
Computational Linguistics: Syntax I

Raffaella Bernardi
KRDB, Free University of Bozen-Bolzano

Via della Mostra, Room: 1.06, e-mail: bernardi@inf.unibz.it

Contents First Last Prev Next J

Contents

1 Reminder . 5
2 Syntax . 7
3 Dependency . 8
4 Long-distance Dependencies . 9

4.1 Relative Pronouns . 10
4.2 Coordination . 11

5 Sentence Structures: English . 12
5.1 Exercises . 13

6 Formal Approaches . 14
7 Syntax Recognizer . 15

7.1 NLs are not RL: Example I . 16
7.2 NLs are not RL: Example II . 17

8 FSA for syntactic analysis . 19
9 Formal Grammar: Terminology . 20
10 Context Free Grammars . 21
11 CFG: Formal Language . 22

11.1 CFG: More derivations . 23

Contents First Last Prev Next J

12 FG for Natural Languages . 24
13 PSG: English Toy Fragment . 26
14 English Toy Fragment: Strings . 27
15 English Toy Fragment: Phrase Structure Trees 28
16 Extending our grammar . 29
17 Recursion . 30
18 Summing up (I) . 31
19 Summing up (II) . 32
20 Generative Power . 33
21 Hierarchy of Grammars and Languages . 34
22 Chomsky Hierarchy of Languages . 36
23 Dissenting Views . 37

23.1 Are NL Context Free (CF)? . 38
23.2 Nested and Crossing Dependencies . 40
23.3 English & Copy Language . 41
23.4 Cross-serial dependencies in Dutch . 42
23.5 Cross-serial dependencies Swiss German 43

24 Where does NL fit? . 44
25 Mildly Context-sensitive Languages (MSC) 45

Contents First Last Prev Next J

26 Where do the different Formal Grammars stand? 46
27 Complexity Issue . 47

27.1 Input length . 48
27.2 Complexity of a Problem . 49
27.3 Complexity w.r.t. Chomsky Hierarchy 50

28 Conclusions . 51
29 Formal Grammars: Definition . 52

29.1 Derivations . 53
29.2 Formal Languages and FG . 54
29.3 FG and Regular Languages . 55
29.4 FSA and RG . 56
29.5 CFG: Language Generated . 57

Contents First Last Prev Next J

1. Reminder

Main issues of last lecture:

I Different levels of Natural Language

1. Phonology

2. Morphology

3. Syntax

4. Semantics

5. Discourse

6. Pragmatics

I Linguistically motivated computational models. For any topic:

1. Linguistic Theory

2. Formal Analysis

3. Implementation

Contents First Last Prev Next J

I Linguistic Theories

1. Morphology: Stems vs. Affixes; Inflectional and derivational forms.

2. PoS: classes (categories) of words

I Natural Language as Formal Language

1. Morphology can be formalized by means of Regular Languages and as such
modeled by FSA.

2. FSA cannot handle “Dependency” (anbn, cannot count)

I Implementation

Contents First Last Prev Next J

2. Syntax

I Syntax: “setting out things together”, in our case things are words. The
main question addressed here is “How do words compose together to form a
grammatical sentence (s) (or fragments of it)?”

I Constituents: Groups of categories may form a single unit or phrase called
constituent. The main phrases are noun phrases (np), verb phrases (vp), prepo-
sitional phrases (pp). Noun phrases for instance are: “she”; “Michael”; “Rajeev
Goré”; “the house”; “a young two-year child”.

Tests like substitution help decide whether words form constituents.

Another possible test is coordination.

Contents First Last Prev Next J

3. Dependency

Dependency: Categories are interdependent, for example

Ryanair services [Pescara]np Ryanair flies [to Pescara]pp

*Ryanair services [to Pescara]pp *Ryanair flies [Pescara]np

the verbs services and flies determine which category can/must be juxtaposed. If
their constraints are not satisfied the structure is ungrammatical.

Contents First Last Prev Next J

4. Long-distance Dependencies

Interdependent constituents need not be juxtaposed, but may form long-distance
dependencies, manifested by gaps

I What cities does Ryanair service [. . .]?

The constituent what cities depends on the verb service, but is at the front of the
sentence rather than at the object position.

Such distance can be large,

I Which flight do you want me to book [. . .]?

