes more difficult to
find references that deviate significantly
from it, as already noted in Ciaccia et al.
[1998a].

The histogram characterization ex-
plains a well-known phenomenon: to
discriminate among the elements in the
class of a local partition (or in a cluster),
it is a good idea to select a pivot from the
same class. This makes it more probable
to select an element close to them (the
ideal would be a centroid). In this case,
the distances tend to be smaller and
the histogram is not so concentrated in
large values. For instance, for LAESA,
Micó et al. [1994] do not use the pivots
in a fixed order, but the next one is that
with minimal L1 distance to the current
candidates. On the other hand, outliers
can be good at a first approximation, in
order to discriminate among clusters, but
later they are unable to separate well the
elements of the same cluster.

Selecting good individual references,
that is, with a flatter histogram, is not

ACM Computing Surveys, Vol. 33, No. 3, September 2001.

310 E. Chávez et al.

Fig. 19. Distance evaluations for increasing dimension. We compare the compact partition-
ing algorithm of Figure 18 using 128 centers per level against the filtration using k pivots
for k = 4, 16, 64. On top the search radius captures 0.01% of the set, on the bottom 0.1%.

ACM Computing Surveys, Vol. 33, No. 3, September 2001.

Searching in Metric Spaces 311

enough to ensure a good performance. For
example, a reference close to a good one
is probably good as well, but using both of
them gives almost the same information
as using only one. It is necessary to
include a variety of independent view-
points in the selection. If we consider the
selection of references as an optimization
problem, the goal is to obtain a set of
references that are collectively good for
indexing purposes. The set of references
is good if it approximates the original
distance well. This is more evident in
the case of pivoting algorithms, where a
contractive distance is implicitly used. A
practical way to decide whether our set
of references is effective is to compare the
histograms of the original distance and
the pivot distance as in Figure 17. A good
reference set will give a pivot distance
histogram with a large intersection with
the histogram of the original distance.

7.5. The Effect on the Discriminative Power

Another reason that explains the curse of
dimensionality is related to the decrease
in the discriminative power of a partition,
because of the odd “shapes” of the classes.

As explained before, a nonlocal partition
suffers from the problem of being unable to
discriminate between points that are actu-
ally far away from each other, which leads
to unnecessarily high external complexity.
The solution is to select enough pivots or
to use a compact partitioning method that
yields a local partition. However, even in
a local partition, the shape of the cell is
fixed at indexing time, while the shape
of the space region defined as interesting
for a query q is a ball dynamically deter-
mined at query time. The discriminative
power can be visualized as the volume of
the query ball divided by the total volume
of the classes intersected by that ball.

A good example is that of a ball inside a
box in a k-dimensional L2 space. The box
is the class obtained after using k orthog-
onal pivots, and the partition obtained is
quite local. Yet the volume of the ball is
smaller, and the ratio with respect to the
volume of the box (i.e., the discriminative
power) decreases exponentially with k.

This means that we have to examine
a volume (and a number of candidate
elements) that, with respect to the size of
the final result, grows exponentially with
the dimension k. This fact is behind the
exponential dependency on the dimension
in data structures for vector spaces such
as the kd -tree or the R-tree.

The same phenomenon occurs in gen-
eral metric spaces, where the “shapes” of
the cells cannot possibly fit an unknown
query ball. We can add more pivots to
better bound any possible ball, but this
increases the internal complexity and
becomes more difficult as the intrinsic
dimension grows (the smaller the vari-
ance, the more pivots are needed to make
a difference).

8. A TAXONOMY OF SEARCH ALGORITHMS

In this section we apply our unify-
ing model to organize all the known
approaches in a taxonomy. This helps
to identify the essential features of all
the existing techniques, to find possible
combinations of algorithms not noticed up
to now, and to detect which are the most
promising areas for optimization.

We first concentrate on pivoting algo-
rithms. They differ in their method to
select the pivots, in when the selection
is made, and in how much information
on the comparisons is used. Later, we
consider the compact partitioning algo-
rithms. These differ in their methods
to select the centers and to bound the
equivalence classes.

Figure 20 summarizes our classifica-
tion of methods attending to their most
important features (explained throughout
the section).

8.1. Pivot-Based Algorithms

8.1.1. Search Algorithms. Once we have
determined the equivalence relation to
use (i.e., the k pivots), we preprocess the
dictionary by storing, for each element of
U, its k coordinates (i.e., distance to the
k pivots). This takes O(kn) preprocessing
time and space overhead. The “index” can

ACM Computing Surveys, Vol. 33, No. 3, September 2001.

312 E. Chávez et al.

Fig. 20. Taxonomy of the existing algorithms. The methods in italics are combinations that appear naturally
as soon as the taxonomy is built.

be seen as a table of n rows and k columns
storing d (ui, pj).

At query time, we first compare the
query q against the k pivots, hence obtain-
ing its k coordinates [q] = (y1, . . . , yk) in
the target space, that is, its equivalence
class. The cost of this is k evaluations
of the distance function d , which corre-
sponds to the internal complexity of the
search. We have now to determine, in the
target space, which classes may be rele-
vant to the query (i.e., which ones are at
distance r or less in the L∞ metric, which
corresponds to the D distance). This does
not use further evaluations of d , but it
may take extra CPU cost. Finally, the ele-
ments belonging to the qualifying classes
(i.e., those that cannot be discarded after
considering the k pivots) are directly
compared against q (external complexity).

