
Computational Linguistics:
Syntax-Semantics Interface

Raffaella Bernardi
KRDB, Free University of Bozen-Bolzano

P.zza Domenicani, Room: 2.28, e-mail: bernardi@inf.unibz.it

Contents First Last Prev Next J

Contents

1 Lambda terms and DCG . 5
1.1 Augumenting DCG with terms . 6
1.2 Quantified NP: terms and syntactic rules 7

2 Categorial Grammar . 8
3 CG: Syntactic Rules . 9
4 CG Lexicon: Toy Fragment . 10
5 Classical Categorial Grammar . 11
6 Classical Categorial Grammar. Examples . 12

6.1 Relative Pronoun . 13
6.2 CFG and CG . 14

7 CG: syntax-semantics interface . 15
7.1 Mapping: types-categories . 16
7.2 CG: categories and terms . 17

8 Logic Grammar . 18
8.1 Natural Deduction . 19
8.2 Lambek Calculi . 20
8.3 Alternative Notation (Sequents) . 21

Contents First Last Prev Next J

9 Lambek calculus. Elimination rule . 22
9.1 Lambek calculus. Subject relative pronoun 23

10 Lambek calculus. Introduction rule . 24
11 Extraction: Right-branch (tree) . 25
12 Structural Rules . 26

12.1 Structural Rules: Formally (Advanced!) 27
12.2 Structural Rules and NL . 28

13 Historical Introduction: Syntax-Semantic Interface 29
13.1 Semantics: Examples . 30
13.2 NP and quantified NP . 31
13.3 Remarks . 32

14 CTL. Derivational vs. Lexical Meaning . 33
14.1 Example: Relative Clause . 34
14.2 Relative Clause: Double binding . 35
14.3 Relative Clause: derivational meaning 36

15 Fragment of Lambda Terms (Advanced!) . 37
15.1 Curry-Howard Correspondence (Advanced!) 38
15.2 Normal Form (Advanced!) . 39
15.3 Normal form proof: example (Advanced!) 40

Contents First Last Prev Next J

16 From CG to NL . 41
17 Lambek calculus. Advantages . 42
18 Residuation . 43
19 Summing up . 44
20 What have we learned? . 45

Contents First Last Prev Next J

1. Lambda terms and DCG

We will look at the compositional approach to the syntax-semantics interface and
build the meaning representation in parallel to the syntactic tree. This reduces to
have a rule-to-rule system, i.e. each syntactic rule correspond to a semantic rule.

Syntactic Rule 1 S → NP V P

Semantic Rule 1 If the logical form of the NP is α and the logical form of the
V P is β then the logical form for the S is β(α).

Syntactic Rule 2 V P → TV NP

Semantic Rule 2 If the logical form of the TV is α and the logical form of the
NP is β then the logical form for the V P is α(β).

Contents First Last Prev Next J

1.1. Augumenting DCG with terms

That can also be abbreviated as below where γ, α and β are the meaning represen-
tations of S,NP and V P , respectively.

S(γ)→ NP (α) V P (β) γ = β(α)

This implies that lexical entries must now include semantic information. For in-
stance, a way of writing this information is as below.

TV (λx.λy.wrote(y, x))→ [wrote]

Contents First Last Prev Next J

1.2. Quantified NP: terms and syntactic rules

We have seen that the term of a quantifier like “every student” is λY.∀z.Student(z)→
Y (z), which is of type (e→ t)→ t. Hence the sentence,

Every student left.

is obtained by applying the quantified noun phrase to the verb. In other words, if
“Everybody” is of category NP we need the rule below:

S(γ)→ NP (α) V P (β) γ = α(β)

This has brought semanticists to change the meaning representation of the noun
phrase too, since they have to be of the same “sort”. E.g, “John” could be repre-
sented as

λX.X(john)

a function of the same type as the quantified NP, i.e. (e→ t)→ t.

Contents First Last Prev Next J

2. Categorial Grammar

I Who: Lesniewski (1929), Ajdukiewicz (1935), Bar-Hillel (1953).