I Which flight do you want me to have the travel agent book [. . .]?

I Which flight do you want me to have the travel agent nearby my office book
[. . .]?

Contents First Last Prev Next J

4.1. Relative Pronouns

Relative Pronoun (eg. who, which): they function as e.g. the subject or object of
the verb embedded in the relative clause (rc),

I [[the [student [who [. . .] knows Sara]rc]n]np [left]v]s.

I [[the [book [which Sara wrote [. . .]]rc]n]np [is interesting]v]s.

Can you think of another relative pronoun?

Contents First Last Prev Next J

4.2. Coordination

Coordination: Expressions of the same syntactic category can be coordinated
via “and”, “or”, “but” to form more complex phrases of the same category. For
instance, a coordinated verb phrase can consist of two other verb phrases separated
by a conjunction:

I There are no flights [[leaving Denver]vp and [arriving in San Francisco]vp]vp

The conjuncted expressions belong to traditional constituent classes, vp. However,
we could also have

I I [[[want to try to write [. . .]] and [hope to see produced [. . .]]] [the movie]np]vp”

Again, the interdependent constituents are disconnected from each other.

Long-distance dependencies are challenging phenomena for formal approaches
to natural language analysis. We will study them in the second part of the course
(November).

Contents First Last Prev Next J

5. Sentence Structures: English

The structure of a sentences can be represented in several ways, the most common
are the following notations: (i) brackets or (ii) trees. For instance, “John ate the
cat” is a sentence (s) consisting of noun phrase (np) and a verb phrase (vp). The
noun phrase is composed of a verb (v) “ate” and an np, which consists of an article
(art) “the” and a common noun (n) “cat”.

[Johnnp [atev [theart catn]np]vp]s

Give the tree representation of this structure.

Contents First Last Prev Next J

5.1. Exercises

Now represent in the format you prefer the sentences below:

I like a red shirt

I will leave Boston in the morning.

John saw the man with the telescope.

John thinks someone left.

Contents First Last Prev Next J

6. Formal Approaches

To examine how the syntax of a sentence can be computed, you must consider two
things:

1. The grammar: A formal specification of the structures allowable in the lan-
guage. [Data structures]

2. The parsing technique: The method of analyzing a sentence to determine
its structure according to the grammar. [Algorithm]

1. Which Grammar do we need to analyse NLs?

2. Which Formal Language can represent NL?

Contents First Last Prev Next J

7. Syntax Recognizer

In lecture 1, we have used FSA to recognize/generate natural language morphology,
and similarly FSA can be used to concatenate words, i.e. at the syntactic level.

We have said that FSA recognize/generate “Regular Languages”. But it has been
shown that at the syntactic level NLs are not regular.

Contents First Last Prev Next J

7.1. NLs are not RL: Example I

1. The cat died.

2. The cat the dog chased died.

3. The cat the dog the rat bit chased died.

4. . . .

Let, determiner+noun be in the set A : { the cat, the dog, . . .}, and the transitive
verbs in B : { chased, bit, . . .}. Thus the strings illustrated above are all of the
form:

xnyn−1 died, where x ∈ A and y ∈ B, which can be proved to be not a RL.

Contents First Last Prev Next J

7.2. NLs are not RL: Example II

Another evidence was provided by Chomsky in 1956. Let S1, S2, . . . Sn be declarative
sentences, the following syntactic structures are grammatical English sentences:

I If S1, then S2

I Either S3, or S4

I The man who said S5 is arriving today

In each case there is a lexical dependency between one part of each structure and
another. “If” must be followed by “then” “either” must be followed by “or”.

Contents First Last Prev Next J

Moreover, these sentences can be embedded in English one in another.

If either the man who said S5 is arriving today or the man who said S5

is arriving tomorrow, then the man who said S6 is arriving the day after.
Let

if → a
then → a
either → b
or → b
other words → ε

The sentence above would be represented as abba.

This structure of nested dependencies can be represented more generally by a lan-
guage like xxR with x ∈ {a, b}∗ and R denoting the reversal of the string x. (Eg.
abbabbabba) We can prove via the Pumping Lemma that this language is not in a
regular language.

Again, this is an example of open and closed balanced parentheses (or nested
dependencies) that are not in RL.