The simplest search algorithm proceeds
rowwise: consider each element of the
set (i.e., each row (x1, . . . , xk) of the table)
and see if the triangle inequality allows
discarding that row, that is, whether

maxi=1..k{|xi − yi|} > r. For each row not
discarded using this rule, compare the
element directly against q. This is equiv-
alent to traversing the quotient space,
using D to discard uninteresting classes.

Although this traversal does not per-
form more evaluations of d than neces-
sary, it is not the best choice. The reasons
are made clear later, as we discover the
advantages of alternative approaches.
First, notice that the amount of CPU
work is O(kn) in the worst case. However,
as we abandon a row as soon as we find
a difference larger than r along a coordi-
nate, the average case is much closer to
O(n) for queries of reasonable selectivity.

The first improvement is to process
the set columnwise. That is, we compare
the query against the first pivot p1. Now,
we consider the first column of the table
and discard all the elements that satisfy
|x1 − y1| > r. Then, we consider the second
pivot p2 and repeat the process only on the
elements not discarded up to now. An algo-
rithm implementing this idea is LAESA.

ACM Computing Surveys, Vol. 33, No. 3, September 2001.

Searching in Metric Spaces 313

It is not hard to see that the amount of
evaluations of d and the total CPU work
remains the same as for the rowwise case.
However, we can do better now, since each
column can be sorted so that the range of
qualifying rows can be binary instead of
sequentially searched [Nene and Nayar
1997; Chávez et al. 1999]. This is possible
because we are interested, at column i, in
the values [yi − r, yi + r]. The extra CPU
cost gets closer to O(k log n) than to O(n)
by using this technique.

This is not the only improvement
allowed by a columnwise evaluation that
cannot be done rowwise. A very important
one is that it is not necessary to consider
all the k coordinates (recall that we have
to perform one evaluation of d to obtain
each new query coordinate yi). As soon
as the remaining set of candidates is
small enough, we can stop considering the
remaining coordinates and directly verify
the candidates using the d distance. This
point is difficult to estimate beforehand:
despite the (few) theoretical results ex-
isting [Faragó et al. 1993; Baeza-Yates
1997; Baeza-Yates and Navarro 1998],
one cannot normally understand the
application well enough to predict the
actual optimal number of pivots k∗ (i.e.,
the point where it is better to switch to
exhaustive evaluation).

Another improvement that can be done
with columnwise evaluation is that the
selection of the pivots can be done on the
fly instead of beforehand as we have pre-
sented it. That is, once we have selected
the first pivot p1 and discarded all the
uninteresting elements, the second pivot
p2 may depend on which was the result
of p1. However, for each potential pivot p
we have to store the coordinates of all the
elements of the set for p (or at least some,
as we show later). That is, we select k
potential pivots and precompute the table
as before, but we can choose in which
order the pivots are used (according to the
current state of the search) and where we
stop using pivots and compare directly.

An extreme case of this idea is AESA,
where k = n (i.e., all the elements are
potential pivots), and the new pivot at
each iteration is selected among the

remaining elements. Despite its practi-
cal inapplicability because of its O(n2)
preprocessing time and space overhead
(i.e., all the distances among the known
elements are precomputed), the algorithm
performs a surprisingly low number of
distance evaluations, much better than
when the pivots are fixed. This shows that
it is a good idea to select pivots from the
current set of candidates (as discussed in
the previous sections).

Finally, we notice that instead of a se-
quential search in the mapped space, we
could use an algorithm to search in vector
spaces of k dimensions (e.g., kd -trees or
R-trees). Depending on their ability to
handle larger k values, we could be able
to use more pivots without significantly
increasing the extra CPU cost. Recall also
that, as more pivots are used, the search
structures for vector spaces perform
worse. This is a very interesting subject
which has not been pursued yet, that
accounts for balancing between distance
evaluations and CPU time.

8.1.2. Coarsening the Equivalence Relation.
The alternative of not considering all the
k pivots if the remaining set of candidates
is small is an example of coarsening
an equivalence relation. That is, if we
do not consider a given pivot p, we are
merging all the classes that differ only
in that coordinate. In this case we prefer
to coarsen the pivot equivalence relation
because computing it with more precision
is worse than checking it as is.

There are many other ways to coarsen
the equivalence relation, and we cover
them here. However, in these cases the
coarsening is not done for the sake of
reducing the number of distance evalu-
ations, but to improve space usage and
precomputation time, as O(kn) can be pro-
hibitively expensive for some applications.
Another reason is that, via coarsening, we
obtain search algorithms that are sublin-
ear in their extra CPU time. We consider
in this section range coarsening, bucket
coarsening, and scope coarsening. Their
ideas are roughly illustrated in Figure 21.

It must be clear that all these types
of coarsenings reduce the discriminative

ACM Computing Surveys, Vol. 33, No. 3, September 2001.

314 E. Chávez et al.

Fig. 21. Different coarsification methods.

power of the resulting equivalence classes,
making it necessary to exhaustively
consider more elements than in the un-
coarsened versions of the relations. In the
example of the previous section this is
amortized by the lower cost to obtain the
coarsened equivalence relation. Here we
reduce the effectiveness of the algorithms
via coarsening, for the sake of reduced
preprocessing time and space overhead.