I Aim: To build a language recognition device.

I How: Linguistic strings are seen as the result of concatenation obtained by
means of syntactic rules starting from the categories assigned to lexical items.
The grammar is known as Classical Categorial Grammar (CG).

I Connection with Type Theory: The syntax of type theory closely resembles
the one of categorial grammar. The links between types (and lambda terms)
with models, and types (and lambda terms) with syntactic categories, gives an
interesting framework in which syntax and semantic are strictly related. (We
will come back on this later.)

Categories: Given a set of basic categories ATOM, the set of categories CAT is the
smallest set such that:

CAT := ATOM | CAT\CAT | CAT/CAT

Contents First Last Prev Next J

3. CG: Syntactic Rules

Categories can be composed by means of the syntactic rules below

[BA] If α is an expression of category A, and β is an expression of category A\B,
then αβ is an expression of category B.

[FA] If α is an expression of category A, and β is an expression of category B/A,
then βα is an expression of category B.

where [FA] and [BA] stand for Forward and Backward Application, respectively.

[BA] B

A

α

A\B

β

[FA] B

B/A

β

A

α

Contents First Last Prev Next J

4. CG Lexicon: Toy Fragment

Let ATOM be {n, s, np} (for nouns, sentences and noun phrases, respectively) and LEX as
given below. Recall PSG rules: np→ det n, s→ np vp, vp→ v np . . .

Lexicon

Sara np the np/n
student n walks np\s
wrote (np\s)/np

Sara walks ∈ s? ; np︸︷︷︸
Sara

, np\s︸ ︷︷ ︸
walks

∈ s? Yes

simply [BA]

s

np

Sara

np\s

walks

Contents First Last Prev Next J

5. Classical Categorial Grammar

Alternatively the rules can be thought of as Modus Ponens rules and can be written
as below.

B/A,A⇒ B MPr

A,A\B ⇒ B MPl

B/A A

B
(MPr)

A A\B
B

(MPl)

Contents First Last Prev Next J

6. Classical Categorial Grammar. Examples

Given ATOM = {np, s, n}, we can build the following lexicon:

Lexicon

John, Mary ∈ np the ∈ np/n
student ∈ n
walks ∈ np\s
sees ∈ (np\s)/np

Analysis

John walks ∈ s? ; np, np\s⇒ s? Yes

np np\s
s (MPl)

John sees Mary ∈ s? ; np, (np\s)/np, np⇒ s? Yes

np

(np\s)/np np

np\s (MPr)

s (MPl)

Contents First Last Prev Next J

6.1. Relative Pronoun

Question Which would be the syntactic category of a relative pronoun in subject
position? E.g. “the student who knows Lori”

[the [[student]n [who [knows Lori](np\s)]?]n
who knows Lori ∈ n\n? ;

(n\n)/(np\s), (np\s)/np, np⇒ n\n?

who
(n\n)/(np\s)

knows
(np\s)/np

Lori
np

np\s (MPr)

n\n (MPr)

n\n

(n\n)/(np\s)

who

(np\s)

(np\s)/np

knows

np

Lori

Contents First Last Prev Next J

6.2. CFG and CG

Below is an example of a simple CFG and an equivalent CG:

CFG

S --> NP VP

VP --> TV NP

N --> Adj N

Lexicon:

Adj --> poor

NP --> john

TV --> kisses

CG Lexicon:

John: np
kisses: (np\s)/np
poor: n/n

Contents First Last Prev Next J

7. CG: syntax-semantics interface

Summing up, CG specifies a language by describing the combinatorial possibili-
ties of its lexical items directly, without the mediation of phrase-structure rules.
Consequently, two grammars in the same system differ only in the lexicon.

The close relation between the syntax and semantics comes from the fact
that the two syntactic rules are application of a functor category to its argument
that corresponds to functional application of the lambda calculus.

We have to make sure that the lexical items are associated with semantic terms
which correspond to the syntactic categories.