Contents First Last Prev Next J

8. FSA for syntactic analysis

Finite state methods have been applied to syntactic analysis too. Although they
are not expressive enough if a full syntactic analysis is required, there are many
applications where a partial syntactic analysis of the input is sufficient.

Such partial analyses can be constructed with cascades of finite state automata (or
rather transducers) where one machine is applied to the output of another.

Anyway, in order to deal with syntactic analysis of natural language we need a
more powerful device than FSA (and of their corresponding formal grammars,
namely regular (or right linear) grammar (RG).)

Contents First Last Prev Next J

9. Formal Grammar: Terminology

Formal Grammars are string re-write systems. The re-write rules say that a
certain sequence of symbols may be substituted by another sequence of symbols.
These symbols are divided into two classes:

I terminal: symbols that will appear in the string of the language generated by
the grammar.

I non-terminal: symbols that will be used only in the re-write process.

Given a string, we want to know whether it belongs to the (Natural) Language.

Contents First Last Prev Next J

10. Context Free Grammars

Formal Grammar more powerful than Regular Grammars are Context Free Gram-
mars (CFG).

These grammars are called context free because all rules contain only one symbol
on the left hand side — and wherever we see that symbol while doing a derivation,
we are free to replace it with the stuff on the right hand side. That is, the ‘context’
in which a symbol on the left hand side of a rule occurs is unimportant — we can
always use the rule to make the rewrite while doing a derivation.

There are more expressive kinds of grammars, with more than one symbol
on the left hand side of the rewrite arrow, in which the symbols to the right and
left have to be taken into account before making a rewrite. Such grammars are
linguistically important, and we will study them in November.

A language is called context free if it is generated by some context free grammar.

Well known CFG are Phrase Structure Grammars (PSG) also known as Context
Free Phrase Structure Grammars and they are based on rewrite rules. They can
be used for both understanding and generating sentences.

Contents First Last Prev Next J

11. CFG: Formal Language

Let’s start by using simple grammars that generate formal languages. E.g., take the
grammar below.

Rules
Rule 1 S → A B Rule 2 S → A S B
Rule 3 A→ a Rule 4 B → b

the above grammar let us rewrite ‘S’ to ‘aabb’. Try it your self!

S
ASB Rule 2
aSB Rule 3
aSb Rule 4
aABb Rule 1
aaBb Rule 3
aabb Rule 4

Such a sequence is called a derivation of the symbols in the last row, in this case, i.e. a
derivation of the string ‘aabb’ (S ⇒∗ aabb).

Contents First Last Prev Next J

11.1. CFG: More derivations

Note that there may be many derivations of the same string. For example,

S

ASB Rule 2

ASb Rule 4

aSb Rule 3

aABb Rule 1

aAbb Rule 4

aabb Rule 3

is another derivation of ‘aabb’.

Contents First Last Prev Next J

12. FG for Natural Languages

Now we will move to see how CFG have been applied to natural language. To this
end, it is convenient to distinguish rules from non-terminal to terminal symbols
which define the lexical entries (or lexicon).

I Terminal: The terminal symbols are words (e.g. sara, dress . . .).

I Non-terminal: The non-terminal symbols are syntactic categories (CAT) (e.g.
np, vp, . . .).

I Start symbol: The start symbol is the s and stands for sentence.

Contents First Last Prev Next J

The production rules are divided into:

I Lexicon: e.g. np→ sara. They form the set LEX

I Grammatical Rules: They are of the type s→ np vp.

Alternative notation The lexicon and the derivation can also be written as below:

np→ sara is also written as 〈sara, np〉
A derivation of a sequence of words w1, . . . wn from the start symbol will be repre-
sented as,

〈w1 . . . wn, s〉

Contents First Last Prev Next J

13. PSG: English Toy Fragment

We consider a small fragment of English defined by the following grammar G =
〈LEX,Rules〉, with vocabulary (or alphabet) V and categories CAT.

I LEX = V × CAT

. V = {Sara, dress,wears, the, new},

. CAT = {det, n, np, s, v, vp, adj},

. LEX = {〈Sara, np〉, 〈the, det〉, 〈dress, n〉, 〈new, adj〉, 〈wears, v〉}

I Rules = {s→ np vp, np→ det n, vp→ v np, n→ adj n}

Among the elements of the language recognized by the grammar, L(G), are

I 〈the, det〉 because this is in the lexicon, and

I 〈Sara wears the new dress, s〉 which is in the language by repeated applications
of rules.