However, space reduction may have a
counterpart in time efficiency. If we use
less space, then with the same amount
of memory we can have more pivots (i.e.,
larger k). This can result in an overall
improvement. The fair way to compare
two algorithms is to give them the same
amount of memory to use.

8.1.3. Range Coarsening. The auxiliary
data structures proposed by most authors
for continuous distance functions are
aimed at reducing the amount of space
needed to store the coordinates of the
elements in the mapped space, as well
as the time to find the relevant classes.
The most popular form is to reduce the
precision of d . This is written as

x ∼p,{ri} y ⇔ ∃i, ri ≤ d (x, p) < ri+1 and
ri ≤ d (y , p) < ri+1

with {ri} a partition of the interval [0, ∞).
That is, we assign the same equivalence
class to elements falling in the same range
of distances with respect to the same pivot

p. This is obviously a coarsening of the
previous relation ∼p and can be naturally
extended to more than one pivot.

Figure 2 exemplifies a pivoting equiva-
lence relation where range coarsening is
applied, for one pivot. Points in the same
ring are in the same equivalence class,
despite the fact that their exact distance
to the pivot may be different.

A number of actual algorithms use
one or another form of this coarsening
technique. VPTs and MVPTs divide the
distances in slices so that the same num-
ber of elements lie in each slice (note that
the slices are different for each pivot).
VPTs use two slices and MVPTs use
many. Their goal is to obtain balanced
trees. BKTs, FQTs, and FHQTs, on the
other hand, propose range coarsening for
continuous distance functions but do not
specify how to coarsen.

In this work we consider that the
“natural” extension of BKTs, FQTs, and
FHQTs assigns slices of the same width
to each branch, and that the tree has the
same arity across all its nodes. At each
node, the slice width is recomputed so
that using slices of that fixed width the
node has the desired arity.

Therefore, we can have slices of fixed
width (BKT, FQT, FHQT) or determined
by percentiles (VPT, MVPT, FQA). We
may have a different pivot per node (BKT,
VPT, MVPT) or per level (FQT, FHQT,
FQA). Among the last, we can define the

ACM Computing Surveys, Vol. 33, No. 3, September 2001.

Searching in Metric Spaces 315

Table II. Different Options for Range Coarsening
Fixed Percentiles Fixed Width

Different pivot
per node VPT, MVPT BKT
(scope coarsening)

Different slice
FMVPT FQT, FHQTDifferent pivot per node

per level Different slice
FMVPA (FQA) FHQAper level

aWe put in italics the new structures created to fill the empty holes.

slices at each node (FQT, FHQT) or for
the whole level (FQA). All these choices
are drawn in Table II. The empty slots
have been filled with new structures that
are now defined.

8.1.3.1. FHQA. This is similar to an
FQA except that the slices are of fixed
width. At each level the slice width is
recomputed so that a maximum arity is
guaranteed. In the FHQT, instead, each
node has a different slice width.

8.1.3.2. FMVPT. This is a cross be-
tween an MVPT and a FHQT. The range
of values is divided using the m − 1
uniform percentiles to balance the tree,
as in MVPTs. The tree has a fixed height
h, as FHQTs. At each node the ranges
are recomputed according to the elements
lying in that subtree. The particular case
where m = 2 is called FHVPT.

8.1.3.3. FMVPA. This is just a new
name for the FQA, more appropriate for
our discussion since it is to MVPTs as
FHQAs are to FHQTs: the FMVPA uses
variable width slices to ensure that the
subtrees are balanced in size, but the same
slices are used for all the nodes of a single
level, so that the balance is only levelwise.

The combinations we have just cre-
ated allow us to explain some important
concepts.

8.1.3.4. Amount of Range Coarsening. Let
us consider FHQAs and FMVPAs. They
are no more than LAESA with different
forms of range coarsening. They use k
fixed pivots and use b bits to represent
the coordinates (i.e., the distances from
each point to each of the h pivots). So only
2b different values can be expressed. The
two structures differ only in how they

coarsen the distances to put them into 2b

ranges. Their total space requirement is
then reduced to kbn bits.

However, range coarsening is not just
a technique to reduce space, but the same
space can be used to accommodate more
pivots. It is not immediate how conve-
nient it is to coarsen in order to use more
pivots, but it is clear that this technique
can improve the overall effectiveness of
the algorithm.

8.1.3.5. Percentiles Versus Fixed Width.
Another unclear issue is whether fixed
slices are better or worse than percentile
splitting. A balanced data structure has
obvious advantages because the internal
complexity may be reduced. Fixed slices
produce unbalanced structures since the
outer rings have many more elements (es-
pecially on high dimensions). On the other
hand, in high dimensions the outer rings
tend to be too narrow if percentile split-
ting is used (because a small increment
in radius gets many new elements inside
the ring). If the rings are too narrow,
many rings will be frequently included in
the radius of interest of the queries (see
Figure 22). An alternative idea is shown in
Chávez [1999], where the slices are opti-
mized to minimize the number of branches
that must be considered. In this case,
each class can be an arbitrary set of slices.

8.1.3.6. Trees Versus Arrays. FHQTs
and FMVPTs are almost tree versions of
FHQAs and FMVPAs, respectively. They
are m-ary trees where all the elements
belonging to the same coarsened class
are stored in the same subtree. Instead of
explicitly storing the m coordinates, the
trees store them implicitly: the elements
are at the leaves, and their paths from the

ACM Computing Surveys, Vol. 33, No. 3, September 2001.