Contents First Last Prev Next J

7.1. Mapping: types-categories

To set up the form-meaning correspondence, it is useful to build a language of
semantic types in parallel to the syntactic type language.

Definition 7.1 (Types) Given a non-empty set of basic types Base, the set of
types TYPE is the smallest set such that

i. Base ⊆ TYPE;
ii. (a→ b) ∈ TYPE, if a and b ∈ TYPE.

Note that this definition closely resembles the one of the syntactic categories of
CG. The only difference is the lack of directionality of the functional type (a, b). A
function mapping the syntactic categories into TYPE can be given as follows.

Definition 7.2 (Categories and Types) Let us define a function type : CAT→
TYPE which maps syntactic categories to semantic types.

type(np) = e; type(A/B) = (type(B)→ type(A));
type(s) = t; type(B\A) = (type(B)→ type(A));
type(n) = (e→ t).

Contents First Last Prev Next J

7.2. CG: categories and terms

Modus ponens corresponds to functional application.

B/A : t A : r

B : t(r)
(MPr)

A : r A\B : t

B : t(r)
(MPl)

Example

np : john np\s : walk

s : walk(john)
(MPl)

np\s : λx.walk(x) (λx.walk(x))(john) ;λ−conv. walk(john)

np : john

(np\s)/np : know np : mary

np\s : know(mary)
(MPr)

s : know(mary)(john)
(MPl)

Contents First Last Prev Next J

8. Logic Grammar

I Aim: To define the logic behind CG.

I How: Considering categories as formulae; \, / as logic connectives.

I Who: Jim Lambek [1958]

I Proof Theory Elimination and Introduction rules [Natural Deduction (ND)
proof format]

I Model Theory (Kripke) Models. (if you don’t what they does not matter and just
think of Models for Prop. Logic)

Proof Theory ND is a proof system, i.e. a system to prove that some premises
φ1, . . . φn derive (`) a conclusion (α). The proof consists of logical rules that do
not consider the “meaning” (truth values) of the formulae involved rather their
form (syntax). E.g. A→ B,A ` B
The system is proved to be sound and complete.

Contents First Last Prev Next J

8.1. Natural Deduction

For each connective * there is a rule that says how we can eliminate it from the
premises and how we can introduce it in the conclusion

premises

conclusion
∗

For instance, in Propositional Logic (PL), the elimination and introduction rules of
∧ are:

A ∧B
A

∧Er
A B
A ∧B ∧I

the elimination and introduction rules of → are:

A→ B A
B

→ E

[A]i
....
B

A→ B → Ii

Contents First Last Prev Next J

8.2. Lambek Calculi

In the Lambek Calculus the connectives are \ and / (that behave like the → of PL
except for their directionality aspect.)

Therefore, in the Lambek Calculus besides the elimination rules of \, / (that we saw
in CG) we have their introduction rules.

B/A A

B
/E

A A\B
B

\E

[A]i
....
B
B/A

/Ii

[A]i
....
B
A\B \I

i

Remark The introduction rules do not give us a way to distinguish the directionality
of the slashes.

Contents First Last Prev Next J

8.3. Alternative Notation (Sequents)

Let A,B,C stand for logic formulae (e.g. np, np\s, (np\s)\(np\s) . . .) i.e. the cate-
gories of CG

Let Γ,Σ,∆ stand for structures (built recursively from the logical formulae by means
of the ◦ connective) –e.g. np ◦np\s is a structure. STRUCT := CAT, STRUCT ◦ STRUCT
Σ ` A means that (the logic formula) A derives from (the structure) Σ (e.g. np ◦
np\s ` s).