Contents First Last Prev Next J

14. English Toy Fragment: Strings

〈Sara wears the new dress, s〉 is in the language. Try to prove it your self.

(1) 〈new dress, n〉 ∈ L(G) because
n→ adj n ∈ Rules,
〈new, adj〉 ∈ L(G) (LEX), and
〈dress, n〉 ∈ L(G) (LEX)

(2) 〈the new dress, np〉 ∈ L(G) because
np→ det n ∈ Rules,
〈the, det〉 ∈ L(G) (LEX), and
〈new dress, n〉 ∈ L(G) (1)

(3) 〈wears the new dress, vp〉 ∈ L(G) because
vp→ v np ∈ Rules,
〈wears, v〉 ∈ L(G) (LEX), and
〈the new dress, np〉 ∈ L(G) (2)

(4) 〈Sara wears the new dress, s〉 ∈ L(G) because
s→ np vp ∈ Rules,
〈Sara, np〉 ∈ L(G) (LEX), and
〈wears the new dress, vp〉 ∈ L(G) (3)

Now try to build the structure of the parsed string.

Contents First Last Prev Next J

15. English Toy Fragment: Phrase Structure Trees
〈 new, adj 〉 adj

new

〈 dress, n 〉 n

dress

n → adj n n

adj n
〈〈new, adj〉, 〈dress, n〉, n〉 n

adj

new

n

dress

s

np

Sara

vp

v

wears

np

det

the

n

adj

new

n

dress

Contents First Last Prev Next J

16. Extending our grammar

Try to extend your grammar so to deal with the sentence you have analyzed before
and which are repeated below.

She likes a red shirt.

I will leave Boston in the morning.

John saw the man with the telescope.

John gave Mary a red shirt.

Contents First Last Prev Next J

17. Recursion

Which rule do we need to generate the phrases below?

1. the flight to Boston

2. the flight to Boston from Miami

3. the flight to Boston from Miami in February

4. the flight to Boston from Miami in February on Friday

np --> np pp

I.e. a recursive rule, it contains the same category on the left and the right side.

Contents First Last Prev Next J

18. Summing up (I)

We have seen that

I There is a close correspondence between parse trees and derivations: every
derivation corresponds to a parse tree, and every parse tree corresponds to
(maybe many) derivations.

I PSG, besides deciding whether a string belongs to a given language, deals with
phrase structures represented as trees.

I An important difference between strings and phrase structures is that whereas
string concatenation is assumed to be associative, trees are bracketed struc-
tures.

I Thus trees preserve aspects of the compositional (constituent) structure or
derivation which is lost in the string representations.

Contents First Last Prev Next J

19. Summing up (II)

I The language generated by a grammar consists of all the strings that the
grammar classifies as grammatical.

I A CFG recognizer is a program that correctly tells us whether or not a string
belongs to the language generated by a PSG.

I A CFG parser is a program that correctly decides whether a string belongs to
the language generated by a CFG and also tells us what its structure is.

I A Context Free Language is a language that can be generated by a CFG.

Contents First Last Prev Next J

20. Generative Power

We have seen how to use a formal grammar to recognize natural language strings/phrases.

Every (formal) grammar generates a unique language. However, one language can
be generated by several different (formal) grammars.

Formal grammars differ with respect to their generative power:

One grammar is of a greater generative power than another if it can recognize a
language that the other cannot recognize.

Two grammars are said to be

I weakly equivalent if they generate the same string language.

I strongly equivalent if they generate both the same string language and the
same tree language.

Remark Some of the slides (on Chomsky Hierarchy, etc.) are from Gerhard Jaeger
course given at ESSLLI ’04.

Contents First Last Prev Next J

21. Hierarchy of Grammars and Languages

Based on this observation it’s possible to construct a hierarchy of grammars, where
the set of languages describable by grammars of grater power subsumes the set of
language describable by grammars of less power. The most commonly used hierarchy
is the Chomsky Hierarchy of Languages introduced in 1959.

Hence, the two questions to ask are:

I Where does Natural Language fit in the Hierarchy?

I Which is the generative power of the different Formal Grammars?