316 E. Chávez et al.

Fig. 22. The same query intersects more rings when using uniform
percentiles.

root spell out the coarsened coordinate
values. This makes the space require-
ments closer to O(n) in practice, instead of
O(bkn) (although the constant is very low
for the array versions, which may actually
take less space). Moreover, the search for
the relevant elements can be organized
using the tree: if all the interesting
elements have their first coordinate in
the ith ring, then we just traverse the ith
subtree. This reduces the extra CPU time.
If the distance is too fine-grained, how-
ever, the root will have nearly n children
and the subtrees will have just one child.
The structure will be very similar to a
table of k coordinates per element and the
search will degenerate into a linear row-
wise traversal. Hence, range coarsening is
also a tool to reduce the extra CPU time.

We have given the trees the ability to
define the slices at each node instead of at
each level as do the array versions. This
allows them to adapt better to the data,
but the values of the slices used need
more space. It is not clear whether it pays
to store all these slice values.

Summarizing, range coarsening can
be applied using fixed-width or fixed-
percentile slices. They can reduce the
space necessary to store the coordinates,
which can allow the use of more pivots
with the same amount of memory. There-
fore, it is not just a technique to reduce
space but it can improve the search
complexity. Range coarsening can also be
used to organize treelike search schemes
that are sublinear in extra CPU time.

8.1.4. Bucket Coarsening. To reduce space
requirements in the above trees, we can
avoid building subtrees that have few
elements. Instead, all their elements
are stored in a bucket. When the search
arrives at a bucket, it has to exhaustively
consider all the elements.

This is a form of coarsening, since for
the elements in the bucket we do not
consider the last pivots, and it resembles
the previous idea (Section 8.1.1) of not
computing the k pivots. However, in
this case the decision is taken offline, at
index construction time, and this allows
reducing space by not storing those coor-
dinates. In the previous case the decision
was taken at search time. The crucial
difference is that if the decision is taken
at search time, we can know exactly the
total amount of exhaustive work to do by
not taking further coordinates. However,
in an offline decision we can only consider
the search along this branch of the tree,
and we cannot predict how many branches
will be considered at search time.

This idea is used for discrete distance
functions in FQTs, which are similar to
FHQTs except for the use of buckets. It
has been also applied to continuous setups
to reduce space requirements further.

8.1.5. Scope Coarsening. The last and
least obvious form of coarsening is the one
we call “scope coarsening.” In fact, the use
of this form of coarsening makes it diffi-
cult to notice that many algorithms based
on trees are in fact pivoting algorithms.

ACM Computing Surveys, Vol. 33, No. 3, September 2001.

Searching in Metric Spaces 317

This coarsening is based on, instead
of storing all the coordinates of all the
elements, just storing some of them.
Hence, comparing the query against some
pivots helps to discriminate on some
subset of the database only. To use this
fact to reduce space, we must determine
offline which elements will store their
distance to which pivots. There are many
ways to use this idea, but it has been used
only in the following way.

In FHVPTs there is a single pivot per
level of the tree, as in FHQTs. The left and
right subtrees of VPTs, on the other hand,
use different pivots. That is, if we have to
consider both the left and right subtrees
(because the radius r does not allow us to
completely discard one), then comparing
the query q against the left pivot will be
useful for the left subtree only. There is
no information stored about the distances
from the left pivot to the elements of the
right subtree, and vice versa. Hence, we
have to compare q against both pivots.
This continues recursively. The same idea
is used for BKTs and MVPTs.

Although at first sight it is clear that we
reduce space, this is not the direct way in
which the idea is used in those schemes.
Instead, they combine it with a huge in-
crease in the number of potential pivots.
For each subtree, an element belonging
to the subtree is selected as the pivot and
deleted from the set. If no bucketing is
used, the result is a tree where each ele-
ment is a node somewhere in the tree and
hence a potential pivot. The tree takes
O(n) space, which shows that we can suc-
cessfully combine a large number of pivots
with scope coarsening to have low space
requirements (n instead of n2 as in AESA).

The possible advantage (apart from
guaranteed linear space and slightly
reduced space in practice) of these
structures over those that store all the
coordinates (as FQTs and FHQTs) is
that the pivots are better suited to the
searched elements in each subtree, since
they are selected from the same subset.
This same property makes AESA a good
(although impractical) algorithm.

Shapiro [1977] and Bozkaya and
Ozsoyoglu [1997] propose hybrids (for

BKT and VPT, resp.) where a number of
fixed pivots are used at each node, and for
each resulting class a new set of pivots
is selected. Note that, historically, FQTs
and FHQTs are an evolution over BKTs.

8.2. Compact Partitioning Algorithms

All the remaining algorithms (GHTs,
BSTs, GNATs, VTs, MTs, SATs, LCs) rely
on a hierarchical compact partition of the
metric space. A first source of differences
is in how the centers are selected at each
node. GHTs and BSTs take two elements
per level. VTs repeat previous centers
when creating new nodes. GNATs select m
centers far apart. MTs try to minimize cov-
ering radii. SATs select a variable number
of close neighbors of the parent node. LC
chooses at random one center per cluster.

The main difference, however, lies in
the search algorithm. While GHTs use
purely the hyperplane criterion, BSTs,
VTs, MTs, and LCs use only the covering
radius criterion. SATs use both criteria to
increase pruning. In all these algorithms
the query q is compared against all
the centers of the current node and the
criteria are used to discard subtrees.