A ` A

∆ ` B/A Γ ` A
∆ ◦ Γ ` B (/E)

Γ ` A ∆ ` A\B
Γ ◦∆ ` B (\E)

∆ ◦ A ` B
∆ ` B/A (/I) A ◦∆ ` B

∆ ` A\B (\I)

Contents First Last Prev Next J

9. Lambek calculus. Elimination rule
np ` np np\s ` np\s

np︸︷︷︸
sara

◦ np\s︸︷︷︸
walks

` s

np ` np
(np\s)/np ` (np\s)/np np ` np

(np\s)/np ◦ np ` np\s
np︸︷︷︸

sara

◦((np\s)/np︸ ︷︷ ︸
knows

◦ np︸︷︷︸
mary

) ` s

Contents First Last Prev Next J

9.1. Lambek calculus. Subject relative pronoun

The student who [[. . .] knows Mary]s︸ ︷︷ ︸
np

left︸︷︷︸
np\s

(n\n)/(np\s) ` (n\n)/(np\s)
(np\s)/np ` (np\s)/np np ` np

(np\s)/np ◦ np ` np\s
(n\n)/(np\s)︸ ︷︷ ︸

who

◦((np\s)/np︸ ︷︷ ︸
knows

◦ np︸︷︷︸
mary

) ` n\n

Exercise: Try to do the same for relative pronoun in object position. e.g. the student
who Mary met (i.e. prove that it is of category np. Which should be the category
for a relative pronoun (e.g. who) that places the role of an object?

Contents First Last Prev Next J

10. Lambek calculus. Introduction rule

Note, below for simplicity, I abbreviate structures with the corresponding linguistic
structures.

The book which [Sara wrote [. . .]]s︸ ︷︷ ︸
np

is interesting︸ ︷︷ ︸
np\s

.

which ` (n\n)/(s/np)

Sara ` np
wrote ` (np\s)/np [np ` np]1

wrote np ` np\s (/E)

Sara wrote np ` s (\E)

Sara wrote ` s/np (/I)1

which Sara wrote ` n\n (/E)

Introduction rules accounted for extraction.

Contents First Last Prev Next J

11. Extraction: Right-branch (tree)
s

np

Sara

np\s

(np\s)/np

wrote

np

hyp

s

np\s

np

Sara

(np\s)/np

wrote

np

hyp
s/np

s

np\s

np

Sara

(np\s)/np

wrote

np

hyp

[. . .]

Contents First Last Prev Next J

12. Structural Rules

Notice, to handle discontinuity phenomena we need to make use of structural rewrit-
ing. For instance, “which Sara wrote [. . .]” requires (some form of) associativity.
“which” ∈ (n\n)/(s/np)

(n\n)/(s/np) ` (n\n)/(s/np)

np ` np
(np\s)/np ` (np\s)/np [np ` np]1

(np\s)/np ◦ np ` np\s (/E)

(np ◦ ((np\s)/np ◦ np)) ` s (\E)

(np ◦ (np\s)/np) ◦ np ` s (Ass)

np ◦ (np\s)/np ` s/np (/I)1

(n\n)/(s/np)︸ ︷︷ ︸
which

◦(np︸︷︷︸
sara

◦ (np\s)/np︸ ︷︷ ︸
wrote

) ` n\n (/E)

Contents First Last Prev Next J

12.1. Structural Rules: Formally (Advanced!)

Structural rules are rule governing the structure we built while applying logical rules.
Associativity and Permutativity (or Commutativity) are example of structural rules.

Starting from the a Logic that consists only of the Logical rules we have seen we
can define a family of Logics that differ on their structural properties.

Hence we speak of the Lambek Calculi. The base one consists only of logical rules
(NL).

(Side Remark: Structural rules correspond to model theoretical properties.)

Structural rules. Let us write Γ[∆] for a structure Γ contaning a distinguished
occurrence of the substructure ∆. Adding a structural rule of Associativity [ass] to
NL, one obtains L. By adding commutativity [per] to L one obtains LP, and so on.

For instance,

Γ[∆1 ◦ (∆2 ◦∆3)] ` C
Γ[(∆1 ◦∆2) ◦∆3] ` C

(ass)
Γ[(∆2 ◦∆1)] ` C
Γ[(∆1 ◦∆2)] ` C

(per)

Contents First Last Prev Next J

12.2. Structural Rules and NL

But

I global structural rules are “unsound” when reasoning with natural language.