If we know where NL fit, we would know

I which formal language can represent NL;

I which rules to use in writing formal grammars for NL.

Contents First Last Prev Next J

Contents First Last Prev Next J

22. Chomsky Hierarchy of Languages

The Chomsky Hierarchy

– p.8

Contents First Last Prev Next J

23. Dissenting Views

Claim: NL are not RL.

I all arguments to this effect use center-embedding

I humans are extremely bad at processing center-embedding

I notion of competence that ignores this is dubious

I natural languages are regular after all.

Contents First Last Prev Next J

23.1. Are NL Context Free (CF)?

History of the problem:

1. Chomsky 1957: conjecture that natural languages are not CF

2. sixties, seventies: many attempts to prove this conjecture

3. Pullum and Gazdar 1982:

I all these attempts have failed

I for all we know, natural languages (conceived as string sets) might be
context-free

4. Huybregts 1984, Shieber 1985: proof that Swiss German is not context-free

5. Culy 1985: proof that Bambara is not context-free

Contents First Last Prev Next J

Contents First Last Prev Next J

23.2. Nested and Crossing Dependencies

NL and the Chomsky Hierarchy

Nested and crossing dependencies
! CFLs—unlike regular languages—can have unbounded
dependencies

! however, these dependencies can only be nested, not crossing
! example:

" anbn has unlimited nested dependencies→ context-free
" the copy language has unlimited crossing dependencies→
not context-free

– p.21

Contents First Last Prev Next J

23.3. English & Copy Language

Bar-Hillel and Shamir (1960): “English contains copy-language. Hence it cannot be
context-free”. E.g. Consider the sentence

John, Mary, David, ... are a widower, a widow, a widower, ..., respectively.

Claim the sentence is only grammatical under the condition that if the nth name is male
(female) then the nth phrase after the copula is a widower (a widow).

Counterargument :

I crossing dependencies triggered by respectively are semantic rather than syntactic.

compare above example to

(Here are John, Mary and David.) They are a widower, a widow and a widower, resp.

Contents First Last Prev Next J

23.4. Cross-serial dependencies in Dutch

Huybregt (1976):

I Dutch has copy-language like structures

I thus Dutch is not context-free
(1) dat Jan Marie Pieter Arabisch laat zien schrijven

THAT JAN MARIE PIETER ARABIC LET SEE WRITE
tr. “that Jan let Marie see Pieter write Arabic”

Counterargument

I crossing dependencies only concern argument linking, i.e. semantics

I Dutch has no case distinctions

I as far as plain string are concerned, the relevant fragment of Dutch has the structure

NPnV n

Contents First Last Prev Next J

23.5. Cross-serial dependencies Swiss German

Today many theorists believe natural languages are not context-free. (Huybregts
1984, Shieber 1985).

Evidences are given by cross-serial dependencies found in Swiss German where
verbs and their argument can be orderded cross-serially.

A sentence can have a string of

dative nouns followed by a string of accusative nouns, followed by a string of dative-
taking verbs, followed by a string of accusative-taking verbs. E.g.

mer em Hans es huus halfed aastriiche
we Hans/Dat the house/Acc helped paint.

tr. we helped Hans paint the house.

The number of verbs requaring dative objects must equal the number of dative NPs
and similarly for accusatives, and this number can be arbitrary. Hence, the language
representing this phenomenon is wanbmxcndmy which is not Context Free (CF).

However, notice that those construction types used to prove that NLs is not CF
appear to be hard to understand for humans too.

Contents First Last Prev Next J

24. Where does NL fit?

However, how large NL are continues to be a less simple matter. There are two
main non-compatible views:

1. Natural Language forms a class of languages that includes the CF family,
but is larger than it.

2. Natural Language occupies a position eccentric with respect to that hierarchy,
in such a way that it does not contain any whole family in the hierarchy but is
spread along all of them

The first view gave rise to a new family of languages which is of clear linguistic
interest, Mildly Context-sensitive Languages.

Contents First Last Prev Next J

25. Mildly Context-sensitive Languages (MSC)

A concept motivated by the intention of characterizing a narrow class of formal
grammars which are only slightly more powerful than CFGs, and which nev-
ertheless allow for descriptions of natural languages in a linguistically significant
way (Joshi 1985).