GNATs are a little different, as they
use none of the above criteria. Instead,
they apply an AESA-like search over
the m centers considering their “range”
values. That is, a center ci is selected, and
if the query ball does not intersect a ring
around ci that contains all the elements
of c j , then c j and all its class (subtree)
can be safely discarded. In other words,
GNATs limit the class of each center
by intersecting rings around the other
centers. This way of limiting the extent of
a class is different from both the hyper-
plane and the covering radius criteria. It
is probably more efficient, but it requires
storing O(m2) distances at each level.

Table III summarizes the differences. It
is clear that there are many possible com-
binations that have not been tried, but we
do not attempt to enumerate all of them.

The compact partition is an attempt to
obtain local classes, more local than those
based on pivots. A general technique to do
this is to identify clusters of close objects

ACM Computing Surveys, Vol. 33, No. 3, September 2001.

318 E. Chávez et al.

Table III. Different Options for Limiting Classes
With hyperplanes GHT, SAT
With balls BST, VT, MT, SAT, LC
With rings GNAT

in the set. There exist many clustering
algorithms to build equivalence relations.
However, most are defined on vector
spaces instead of general metric spaces.
An exception is Brito et al. [1996], who
report very good results. However, it is
not clear that good clustering algorithms
directly translate into good algorithms for
proximity searching. Another clustering
algorithm, based on cliques, is presented
in Burkhard and Keller [1973], but the
results are similar to the simpler BKT.
This area is largely unexplored, and the
developments here could be converted
into improved search algorithms.

9. CONCLUSIONS

Metric spaces are becoming a popular
model for similarity retrieval in many
unrelated areas. We have surveyed the
algorithms that index metric spaces to
answer proximity queries. We have not
just enumerated the existing approaches
to discuss their good and bad points. We
have, in addition, presented a unified
framework that allows understanding
the existing approaches under a common
view. It turns out that most of the existing
algorithms are indeed variations on a
few common ideas, and by identifying
them, previously unnoticed combinations
have naturally appeared. We have also
analyzed the main factors that affect the
efficiency when searching metric spaces.
The main conclusions of our work are
summarized as follows.
1. The concept of intrinsic dimensional-

ity can be defined on general metric
spaces as an abstract and quan-
tifiable measure that affects the
search performance.

2. The main factors that affect the effi-
ciency of the search algorithms are the
intrinsic dimensionality of the space
and the search radius.

3. Equivalence relations are a common
ground underlying all the index-

ing algorithms, and they divide the
search cost in terms of internal and
external complexity.

4. A large class of search algorithms relies
on taking k pivots and mapping the
metric space onto Rk using the L∞
distance. Another important class uses
compact partitioning.

5. The equivalence relations can be coars-
ened to save space or to improve the
overall efficiency by making better use
of the pivots. A hierarchical refinement
of classes can improve performance.

6. Although there is an optimal number
of pivots to use, this number is too
high in terms of space requirements.
In practical terms, a pivot-based index
can outperform a compact partitioning
index if it has enough memory.

7. As this amount of memory becomes
infeasible as the dimension grows,
compact partitioning algorithms nor-
mally outperform pivot-based ones in
high dimensions.

8. In high dimensions the search radius
needed to retrieve a fixed percentage
of the database is very large. This is
the reason for the failure to overcome
the brute force search with an exact
indexing algorithm.

A number of open issues require further
attention. The main ones follow.

—For pivot-based algorithms, understand
better the effect of pivot selection, devis-
ing methods to choose effective pivots.
The subject of the appropriate number
of pivots and its relation to the intrinsic
dimensionality of the space plays a role
here. The histogram of distances may
be a good tool for pivot selection.

—For compact partitioning algorithms,
work more on clustering schemes in
order to select good centers. Find ways
to reduce construction times (which are
in many cases too high).

—Search for good hybrids between
compact partitioning and pivoting
algorithms. The first ones cope better
with high dimensions and the second
ones improve as more memory is given

ACM Computing Surveys, Vol. 33, No. 3, September 2001.

Searching in Metric Spaces 319

to them. After the space is clustered the
intrinsic dimension of the clusters is
smaller, so a top-level clustering struc-
ture joined with a pivoting scheme for
the clusters is an interesting alterna-
tive. Those pivots should be selected
from the cluster because the clusters
have high locality.

—Take extra CPU complexity into ac-
count, which we have barely considered
in this work. In some applications the
distance is not so expensive that one
can disregard any other type of CPU
cost. The use of specialized search
structures in the mapped space (espe-
cially Rk) and the resulting complexity
tradeoff deserves more attention.

—Take I/O costs into account, which may
very well dominate the search time in
some applications. The only existing
work on this is the M-tree [Ciaccia
et al. 1997].

—Focus on nearest neighbor search. Most
current algorithms for this problem are
based on range searching, and despite
that the existing heuristics seem diffi-
cult to improve, truly independent ways
to address the problem could exist.

—Consider approximate and probabilis-
tic algorithms, which may give much
better results at a cost that, especially
for this problem, seems acceptable.
A first promising step is Chávez and
Navarro [2001b].

REFERENCES
APERS, P., BLANKEN, H., AND HOUTSMA, M. 1997.

Multimedia Databases in Perspective. Springer-
Verlag, New York.