I.e. The logical grammar will overgenerate proving as grammatical also un-
grammatical sentence.

(Local) Structural Rules have been used to account for cross-linguistics variations.

(be happy if you get the intuitive idea)

Contents First Last Prev Next J

13. Historical Introduction: Syntax-Semantic In-

terface

I Who: van Benthem (1987), Buszkowski (1987)

I Aim: Syntax-Semantic interface

I How: Curry-Howard Correspondence between proofs and terms.

x : A ` x : A

Γ ` t : A/B ∆ ` u : B

Γ ◦∆ ` t(u) : A
(/E)

(Γ ◦ x : B) ` t : A

Γ ` λx.t : A/B
(/I)

∆ ` u : B Γ ` t : B\A
∆ ◦ Γ ` t(u) : A

(\E)
(x : B ◦ Γ) ` t : A

Γ ` λx.t : B\A (\I)

Contents First Last Prev Next J

13.1. Semantics: Examples

The book which Sara wrote

sara ` np : sara

wrote ` (np\s)/np : wrote [z ` np : z]1

wrote z ` np\s : wrote(z)
(/E)

sara wrote z ` s : wrote(z)(sara)
(\E)

sara wrote ` s/np : λz.wrote(z)(sara)
(/I)1

⇓

The introduction rules correspond to λ-abstraction.

Contents First Last Prev Next J

13.2. NP and quantified NP

John and one student left.

We can assign to John the category np and term assignment john and derive the
category and term of quantified np.

john ` np : john [P ` np\s : P]1

john P ` s : P (john)
(\E)

john ` s/(np\s) : λP.P (john)
(/I)1

We have proved: np ` s/(np\s). This means, we can assign John the category np
(considering it an entity, i.e. a term of type e) and derive from it the higher order
category of quantified NP as it would be necessary for, e.g. coordination of a NP
and a QP.

Exercise What about “Mary saw John and one student”?

Contents First Last Prev Next J

13.3. Remarks

First of all, note how the system assigns a variable to the hypothesis. The latter is
discharged by means of [/I] (or [\I]) which corresponds to the abstraction over the
variable.

Moreover, note that the higher order types in the derivation I gave and the one
you have found with the exercise are different, but they correspond to the same
lambda terms, i.e. the two structures are correctly assigned the same meaning.

Starting from the labelled lexicon, the task for the Lambek derivational engine
is to compute the lambda term representing the meaning assembly for a complex
structure as a by-product of the derivation that establishes its grammaticality.

Contents First Last Prev Next J

14. CTL. Derivational vs. Lexical Meaning

Meaning representation can be computed in two ways.

I Lexical one starts labeling the axioms of a derivation with the actual lambda
terms assigned in the lexicon.

I Derivational one labels the leaves of the derivation with variables, computes
the proof term for the final structure and then replaces the variables by the
actual lambda terms assigned in the lexicon to the basic constituents.

Contents First Last Prev Next J

14.1. Example: Relative Clause

The relative clause examples offer a nice illustration of the division of labor between
lexical and derivational semantics.

Intuitively, a relative pronoun has to compute the intersection of two properties:
the common noun property obtained from the n that is modified, and the property
obtained from the body of the relative clause, a sentence with a np hypothesis
missing.

In the logical form, this would come down to binding two occurrences of a
variable by one λ binder.

On the level of derivational semantics, one cannot obtain this double binding:
the Lambek systems are resource sensitive, which means that every assumption is
used exactly once. (see later Section 15)

Contents First Last Prev Next J

14.2. Relative Clause: Double binding

But on the level of lexical semantics, we can overcome this expressive limitation
(which is syntactically well-justified!) by assigning the relative pronoun a double-
bind term as its lexical meaning recipe:

which ∈ (n\n)/(s/np) : λX.λY.λz.X(z) ∧ Y (z).

In this way, we obtain the proper recipe for the relative clause which Sara wrote,
namely λY.λz.wrote(Sara, z) ∧ Y (z).