According to Joshi (1985, p. 225) a mildly context-sensitive language, L, has to fulfill
three criteria, to be understood as a rough characterization. Somewhat paraphrased,
these are:

1. the parsing problem for L is solvable in polynomial time (see later),

2. L has the constant growth property (i.e. the distribution of string lengths
should be linear rather than supralinear.), and

3. there is a finite upper bound for L limiting the number of different instan-
tiations of factorized cross-serial dependencies occurring in a sentence of
L.

Contents First Last Prev Next J

26. Where do the different Formal Grammars stand?

The interest in the frameworks is tied to their generative power, . . . as well as their
destiny.

Chomsky’s formal language theory made it possible to ask for the generative strength
of a grammar.

After the discovery of languages which require cross-serial dependencies, grammars
that were proved to be Context Free lost their appeal. Since CFGs were shown
to be inadequate to model those natural languages.

Contents First Last Prev Next J

27. Complexity Issue

For any computational problem we face (hence for parsing a NL sentence too), we
are interested in algorithms (step-by-step procedures) that can be used to solve
the problem (hence we are interested in the parsers).

For these algorithms, we are interested in how efficient the algorithm is in terms
of its run time or its use of memory (or other system resources such as database
accesses).

In its broadest sense, the notion of efficiency involves all the various computing re-
sources needed for executing an algorithm. However, by the most efficient algorithm
one normally means the fastest. Time requirements are often a dominant factor
determining whether or not a particular algorithm is efficient enough to be useful
in practice.

Time complexity is determined from the corresponding execution time and input
length.

Contents First Last Prev Next J

27.1. Input length

The time requirements of an algorithm are conveniently expressed in terms of a
single variable, the “size” of a problem instance, which is intended to reflect the
amount of input data needed to describe the instance.

The time complexity function for an algorithm expresses its time requirements by
giving, for each possible input length, the largest amount of time needed by
the algorithm to solve a problem instance of that size.

We are also interested in how the algorithms fare as their input load gets higher;
if a grammar intended for a fragment of English is extended to full texts, what
impact will this have on the run time of the parser?

Contents First Last Prev Next J

27.2. Complexity of a Problem

When we need to solve a problem, we are interested in the most efficient algorithm
that solves it.

The complexity of a problem is the complexity of such an algorithm.

Classes We distinguish between

I polynomial time problems (PTIME)

I problems believed to be exponential time (e.g. NP, PSPACE)

I problems known to be exponential time or more difficult (e.g. EXPTIME)

See Diego Calvanese’s course: Theory of Computing.

Contents First Last Prev Next J

27.3. Complexity w.r.t. Chomsky Hierarchy

We are interested in the problem of determining whether a string is in the language
generated/recognized by a grammar of a certain type.

I For Context Free Language the problem is polynomial.

I the same holds for Mildly CFL.

I whereas, for Context Sensitive Languages the problem is PSPACE-complete

If NLs were CSL, this would be a bad news for CL!

Contents First Last Prev Next J

28. Conclusions

Next time we will look at some problems of CFG, and at Formal Grammars tailored
for analysing Natural Language.

I If you have not given me the filled in form, please do it.

I Have you received my mail this morning ?

Practical Info

I 21st of Oct. no Lab, shall we have it on the 29th 17:00-18:00 (or 18:00-19:00)?

I Michael Moortgat (http://www.let.uu.nl/~ctl/docenten/moortgat.html). Talk
Intro to the “parsing as deduction” paradigm; 6th of Nov. 17:00-18:00. Ok?

I Chris Barker (http://homepages.nyu.edu/~cb125/). Talk on Continuation Seman-
tics: Natural Language and Programming languages; 24th of Nov. (08:30-10:30).

I Ken Shan (http://www.cs.rutgers.edu/~ccshan/). Talk on Continuation Seman-
tics and Discourse. 27th of Nov. 17:00-18:00. Ok?

Contents First Last Prev Next J

http://www.let.uu.nl/~ctl/docenten/moortgat.html
http://homepages.nyu.edu/~cb125/
http://www.cs.rutgers.edu/~ccshan/

29. Formal Grammars: Definition

A Formal Grammar (FG) is a formalism to give a finite representation of a Language.

A Grammar, G, is a tuple: G = (VT , VN , S, P), such that:

I VT is the finite set of Terminal Symbols.