ARYA, S., MOUNT, D., NETANYAHU, N., SILVERMAN, R.,
AND WU, A. 1994. An optimal algorithm for
approximate nearest neighbor searching in
fixed dimension. In Proceedings of the Fifth
ACM–SIAM Symposium on Discrete Algorithms
(SODA’94), 573–583.

AURENHAMMER, F. 1991. Voronoi diagrams—A sur-
vey of a fundamental geometric data structure.
ACM Comput. Surv. 23, 3.

BAEZA-YATES, R. 1997. Searching: An algorithmic
tour. In Encyclopedia of Computer Science and
Technology, vol. 37, A. Kent and J. Williams,
Eds., Marcel Dekker, New York, 331–359.

BAEZA-YATES, R. AND NAVARRO, G. 1998. Fast ap-

proximate string matching in a dictionary. In
Proceedings of the Fifth South American Sym-
posium on String Processing and Information
Retrieval (SPIRE’98), IEEE Computer Science
Press, Los Alamitos, Calif., 14–22.

BAEZA-YATES, R. AND RIBEIRO-NETO, B. 1999. Mod-
ern Information Retrieval. Addison-Wesley,
Reading, Mass.

BAEZA-YATES, R., CUNTO, W., MANBER, U., AND WU, S.
1994. Proximity matching using fixed-queries
trees. In Proceedings of the Fifth Combinatorial
Pattern Matching (CPM’94), Lecture Notes in
Computer Science, vol. 807, 198–212.

BENTLEY, J. 1975. Multidimensional binary search
trees used for associative searching. Commun.
ACM 18, 9, 509–517.

BENTLEY, J. 1979. Multidimensional binary search
trees in database applications. IEEE Trans.
Softw. Eng. 5, 4, 333–340.

BENTLEY, J., WEIDE, B., AND YAO, A. 1980. Optimal
expected-time algorithms for closest point prob-
lems. ACM Trans. Math. Softw. 6, 4, 563–580.

BERCHTOLD, S., KEIM, D., AND KRIEGEL, H. 1996. The
X-tree: An index structure for high-dimensional
data. In Proceedings of the 22nd Conference on
Very Large Databases (VLDB’96), 28–39.

BHANU, B., PENG, J., AND QING, S. 1998. Learning
feature relevance and similarity metrics in
image databases. In Proceedings of the IEEE
Workshop on Content-Based Access of Image and
Video Libraries (Santa Barbara, Calif.), IEEE
Computer Society, Los Alamitos, Calif., 14–18.

BIMBO, A. D. AND VICARIO, E. 1998. Using weighted
spatial relationships in retrieval by visual
contents. In Proceedings of the IEEE Workshop
on Content-Based Access of Image and Video Li-
braries (Santa Barbara, Calif.), IEEE Computer
Society, Los Alamitos, Calif., 35–39.

BÖHM, C., BERCHTOLD, S., AND KEIM, A. 2002.
Searching in high-dimensional spaces—index
structures for improving the performance of
multimedia databases. ACM Comput. Surv. To
appear.

BOZKAYA, T. AND OZSOYOGLU, M. 1997. Distance-
based indexing for high-dimensional metric
spaces. In Proceedings of ACM SIGMOD Inter-
national Conference on Management of Data,
SIGMOD Rec. 26, 2, 357–368.

BRIN, S. 1995. Near neighbor search in large met-
ric spaces. In Proceedings of the 21st Conference
on Very Large Databases (VLDB’95), 574–584.

BRITO, M., CHÁVEZ, E., QUIROZ, A., AND YUKICH, J.
1996. Connectivity of the mutual k-nearest
neighbor graph in clustering and outlier
detection. Stat. Probab. Lett. 35, 33–42.

BUGNION, E., FHEI, S., ROOS, T., WIDMAYER, P.,
AND WIDMER, F. 1993. A spatial index for
approximate multiple string matching. In
Proceedings of the First South American
Workshop on String Processing (WSP’93), R.
Baeza-Yates and N. Ziviani, Eds., 43–53.

ACM Computing Surveys, Vol. 33, No. 3, September 2001.

320 E. Chávez et al.

BURKHARD, W. AND KELLER, R. 1973. Some ap-
proaches to best-match file searching. Commun.
ACM 16, 4, 230–236.

CASCIA, M. L., SETHI, S., AND SCLAROFF, S. 1998.
Combining textual and visual cues for content-
based image retrieval on the world wide web.
In Proceedings of the IEEE Workshop on
Content-Based Access of Image and Video Li-
braries (Santa Barbara, Calif.), IEEE Computer
Society, Los Alamitos, Calif., 24–28.

CHÁVEZ, E. 1999. Optimal discretization for
pivot based algorithms. Manuscript. ftp://
garota.fismat.umich.mx/pub/users/elchavez/
minimax.ps.gz.

CHÁVEZ, E. AND MARROQUı́N, J. 1997. Proximity
queries in metric spaces. In Proceedings of the
Fourth South American Workshop on String
Processing (WSP’97), R. Baeza-Yates, Ed.
Carleton University Press, Ottawa, 21–36.

CHÁVEZ, E. AND NAVARRO, G. 2000. An effective
clustering algorithm to index high dimensional
metric spaces. In Proceedings of the Seventh
String Processing and Informational Retrieval
(SPIRE’00), IEEE CS Press, 75–86.

CHÁVEZ, E. AND NAVARRO, G. 2001a. Towards
measuring the searching complexity of met-
ric spaces. In Proceedings of the Mexican
Computing Meeting, vol. II, 969–972.

