
Computational Linguistics: Semantics

Raffaella Bernardi
KRDB, Free University of Bozen-Bolzano

P.zza Domenicani, Room: 2.28, e-mail: bernardi@inf.unibz.it

Contents First Last Prev Next J

Contents

1 CL: what have we achieved? . 4
2 Semantics . 5
3 Formal Semantics: Main questions . 6
4 Logical Approach . 7

4.1 Model: individual constants . 8
4.2 Model:one-place predicates . 9
4.3 Model: two-place predicates . 10
4.4 Example . 11
4.5 Relational and Functional Perspectives 12
4.6 Exercises: Relations vs. Functions . 13
4.7 Summing up . 14

5 Formal Semantics: What . 15
6 Formal Semantics: How . 16

6.1 Formal Semantics: How (cont’d) . 17
6.2 Formal Semantics: How (Cont’d) . 18
6.3 Compositionality . 19
6.4 Ambiguity . 20

Contents First Last Prev Next J

7 How far can we go with FOL? . 21
7.1 FOL: How? . 22

8 Building Meaning Representations . 23
9 Lambda Calculus . 24

9.1 Lambda-terms: Examples . 25
9.2 Functional Application . 26
9.4 Exercise . 27
9.5 α-conversion . 28

10 Lambda-Terms Interpretations . 29
10.1 Models, Domains, Interpretation . 30
10.2 Lambda-calculus: some remarks . 31

11 The Three Tasks Revised . 32
12 Practical Info . 33

Contents First Last Prev Next J

1. CL: what have we achieved?

Main challenge of CL: to deal with ambiguity at the different levels.

Which kind of ambiguities are the following ones?

I La vecchia porta sbatte.

I La vecchia porta la sbarra.

I John saw the man with the telescope.

I John saw the woman in the park with the telescope. He was at home.

We have seen how to recognize/parse these sentences so to obtain different parse
trees whenever necessary.

Contents First Last Prev Next J

2. Semantics

Semantics: it’s the study of the meaning of words and the reference of linguistic
inputs. The former is studied in Lexical Semantics and the latter in Formal
Semantics.

Lexical Semantics Words are seen as having a systematic structure that governs what
they mean, how they relate to actual entities and how they can be used. Studies
on this topic result into e.g. Dictionary or Ontologies like WordNET.

whereas we will look at Formal Semantics.

Contents First Last Prev Next J

3. Formal Semantics: Main questions

The main questions are:

1. What does a given sentence mean?

2. How is its meaning built?

3. How do we infer some piece of information out of another?

The first and last question are closely connected.

In fact, since we are ultimately interested in understanding, explaining and ac-
counting for the entailment relation holding among sentences, we can think of the
meaning of a sentence as its truth value.

Contents First Last Prev Next J

4. Logical Approach

To tackle these questions we will use Logic, since using Logic helps us answering the
above questions at once.

1. Logics have a precise semantics in terms of models —so if we can trans-
late/represent a natural language sentence S into a logical formula φ, then
we have a precise grasp on at least part of the meaning of S.

2. Important inference problems have been studied for the best known logics,
and often good computational implementations exists. So translating into
a logic gives us a handle on inference.

When we look at these problems from a computational perspective, i.e. we bring in
the implementation aspect too, we move from Formal Semantics to Computational
Semantics.

Contents First Last Prev Next J

4.1. Model: individual constants

The interpretation of a formal language has to include a specification of what con-
stants in the language refers to. This is done by means of the interpretation
function I which assigns an appropriate denotation in the model M to each
individual and n-place predicate constant .

If α is an individual constant, I maps α onto one of the entities of the universe of
discourse U of the model M : I(α) ∈ U .

1
picture: universe of discourse set U with

dots.

Contents First Last Prev Next J

4.2. Model:one-place predicates

One-place properties are seen as sets of individuals: the property of being orange
describes the set of individuals that are orange. Formally, for P a one-place
predicate, the interpretation function I maps P onto a subset of the universe of
discourse U : I(P) ⊆ U . For instance,

2
picture: universe with a subset standing for

orange

Contents First Last Prev Next J

4.3. Model: two-place predicates

Two-place predicates such as “love”, “eat”, “mother-of” do not denote sets of indi-
viduals, but sets of ordered pairs of individuals, namely all those pairs which
stand in the “loving”, “eating”, “mother-of” relations. We form ordered pairs from
two sets A and B by taking an element of A as first member of the pair and an ele-
ment of B as the second member. Given the relation R, the interpretation function
I maps R onto a set of ordered pairs of elements of U : I(R) ⊆ U × U