I VN is the finite set of Non-Terminal Symbols.

I Terminal and Non-Terminal symbols give rise to the alphabet: V = VT ∪ VN .

I Terminal and Non-Terminal symbols are disjoint sets: VT ∩ VN = {}.

I S is the start symbol (Scope) of the Language, and S ∈ VN .

I P is the finite set of Productions, P = {α→ β | α ∈ V + ∧ β ∈ V ∗}.

Contents First Last Prev Next J

29.1. Derivations

To characterize a Language starting from a Grammar we need to introduce the
notion of Derivation.

I The notion of Derivation uses Productions to generate a string starting from
the Start symbol S.

I Direct Derivation (in symbols ⇒)). If α → β ∈ P and γ, δ ∈ V ∗, then γαδ ⇒
γβδ).

I Derivation (in symbols ⇒∗)). If α1 ⇒ α2, α2 ⇒ α3, . . . , αn−1 ⇒ αn, then
α1 ⇒∗ αn.

Contents First Last Prev Next J

29.2. Formal Languages and FG

A string belongs to a Language if and only if:

1. The string is made only of Terminal Symbols;

2. The string can be Derived from the Start Symbol, S, of the Language.

Generative Definition of a Language We say that a Language L is generated by the
Grammar G, in symbols L(G), if:

L(G) = {w ∈ V ∗
T | S ⇒∗ w}.

Contents First Last Prev Next J

29.3. FG and Regular Languages

We have said that the languages generated/recognized by a FSA are called “Regular
Languages”. The formal grammars that generate/recognize these languages are
known as “Regular Grammar” (RG) or Right Linear Grammars. (or Left Linear
Grammar).

Regular Grammars have rules of the form:

I A→ xB

I A→ x

where A and B are non-terminal symbols and x is any string of terminals (possibly
empty). Moreover, a rule of the form: S → ε is allowed if S does not appear on the
right side of any rule.

Contents First Last Prev Next J

29.4. FSA and RG

The association between FSA and RG is straight:

RG FSA
A→ xB from state A to state B reading x
A→ x from state A reading x to a designed final state.
start symbol initial state.

As in FSA, the string already generated/recognized by the grammar has no influence
on the strings to be read in the future (no memory!).

See Artale’s Course “Compiler” for more details.

Contents First Last Prev Next J

29.5. CFG: Language Generated

The above grammar generates the language anbn − ε (the language consisting of all
strings consisting of a block of a’s followed by a block of b’s of equal length, except
the empty string).

If we added the rule S → ε to this grammar we would generate the language anbn.
Therefore, these two languages are context free.

On the other hand, anbncn is not. That is, no matter how hard you try to find
CFG rules that generate this language, you won’t succeed. No CFG can do the job.
The same holds for, e.g. anbmcndm.

Again, there are formal ways to prove whether a language is or is not context free.

Contents First Last Prev Next J

	Reminder
	Syntax
	Dependency
	Long-distance Dependencies
	Relative Pronouns
	Coordination

	Sentence Structures: English
	Exercises

	Formal Approaches
	Syntax Recognizer
	NLs are not RL: Example I
	NLs are not RL: Example II

	FSA for syntactic analysis
	Formal Grammar: Terminology
	Context Free Grammars
	CFG: Formal Language
	CFG: More derivations

	FG for Natural Languages
	PSG: English Toy Fragment
	English Toy Fragment: Strings
	English Toy Fragment: Phrase Structure Trees
	Extending our grammar
	Recursion
	Summing up (I)
	Summing up (II)
	Generative Power
	Hierarchy of Grammars and Languages
	Chomsky Hierarchy of Languages
	Dissenting Views
	Are NL Context Free (CF)?
	Nested and Crossing Dependencies
	English & Copy Language
	Cross-serial dependencies in Dutch
	Cross-serial dependencies Swiss German

	Where does NL fit?
	Mildly Context-sensitive Languages (MSC)
	Where do the different Formal Grammars stand?
	Complexity Issue
	Input length
	Complexity of a Problem
	Complexity w.r.t. Chomsky Hierarchy

	Conclusions
	Formal Grammars: Definition
	Derivations
	Formal Languages and FG
	FG and Regular Languages
	FSA and RG
	CFG: Language Generated

