Computational Linguistics: Semantics

Raffaella Bernardi

02-04-2009

1 Exercise 1a: From Relational to Functional Perspective

Look at the Knowledge Base used while doing the Exercises with Prolog and repeated below.

- 1. Harry is a wizard.
- 2. Hagrid scares Dudley.
- 3. All wizards are magical.
- 4. Uncle Vernon hates anyone who is magical.
- 5. Aunt Petunia hates anyone who is magical and scares Dudley.

Build a model for it by (i) writing your interpretation for wizards, magical, scares, hates using the relational interpretation first, and then the functional one.

Solution:

(ii) Specifying the types of the expressions in your universe, and (iii) the domains of interpretation. E.g.

The domain of entities is as below:

 $D_e = \{harry, hagrid, vernon, petunia\}$

Solution: $D_{(e \to t)} = \{magical, wizard\}, D_{(e \to (e \to t))} = \{scare, hates\}$

2 Exercise 2: Well formed formula

Let j be a constant of type e; M of type $e \to t$; S of type $((e \to t) \to (e \to t))$, and P of type $(e \to t) \to t$. Furthermore, x is a variable of type e, and Y a variable of type $(e \to t)$.

Determine which of the following is well-formed, give its type.

1. $(\lambda x.M(x))(P)$. [NWF]

2. $(\lambda x.M(x))(j)$. [WF]

3. $\lambda x.M(j)$. [NWF: vacus abstraction]

4. $S(\lambda x.M(x))$. [WF]

5. $(\lambda Y.Y(j))(M)$ [WF]

6. $\lambda x.(M(x) \wedge M(j))$ [WF]

7. $(\lambda x.M(x)) \wedge M(j)$ [NWF: $\lambda x.M(x)$ and M(j) are of types $e \to t$ and t, resp. \wedge coordinates terms of types t]

3 Exercise 3: β -conversion

Let j be a constant of type e; M of type $(e \to t)$, and A of type $e \to (e \to t)$. Furthermore, x and y are variables of type e, and Y is a variable of type $e \to t$. Reduce the following expression as much as possible by means of β -conversion.

1. $\lambda x(M(x))(j)$ [M(j)]

2. $\lambda Y(Y(j))(M)$ [M(j)]

3. $\lambda x \lambda Y(Y(x))(j)(M)$ [M(j)]

4. $\lambda x \forall y (A(x)(y))(j)$ $[\forall y.A(j)(y)]$

5. $\lambda x \forall y (A(x)(y))(y)$ $[\forall y.A(z)(y)]$

6. $\lambda Y(Y(j))\lambda x(M(x))$ [M(j)]

7. $\lambda Y \forall x (Y(x)) \lambda y (A(x)(y))$ $[\forall z.A(x)(z)]$