Exercise Build the meaning representation of “which sara wrote” by applying la-
belled logical rules.

Contents First Last Prev Next J

14.3. Relative Clause: derivational meaning

which ` (n\n)/(s/np) : X4

Sara ` np : X3

wrote ` (np\s)/np : X1 [x ` np : X2]
1

wrote ◦ x ` np\s : X1X2
(/E)

Sara ◦ (wrote ◦ x) ` s : (X1X2)X3
(\E)

(Sara ◦ wrote) ◦ x ` s : (X1X2)X3
(ass)

Sara ◦ wrote ` s/np : λX3.(X1X2)X3
(/I)1

which ◦ (Sara ◦ wrote) ` n\n : X4(λX3.(X1X2)X3)
(/E)

By replacing the variables X1, . . . , X4 with the corresponding lexical assignments,
and applying the reduction rules, one obtains the proper meaning of the analyzed
structure.

Note, the structural rules do not effect the meaning assembly.

Contents First Last Prev Next J

15. Fragment of Lambda Terms (Advanced!)

The Lambek calculi are fragments of intuitionistic implicational logic.

Consequently, the lambda terms computed by it form a fragment of the full
language of lambda terms.

First of all, since empty antecedents are not allowed and the Lambek calculi are
resource sensitive, viz. each assumption is used exactly once, the system reasons
about lambda terms with specific properties:

(i) each subterm contains a free variable; and

(ii) no multiple occurrences of the same variable are present. The latter could seem
to be too strong constraint when thinking of linguistic applications. However,
this is not the case as we have discuss above by looking at the relative pronoun.

(iii) each occurrence of the λ abstractor in α ∈ TERM binds a variable within its
scope. (resource sensitive!)

Contents First Last Prev Next J

15.1. Curry-Howard Correspondence (Advanced!)

Derivations for the various Lambek calculi are all associated with LP (the associa-
tive and permutative Lambek Calculus) term recipes. Therefore, we move from an
isomorphism to a weaker correspondence.

Theorem 15.1 Given an LP derivation of a sequent A1, . . . , An ` B one can find
a corresponding construction αa ∈ Λ(LP), and conversely. A term αa ∈ Λ(LP) is
called a construction of a sequent A1, . . . , An ` B iff α has exactly the free variable
occurrences x1

type(An), . . . , x
n
type(An).

Contents First Last Prev Next J

15.2. Normal Form (Advanced!)

An important notion of the lambda calculi is “normal form” terms that are obtained
proof theoretically by defining normal form derivations as following.

Definition 15.2 (Normal Form for Natural Deduction Derivations)) A deriva-
tion in natural deduction format is in normal form when there are no detours in
it. A detour is formed when

i. a connective is introduced and immediately eliminated at the next step.
ii. an elimination rule is immediately followed by the introduction of the same

connective.

The rules eliminating these two detours are called reduction rules.

Remark The reductions of the detours in i. and in ii. correspond to β-reduction and
η-reduction, respectively. Moreover, note that the above rewriting rules hold for all
Lambek calculi, regardless of their structural rules.

Contents First Last Prev Next J

15.3. Normal form proof: example (Advanced!)

By means of example, we give the reduction rule corresponding to η-reduction.

[B ` x : B]1

D1....
Γ ` t : B\A

B ◦ Γ ` t(x) : A
(\E)

Γ ` λx.t(x) : B\A (\I)1

rewrites to

D1....
Γ ` t : B\A

in the lambda-calculus the reduction above corresponds to the rewrite rule λx.t(x)⇒η

t

The correspondence between proofs and lambda terms is completed by the following
theorem.

Theorem 15.3 (Normalization) IfD is a normal form derivation of x1 : A1, . . . xn :
An ` α : C, then α is in β, η normal form.

Contents First Last Prev Next J

16. From CG to NL

I Classical Categorial Grammar consists of (only) function application rules. But,

I Concatenative function application is not enough to analyze natural language.

I We need to compose as well as decompose structures.