3 picture: page 78

Contents First Last Prev Next J

4.4. Example

Let our model be based on the set of entities E = {lori, ale, sara, pim} which represent
Lori, Ale, Sara and Pim, respectively. Assume that they all know themselves, plus Ale
and Lori know each other, but they do not know Sara or Pim; Sara does know Lori
but not Ale or Pim. The first three are students whereas Pim is a professor, and both
Lori and Pim are tall. This is easily expressed set theoretically. Let [[w]] indicate the
interpretation of w:
[[sara]] = sara;
[[pim]] = pim;
[[lori]] = lori;
[[know]] = {〈lori, ale〉, 〈ale,lori〉, 〈sara, lori〉,

〈lori, lori〉, 〈ale, ale〉, 〈sara, sara〉, 〈pim, pim〉};
[[student]] = {lori, ale, sara};
[[professor]] = {pim};
[[tall]] = {lori, pim}.

which is nothing else to say that, for example, the relation know is the set of pairs 〈α, β〉
where α knows β; or that ‘student’ is the set of all those elements which are a student.

Contents First Last Prev Next J

4.5. Relational and Functional Perspectives

Alternatively, one can assume a functional perspective and interpret, for example,
student as a function from individual (entities) to truth values, student(monika) =
1, student(raffaella) = 0.

The shift from the relational to the functional perspective is made possible by the
fact that the sets and their characteristic functions amount to the same
thing:

if fX is a function from Y to {0, 1}, then X = {y | fX(y) = 1}. In other
words, the assertion ‘y ∈ X’ and ‘fX(y) = 1’ are equivalent.

Therefore, the two notations y(z)(u) and y(u, z) are equivalent.

Contents First Last Prev Next J

4.6. Exercises: Relations vs. Functions

Think of which function you can assign to the words in the model considered before
and repeated here:

Sara, Pim, Lori, know, student, professor, tall, every man, every Mexican student,
no Mexican student, some man.

Contents First Last Prev Next J

4.7. Summing up

Summarizing, when trying to formalize natural language semantics, at least two
sorts of objects are needed to start with: the set of truth values t, and the one of
entities e.

Moreover, we spoke of more complex objects as well, namely functions. More specif-
ically, we saw that the kind of functions we need are truth-valued functions (or
boolean functions).

Furthermore, we have illustrated how one can move back and forwards between a
set/relational and a functional perspective. The former can be more handy
and intuitive when reasoning about entailment relations among expressions; the
latter is more useful when looking for lexicon assignments.

References: Keenen 85.

Contents First Last Prev Next J

5. Formal Semantics: What

What does a given sentence mean?

The meaning of a sentence is its truth value. Hence, this question can be rephrased
in “Which is the meaning representation of a given sentence to be evaluated as true
or false?”

I Meaning Representations: Predicate-Argument Structures are a suitable
meaning representation for natural language sentences. E.g.

the meaning representation of “Vincent loves Mia” is loves(vicent, mia)

whereas the meaning representation of “A student loves Mia” is ∃x.student(x)∧
loves(x, mia).

I Interpretation: a sentence is taken to be a proposition and its meaning is the
truth value of its meaning representations. E.g.

[[∃x.student(x)∧left(x)]] = 1 iff standard FOL (First Order Logic) definitions
are satisfied.

Contents First Last Prev Next J

6. Formal Semantics: How

How is the meaning of a sentence built?

To answer this question, we can look back at the example of “Vincent loves Mia”.
We see that:

I “Vincent” contributes the constant vincent

I “Mia” contributes the constant mia

I “loves” contributes the relation symbol loves

This observation can bring us to conclude that the words making up a sentence
contribute all the bits and pieces needed to build the sentence’s meaning represen-
tation.

In brief, meaning flows from the lexicon.

Contents First Last Prev Next J

6.1. Formal Semantics: How (cont’d)

But,

1. Why the meaning representation of “Vincent loves Mia” is not love(mia,vincent)?

2. What does “a” contribute to in “A student loves Mia”?

As for 1., the missing ingredient is the syntactic structure! [Vincent [lovesv

Mianp]vp]s.

We will come back to 2. next time.

Contents First Last Prev Next J

6.2. Formal Semantics: How (Cont’d)

Vincent loves Mia: (S)
loves(vincent, mia)

� �
Vicent (np) loves Mia (vp)
vincent loves(?,mia)

� �
loves (v) Mia
loves(?,?) mia

Briefly, syntactic structure guiding gluing.

