
1. CG: syntax-semantics interface

Summing up, CG specifies a language by describing the combinatorial possibili-
ties of its lexical items directly, without the mediation of phrase-structure rules.
Consequently, two grammars in the same system differ only in the lexicon.

The close relation between the syntax and semantics comes from the fact
that the two syntactic rules are application of a functor category to its argument
that corresponds to functional application of the lambda calculus.

We have to make sure that the lexical items are associated with semantic terms
which correspond to the syntactic categories.

Contents First Last Prev Next J

1.1. Mapping: types-categories

To set up the form-meaning correspondence, it is useful to build a language of semantic
types in parallel to the syntactic type language.

Definition 1.1 (Types) Given a non-empty set of basic types Base, the set of types
TYPE is the smallest set such that

i. Base ⊆ TYPE;
ii. (a→ b) ∈ TYPE, if a and b ∈ TYPE.

Note that this definition closely resembles the one of the syntactic categories of CG. The
only difference is the lack of directionality of the functional type (a → b). A function
mapping the syntactic categories into TYPE can be given as follows.

Definition 1.2 (Categories and Types) Let us define a function type : CAT→ TYPE
which maps syntactic categories to semantic types.

type(np) = e; type(A/B) = (type(B)→ type(A));
type(s) = t; type(B\A) = (type(B)→ type(A));
type(n) = (e→ t).

Contents First Last Prev Next J

1.2. CG: categories and terms

Modus ponens corresponds to functional application.

B/A : t A : r

B : t(r)
(MPr)

A : r A\B : t

B : t(r)
(MPl)

Example

np : john np\s : walk

s : walk(john)
(MPl)

np\s : λx.walk(x) (λx.walk(x))(john) ;λ−conv. walk(john)

np : john

(np\s)/np : know np : mary

np\s : know(mary)
(MPr)

s : know(mary)(john)
(MPl)

Contents First Last Prev Next J

2. Compositionally vs. Non-compositionally

An alternative approach:

I In compositional semantics theory the relation between the meaning of an
expression and the meaning of its constituents is a function: to each distinct
syntactic structure correspond a distinct interpretation.

I In underspecification theory this relation is systematic but it’s not a func-
tion: an expression analyzed by a single syntactic structure can be associated
with a set of alternative interpretations rather than with a unique semantic
value. Sentences are assigned underspecified representation containing param-
eters whose value can be defined in several distinct ways. Constraints apply
to filter the possible combinations of values for the set of parameters in such a
schematic representation.

Reference: For underspecified semantics see BB1.

Contents First Last Prev Next J

3. Conclusions I

While working with the lambda-terms we have seen we need abstraction to, e.g.
to account for the different ways quantified NP can scope.

But in Categorial Grammar there is no way to abstract from a built structure.

Now we will see the missing ingredient (abstraction at syntactic level) allows us to
move from a formal grammar to a logic (a logical grammar).

We will look at Lambek Calculi and their application to NL.

Contents First Last Prev Next J

4. Logic Grammar

I Aim: To define the logic behind CG.

I How: Considering categories as formulae; \, / as logic connectives.

I Who: Jim Lambek [1958]

I Proof Theory Elimination and Introduction rules [Natural Deduction (ND)
proof format]

I Model Theory (Kripke) Models. (if you don’t know them, it does not matter and
just think of Models for Prop. Logic)

Proof Theory ND is a proof system, i.e. a system to prove that some premises
φ1, . . . φn derive (`) a conclusion (α). The proof consists of logical rules that do
not consider the “meaning” (truth values) of the formulae involved rather their
form (syntax). E.g. A→ B,A ` B
The system is proved to be sound and complete.

Contents First Last Prev Next J

4.1. Natural Deduction

For each connective * there is a rule that says how we can eliminate it from the
premises and how we can introduce it in the conclusion

premises

conclusion
∗

For instance, in Propositional Logic (PL), the elimination and introduction rules of
∧ are:

A ∧B
A

∧Er
A B
A ∧B ∧I

the elimination and introduction rules of → are:

A→ B A
B

→ E

[A]i
....
B

A→ B → Ii

Contents First Last Prev Next J

4.2. Lambek Calculi

In the Lambek Calculus the connectives are \ and / (that behave like the → of PL
except for their directionality aspect.)

Therefore, in the Lambek Calculus besides the elimination rules of \, / (that we saw
in CG) we have their introduction rules.

B/A A

B
/E

A A\B
B

\E

[A]i
....
B
B/A

/Ii

[A]i
....
B
A\B \I

i

Remark The introduction rules do not give us a way to distinguish the directionality
of the slashes.

Contents First Last Prev Next J

4.3. Alternative Notation (Sequents)

Let A,B,C stand for logic formulae (e.g. np, np\s, (np\s)\(np\s) . . .) i.e. the cate-
gories of CG

Let Γ,Σ,∆ stand for structures (built recursively from the logical formulae by means
of the ◦ connective) –e.g. np ◦np\s is a structure. STRUCT := CAT, STRUCT ◦ STRUCT
Σ ` A means that (the logic formula) A derives from (the structure) Σ (e.g. np ◦
np\s ` s).