By moving from a rule-based approach to a logical system we obtain abstraction, (\I) and
(/I) besides function application, (\E) and (/E). Hence, we obtain

1. derivability relations among types

2. a way to decompose built structures

From CG to NL,

CG NL

Categories Formulas
Category forming operators Logical Operators
Rule schemata Inference Rules
Parsing Deduction

Contents First Last Prev Next J

17. Lambek calculus. Advantages

I Hypothetical reasoning: Having added [\I], [/I] gives the system the right
expressiveness to reason about hypothesis and abstract over them.

I Curry Howard Correspondence: Curry-Howard correspondence holds be-
tween proofs and terms. This means that parsed structures are assigned an
interpretation into a model via the connection ‘categories-terms’.

I Logic: We have moved from a grammar to a logic. Hence its behavior can be
studied. The system is sound, complete and decidable.

Contents First Last Prev Next J

18. Residuation

Interestingly enough, the operators of the Lambek calculi are rather well known
operators. They behave like basic operation of Maths, like :, x. All pair of operators
sharing this property are known as “residuated operators”.

x× y ≤ z iff x ≤ z
y

x× y ≤ z
x ≤ z

y

A ◦B ` C
A ` C/B

Based on this observation (pointed out by Lambek), Michael Moortgat and Natasha
Kurtonina, extended the language of the Lambek Calculi to unary operators
characterized by the same property, namely 3 and � which turned out to be already
known in Logic (see Temporal Logic) and to be able to model the feature checking
mechanism that we have seen is required when analyzing NL, e.g. feature agreement.

Contents First Last Prev Next J

19. Summing up

The main points of today topic to be kept in mind are the following:

1. Linguistic signs are pairs of form and meaning, and composed phrases are
structures rather than strings.

2. When employing a logic to model linguistic phenomena, grammatical deriva-
tions are seen as theorems of the grammatical logic.

3. The correspondence between proofs and natural language models, via the lambda
terms, properly accounts for the natural language syntax semantics inter-
face.

Reference on CG and Lambek Calculi: First chapter of my thesis.

Contents First Last Prev Next J

20. What have we learned?

I We’ve seen we can exploit derivability relations to control composition of types.
(e.g. NP coor QP)

I However, we have not found yet the type for the relative pronoun that grasps its
behavior and its link with the dependent object, properly. For instance, if we modify
the context slightly

“which Sara wrote there” cannot be recognized by NL with the type assigned to
“which”.

I We should still understand how to properly use

. structural rules

. derivability relations,

. unary operators logical rules,

. how to lexically control their application.

Project Study the four points above and build a fragment of CTL covering long-distance
phenomena examples. Literature: Moortgat 02.

Contents First Last Prev Next J

	Lambda terms and DCG
	Augumenting DCG with terms
	Quantified NP: terms and syntactic rules

	Categorial Grammar
	CG: Syntactic Rules
	CG Lexicon: Toy Fragment
	Classical Categorial Grammar
	Classical Categorial Grammar. Examples
	Relative Pronoun
	CFG and CG

	CG: syntax-semantics interface
	Mapping: types-categories
	CG: categories and terms

	Logic Grammar
	Natural Deduction
	Lambek Calculi
	Alternative Notation (Sequents)

	Lambek calculus. Elimination rule
	Lambek calculus. Subject relative pronoun

	Lambek calculus. Introduction rule
	Extraction: Right-branch (tree)
	Structural Rules
	Structural Rules: Formally (Advanced!)
	Structural Rules and NL

	Historical Introduction: Syntax-Semantic Interface
	Semantics: Examples
	NP and quantified NP
	Remarks

	CTL. Derivational vs. Lexical Meaning
	Example: Relative Clause
	Relative Clause: Double binding
	Relative Clause: derivational meaning

	Fragment of Lambda Terms (Advanced!)
	Curry-Howard Correspondence (Advanced!)
	Normal Form (Advanced!)
	Normal form proof: example (Advanced!)

	From CG to NL
	Lambek calculus. Advantages
	Residuation
	Summing up
	What have we learned?