CHÁVEZ, E. AND NAVARRO, G. 2001b. A proba-
bilistic spell for the curse of dimensionality.
In Proceedings of the Third Workshop on Al-
gorithm Engineering and Experimentation
(ALENEX’01), 147–160. Lecture Notes in
Computer Science v. 2153.

CHÁVEZ, E. AND NAVARRO, G. 2002. A metric index
for approximate string matching. In Proceed-
ings of the Fifth Latin American Symposium on
Theoretical Informatics (LATIN’02), To appear,
Lecture Notes in Computer Science.

CHÁVEZ, E., MARROQUı́N, J., AND BAEZA-YATES, R.
1999. Spaghettis: An array based algorithm
for similarity queries in metric spaces. In Pro-
ceedings of String Processing and Information
Retrieval (SPIRE’99), IEEE Computer Science
Press, Los Alamitos, Calif., 38–46.

CHÁVEZ, E., MARROQUIN, J. L., AND NAVARRO, G. 2001.
Fixed queries array: a fast and economical data
structure for proximity searching. Multimedia
Tools and Applications 14 (2), 113–135. Kluwer.

CHAZELLE, B. 1994. Computational geometry:
A retrospective. In Proceedings of the 26th
ACM Symposium on the Theory of Computing
(STOC’94), 75–94.

CHIUEH, T. 1994. Content-based image indexing.
In Proceedings of the Twentieth Conference on
Very Large Databases (VLDB’94), 582–593.

CIACCIA, P., PATELLA, M., AND ZEZULA, P. 1997. M-
tree: An efficient access method for similarity
search in metric spaces. In Proceedings of
the 23rd Conference on Very Large Databases
(VLDB’97), 426–435.

CIACCIA, P., PATELLA, M., AND ZEZULA, P. 1998a. A
cost model for similarity queries in metric
spaces. In Proceedings of the Seventeenth ACM
SIGACT–SIGMOD-SIGART Symposium on
Principles of Database Systems (PODS’98).

CIACCIA, P., PATELLA, M., AND ZEZULA, P. 1998b.
Processing complex similarity queries with
distance-based access methods. In Proceed-
ings of the Sixth International Conference on
Extending Database Technology (EDBT ’98).

CLARKSON, K. 1999. Nearest neighbor queries in
metric spaces. Discrete Comput. Geom. 22, 1,
63–93.

COX, T. AND COX, M. 1994. Multidimensional
Scaling. Chapman and Hall, London.

DEHNE, F. AND NOLTEMEIER, H. 1987. Voronoi
trees and clustering problems. Inf. Syst. 12, 2,
171–175.

DEVROYE, L. 1987. A Course in Density Estimation.
Birkhauser, Boston.

DUDA, R. AND HART, P. 1973. Pattern Classification
and Scene Analysis. Wiley, New York.

FALOUTSOS, C. AND KAMEL, I. 1994. Beyond uni-
formity and independence: Analysis of R-trees
using the concept of fractal dimension. In Pro-
ceedings of the Thirteenth ACM Symposium on
Principles of Database Principles (PODS’94),
4–13.

FALOUTSOS, C. AND LIN, K. 1995. Fastmap: A fast
algorithm for indexing, data mining and visual-
ization of traditional and multimedia datasets.
ACM SIGMOD Rec. 24, 2, 163–174.

FALOUTSOS, C., EQUITZ, W., FLICKNER, M., NIBLACK, W.,
PETKOVIC, D., AND BARBER, R. 1994. Efficient
and effective querying by image content. J.
Intell. Inf. Syst. 3, 3/4, 231–262.

FARAGÓ, A., LINDER, T., AND LUGOSI, G. 1993. Fast
nearest-neighbor search in dissimilarity spaces.
IEEE Trans. Patt. Anal. Mach. Intell. 15, 9,
957–962.

FRAKES, W. AND BAEZA-YATES, R., EDS. 1992. Infor-
mation Retrieval: Data Structures and Algo-
rithms. Prentice-Hall, Englewood Cliffs, N.J.

GAEDE, V. AND GÜNTHER, O. 1998. Multidimen-
sional access methods. ACM Comput. Surv. 30, 2,
170–231.

GUTTMAN, A. 1984. R-trees: A dynamic index
structure for spatial searching. In Proceedings
of the ACM SIGMOD International Conference
on Management of Data, 47–57.

HAIR, J., ANDERSON, R., TATHAM, R., AND BLACK, W.
1995. Multivariate Data Analysis with Read-
ings, 4th ed. Prentice-Hall, Englewood Cliffs,
N.J.

HJALTASON, G. AND SAMET, H. 1995. Ranking in
spatial databases. In Proceedings of Fourth
International Symposium on Large Spatial
Databases, 83–95.

JAIN, A. AND DUBES, R. 1988. Algorithms for Clus-
tering Data. Prentice-Hall, Englewood Cliffs,
N.J.

ACM Computing Surveys, Vol. 33, No. 3, September 2001.

Searching in Metric Spaces 321

KALANTARI, I. AND MCDONALD, G. 1983. A data
structure and an algorithm for the nearest point
problem. IEEE Trans. Softw. Eng. 9, 5.

MEHLHORN, K. 1984. Data Structures and Al-
gorithms, Volume III—Multidimensional
Searching and Computational Geometry.
Springer-Verlag, New York.