A ` A

∆ ` B/A Γ ` A
∆ ◦ Γ ` B (/E)

Γ ` A ∆ ` A\B
Γ ◦∆ ` B (\E)

∆ ◦ A ` B
∆ ` B/A (/I) A ◦∆ ` B

∆ ` A\B (\I)

Contents First Last Prev Next J

5. Lambek calculus. Elimination rule
np ` np np\s ` np\s

np︸︷︷︸
sara

◦ np\s︸︷︷︸
walks

` s

np ` np
(np\s)/np ` (np\s)/np np ` np

(np\s)/np ◦ np ` np\s
np︸︷︷︸

sara

◦((np\s)/np︸ ︷︷ ︸
knows

◦ np︸︷︷︸
mary

) ` s

Contents First Last Prev Next J

5.1. Lambek calculus. Subject relative pronoun

The student who [[. . .] knows Mary]s︸ ︷︷ ︸
np

left︸︷︷︸
np\s

(n\n)/(np\s) ` (n\n)/(np\s)
(np\s)/np ` (np\s)/np np ` np

(np\s)/np ◦ np ` np\s
(n\n)/(np\s)︸ ︷︷ ︸

who

◦((np\s)/np︸ ︷︷ ︸
knows

◦ np︸︷︷︸
mary

) ` n\n

Exercise: Try to do the same for relative pronoun in object position. e.g. the student
who Mary met (i.e. prove that it is of category np. Which should be the category
for a relative pronoun (e.g. who) that plays the role of an object?

Contents First Last Prev Next J

6. Lambek calculus. Introduction rule

Note, below for simplicity, I abbreviate structures with the corresponding linguistic
structures.

The book which [Sara wrote [. . .]]s︸ ︷︷ ︸
np

is interesting︸ ︷︷ ︸
np\s

.

which ` (n\n)/(s/np)

Sara ` np
wrote ` (np\s)/np [np ` np]1

wrote np ` np\s (/E)

Sara wrote np ` s (\E)

Sara wrote ` s/np (/I)1

which Sara wrote ` n\n (/E)

Introduction rules accounted for extraction.

Contents First Last Prev Next J

7. Extraction: Right-branch (tree)

s

np

Sara

np\s

(np\s)/np

wrote

np

hyp

s

np\s

np

Sara

(np\s)/np

wrote

np

hyp

s/np

s

np\s

np

Sara

(np\s)/np

wrote

np

hyp

[. . .]

Contents First Last Prev Next J

8. Structural Rules

Notice, to handle discontinuity phenomena we need to make use of structural rewrit-
ing. For instance, “which Sara wrote [. . .]” requires (some form of) associativity.
“which” ∈ (n\n)/(s/np)

(n\n)/(s/np) ` (n\n)/(s/np)

np ` np
(np\s)/np ` (np\s)/np [np ` np]1

(np\s)/np ◦ np ` np\s (/E)

(np ◦ ((np\s)/np ◦ np)) ` s (\E)

(np ◦ (np\s)/np) ◦ np ` s (Ass)

np ◦ (np\s)/np ` s/np (/I)1

(n\n)/(s/np)︸ ︷︷ ︸
which

◦(np︸︷︷︸
sara

◦ (np\s)/np︸ ︷︷ ︸
wrote

) ` n\n (/E)

Contents First Last Prev Next J

8.1. Structural Rules: Formally (Advanced!)

Structural rules are rule governing the structure we built while applying logical rules.
Associativity and Permutativity (or Commutativity) are example of structural rules.

Starting from the a Logic that consists only of the Logical rules we have seen we
can define a family of Logics that differ on their structural properties.

Hence we speak of the Lambek Calculi. The base one consists only of logical rules
(NL).

(Side Remark: Structural rules correspond to model theoretical properties.)

Structural rules. Let us write Γ[∆] for a structure Γ contaning a distinguished
occurrence of the substructure ∆. Adding a structural rule of Associativity [ass] to
NL, one obtains L. By adding commutativity [per] to L one obtains LP, and so on.

For instance,

Γ[∆1 ◦ (∆2 ◦∆3)] ` C
Γ[(∆1 ◦∆2) ◦∆3] ` C

(ass)
Γ[(∆2 ◦∆1)] ` C
Γ[(∆1 ◦∆2)] ` C

(per)

Contents First Last Prev Next J

8.2. Structural Rules and NL

But

I global structural rules are “unsound” when reasoning with natural language.

I.e. The logical grammar will overgenerate proving as grammatical also un-
grammatical sentence.

(Local) Structural Rules have been used to account for cross-linguistics variations.