MICÓ, L., ONCINA, J., AND CARRASCO, R. 1996. A
fast branch and bound nearest neighbour clas-
sifier in metric spaces. Patt. Recogn. Lett. 17,
731–739.

MICÓ, L., ONCINA, J., AND VIDAL, E. 1994. A new
version of the nearest-neighbor approximating
and eliminating search (AESA) with linear
preprocessing-time and memory requirements.
Patt. Recog. Lett. 15, 9–17.

NAVARRO, G. 1999. Searching in metric spaces
by spatial approximation. In Proceedings of
String Processing and Information Retrieval
(SPIRE’99), IEEE Computer Science Press, Los
Alamitos, Calif., 141–148.

NAVARRO, G. AND REYES, N. 2001. Dynamic spatial
approximation trees. In Proceedings of the
Eleventh Conference of the Chilean Computer
Science Society (SCCC’01), IEEE CS Press,
213–222.

NENE, S. AND NAYAR, S. 1997. A simple algorithm
for nearest neighbor search in high dimensions.
IEEE Trans. Patt. Anal. Mach. Intell. 19, 9,
989–1003.

NIEVERGELT, J. AND HINTERBERGER, H. 1984. The
grid file: An adaptable, symmetric multikey
file structure. ACM Trans. Database Syst. 9, 1,
38–71.

NOLTEMEIER, H. 1989. Voronoi trees and appli-
cations. In Proceedings of the International
Workshop on Discrete Algorithms and Complex-
ity (Fukuoka, Japan), 69–74.

NOLTEMEIER, H., VERBARG, K., AND ZIRKELBACH, C.
1992. Monotonous bisector∗ trees—A tool for
efficient partitioning of complex schenes of
geometric objects. In Data Structures and Ef-
ficient Algorithms, Lecture Notes in Computer
Science, vol. 594, Springer-Verlag, New York,
186–203.

PRABHAKAR, S., AGRAWAL, D., AND ABBADI, A. E. 1998.
Efficient disk allocation for fast similarity
searching. In Proceedings of ACM SPAA ’98
(Puerto Vallarta, Mexico).

ROUSSOPOULOS, N., KELLEY, S., AND VINCENT, F. 1995.
Nearest neighbor queries. In Proceedings of the
ACM SIGMOD ’95, 71–79.

SALTON, G. AND MCGILL, M. 1983. Introduction to
Modern Information Retrieval. McGraw-Hill,
New York.

SAMET, H. 1984. The quadtree and related hi-
erarchical data structures. ACM Comput.
Surv. 16, 2, 187–260.

SANKOFF, D. AND KRUSKAL, J., EDS. 1983. Time
Warps, String Edits, and Macromolecules: The
Theory and Practice of Sequence Comparison.
Addison-Wesley, Reading, Mass.

SASHA, D. AND WANG, T. 1990. New techniques for
best-match retrieval. ACM Trans. Inf. Syst. 8, 2,
140–158.

SHAPIRO, M. 1977. The choice of reference points
in best-match file searching. Commun. ACM 20,
5, 339–343.

SUTTON, R. AND BARTO, A. 1998. Reinforcement
Learning : An Introduction. MIT Press,
Cambridge, Mass.

UHLMANN, J. 1991a. Implementing metric trees
to satisfy general proximity/similarity queries.
Manuscript.

UHLMANN, J. 1991b. Satisfying general proximity/
similarity queries with metric trees. Inf. Proc.
Lett. 40, 175–179.

VERBARG, K. 1995. The C-Ttree: A dynamically
balanced spatial index. Comput. Suppl. 10,
323–340.

VIDAL, E. 1986. An algorithm for finding nearest
neighbors in (approximately) constant average
time. Patt. Recogn. Lett. 4, 145–157.

WATERMAN, M. 1995. Introduction to Computa-
tional Biology. Chapman and Hall, London.

WEBER, R. SCHEK, H.-J., AND BLOTT, S. 1998.
A quantitative analysis and performance
study for similarity-search methods in high-
dimensional spaces. In Proceedings of the Inter-
national Conference on Very Large Databases
(VLDB’98).

WHITE, D. AND JAIN, R. 1996. Algorithms and
strategies for similarity retrieval. Tech. Rep.
VCL-96-101 (July), Visual Computing Labora-
tory, University of California, La Jolla.

YAO, A. 1990. Computational Geometry, J. Van
Leeuwen, Ed. Elsevier Science, New York,
345–380.

YIANILOS, P. 1993. Data structures and algorithms
for nearest neighbor search in general metric
spaces. In Proceedings of the Fourth ACM–SIAM
Symposium on Discrete Algorithms (SODA ’93),
311–321.

YIANILOS, P. 1999. Excluded middle vantage
point forests for nearest neighbor search.
In DIMACS Implementation Challenge,
ALENEX ’99 (Baltimore, Md).

YIANILOS, P. 2000. Locally lifting the curse of
dimensionality for nearest neighbor search.
In Proceedings of the Eleventh ACM–SIAM
Symposium on Discrete Algorithms (SODA ’00),
361–370.

YOSHITAKA, A. AND ICHIKAWA, T. 1999. A survey
on content-based retrieval for multimedia
databases. IEEE Trans. Knowl. Data Eng. 11, 1,
81–93.

Received July 1999; revised March 2000; accepted December 2000

ACM Computing Surveys, Vol. 33, No. 3, September 2001.