(be happy if you get the intuitive idea)

Contents First Last Prev Next J

9. Historical Introduction: Syn.-Sem. Interface

I Who: van Benthem (1987), Buszkowski (1987)

I Aim: Syntax-Semantic interface

I How: Curry-Howard Correspondence between proofs and terms.

x : A ` x : A

Γ ` t : A/B ∆ ` u : B

Γ ◦∆ ` t(u) : A
(/E)

(Γ ◦ x : B) ` t : A

Γ ` λx.t : A/B
(/I)

∆ ` u : B Γ ` t : B\A
∆ ◦ Γ ` t(u) : A

(\E)
(x : B ◦ Γ) ` t : A

Γ ` λx.t : B\A (\I)

Contents First Last Prev Next J

9.1. Semantics: Examples

The book which Sara wrote

sara ` np : sara

wrote ` (np\s)/np : wrote [z ` np : z]1

wrote z ` np\s : wrote(z)
(/E)

sara wrote z ` s : wrote(z)(sara)
(\E)

sara wrote ` s/np : λz.wrote(z)(sara)
(/I)1

⇓

The introduction rules correspond to λ-abstraction.

Contents First Last Prev Next J

9.2. NP and quantified NP

John and one student left.

We can assign to John the category np and term assignment john and derive the
category and term of quantified np.

john ` np : john [P ` np\s : P]1

john P ` s : P (john)
(\E)

john ` s/(np\s) : λP.P (john)
(/I)1

We have proved: np ` s/(np\s). This means, we can assign John the category np
(considering it an entity, i.e. a term of type e) and derive from it the higher order
category of quantified NP as it would be necessary for, e.g. coordination of a NP
and a QP.

Exercise What about “Mary saw John and one student”?

Contents First Last Prev Next J

9.3. Remarks

First of all, note how the system assigns a variable to the hypothesis. The latter is
discharged by means of [/I] (or [\I]) which corresponds to the abstraction over the
variable.

Moreover, note that the higher order types in the derivation I gave and the one
you have found with the exercise are different, but they correspond to the same
lambda terms, i.e. the two structures are correctly assigned the same meaning.

Starting from the labelled lexicon, the task for the Lambek derivational engine
is to compute the lambda term representing the meaning assembly for a complex
structure as a by-product of the derivation that establishes its grammaticality.

Contents First Last Prev Next J

10. From CG to NL
I Classical Categorial Grammar consists of (only) function application rules. But,

I Concatenative function application is not enough to analyze natural language.

I We need to compose as well as decompose structures.

By moving from a rule-based approach to a logical system we obtain abstraction, (\I) and (/I)
besides function application, (\E) and (/E). Hence, we obtain

1. derivability relations among types

2. a way to decompose built structures

From CG to NL,

CG NL
Categories Formulas
Category forming operators Logical Operators
Rule schemata Inference Rules
Parsing Deduction

Contents First Last Prev Next J

11. Lambek calculus. Advantages

I Hypothetical reasoning: Having added [\I], [/I] gives the system the right
expressiveness to reason about hypothesis and abstract over them.

I Curry Howard Correspondence: Curry-Howard correspondence holds be-
tween proofs and terms. This means that parsed structures are assigned an
interpretation into a model via the connection ‘categories-terms’.

I Logic: We have moved from a grammar to a logic. Hence its behavior can be
studied. The system is sound, complete and decidable.

Contents First Last Prev Next J

12. Summing up

The main points of the second part of today lesson are the following:

1. Linguistic signs are pairs of form and meaning, and composed phrases are
structures rather than strings.

2. When employing a logic to model linguistic phenomena, grammatical deriva-
tions are seen as theorems of the grammatical logic.

3. The correspondence between proofs and natural language models, via the lambda
terms, properly accounts for the natural language syntax semantics inter-
face.

Reference on CG and Lambek Calculi: First chapter of my thesis.

Contents First Last Prev Next J

13. What have we learned?

I We’ve seen we can exploit derivability relations to control composition of types.
(e.g. NP coor QP)

I However, we have not found yet the type for the relative pronoun that grasps its
behavior and its link with the dependent object, properly. For instance, if we modify
the context slightly

“which Sara wrote there” cannot be recognized by NL with the type assigned to
“which”.

I We could still understand how to properly use

. structural rules

. derivability relations,

. unary operators logical rules,

. how to lexically control their application.

Contents First Last Prev Next J

14. Next Time

I In the lab we will practice with CG and lambda terms, and with Lambek
calculus and lambda terms.

I December 2: In the lecture we will compare Formal Grammars, and go back to
the questions “Is Natural Language Context Free?”

I December 9: We will look at parsing.

I December 16: Sample exam (2 hrs)

Contents First Last Prev Next J

	CG: syntax-semantics interface
	Mapping: types-categories
	CG: categories and terms

	Compositionally vs. Non-compositionally
	Conclusions I
	Logic Grammar
	Natural Deduction
	Lambek Calculi
	Alternative Notation (Sequents)

	Lambek calculus. Elimination rule
	Lambek calculus. Subject relative pronoun

	Lambek calculus. Introduction rule
	Extraction: Right-branch (tree)
	Structural Rules
	Structural Rules: Formally (Advanced!)
	Structural Rules and NL

	Historical Introduction: Syn.-Sem. Interface
	Semantics: Examples
	NP and quantified NP
	Remarks

	From CG to NL
	Lambek calculus. Advantages
	Summing up
	What have we learned?
	Next Time