Contents First Last Prev Next J

6.3. Compositionality

The question to answer is: “How can we specify in which way the bit and pieces
combine?”

1. Meaning (representation) ultimately flows from the lexicon.

2. Meaning (representation) are combined by making use of syntactic information.

3. The meaning of the whole is function of the meaning of its parts, where “parts”
refer to substructures given us by the syntax.

Contents First Last Prev Next J

6.4. Ambiguity

A single linguistic sentence can legitimately have different meaning representations
assigned to it.

For instance, “John saw a man with the telescope”

a. John [saw [a man [with the telescope]pp]np]vp ∃x.Man(x) ∧ Saw(j, x) ∧ Has(x, t)
b. John [[saw [a man]np]vp [with the telescope]pp]vp ∃x.Man(x) ∧ Saw(j, x) ∧ Has(j, t)

Different parse trees result into different meaning representations!

Contents First Last Prev Next J

7. How far can we go with FOL?

FOL can capture the what (partially) and cannot capture the how, i.e.

Problems with the “what”:

order I Swimming is healthy. Healthy(Swim): wrong!
(property of property)

I John has all the properties of Santa Clause ∀P (P (s)→ P (j)): wrong!
(quantification over properties)

I Red has something in common with green. ∃P (P (red)∧P (green): wrong!
(quant. over properties of properties)

adj. I There was a red book on the table. ∃x(Book(x)∧Red(x)∧On the table(x)).

I There was a small elephant in the zoo.
∃x(Elephant(x) ∧ Small(x) ∧ In the zoo(x)).: wrong!

adv. I Milly swam slowly. (modifier of the verb rather than of individuals!)

I Milly swam terribly slow (modifier of a modifier).

Contents First Last Prev Next J

7.1. FOL: How?

Problems with the how:

Constituents: it cannot capture the meanings of constituents.

Assembly: it cannot account for meaning representation assembly.

Contents First Last Prev Next J

8. Building Meaning Representations

To build a meaning representation we need to fulfill three tasks:

Task 1 Specify a reasonable syntax for the natural language fragment of interest.

Task 2 Specify semantic representations for the lexical items.

Task 3 Specify the translation of constituents compositionally. That is, we
need to specify the translation of such expressions in terms of the translation
of their parts, parts here referring to the substructure given to us by the syntax.

Moreover, when interested in Computational Semantics, all three tasks need to be
carried out in a way that leads to computational implementation naturally.

We have looked at Task 1 in lecture 2 and 3 (formal grammars) and at their com-
putational side (Implementation in Prolog, Recognition and Parsing) during the
Labs.

Today we will start looking at the other two tasks.

Contents First Last Prev Next J

9. Lambda Calculus

FOL augmented with Lambda calculus can capture the “how” and accomplish tasks
2 and 3.

I It has a variable binding operators λ. Occurrences of variables bound by λ
should be thought of as place-holders for missing information: they explicitly
mark where we should substitute the various bits and pieces obtained in the
course of semantic construction.

I An operation called β-conversion performs the required substitutions.

Contents First Last Prev Next J

9.1. Lambda-terms: Examples

Here is an example of lambda terms:

λx.left(x)

The prefix λx. binds the occurrence of x in student(x). We say it abstracts over
the variable x. The purpose of abstracting over variables is to mark the slots where
we want the substitutions to be made.

To glue vincent with “left” we need to apply the lambda-term representing “left”
to the one representing “Vincent”:

λx.left(x)(vincent)

Such expressions are called functional applications, the left-hand expression is
called the functor and the right-hand expression is called the argument. The
functor is applied to the argument. Intuitively it says: fill all the the placeholders
in the functor by occurrences of the term vincent.

The substitution is performed by means of β-conversion, obtaining left(vincent).

Contents First Last Prev Next J

9.2. Functional Application

Summing up:

I FA has the form: Functor(Argument). E.g. (λx.love(x,mary))(john)

I FA triggers a very simple operation: Replace the λ-bound variable by the
argument. E.g. (λx.love(x,mary))(john)⇒ love(john,mary)

Contents First Last Prev Next J

9.4. Exercise

Give the lambda term representing a transitive verb.

(a) Build the meaning representation of “John saw Mary” starting from:

I John: j

I Mary: m

I saw: λx.λy.saw(y, x)

(b) Build the parse tree of the sentence by means the bottom-up method.

(c) Compare what you have done to assembly the meaning representation with the
way you have built the tree.

Contents First Last Prev Next J

9.5. α-conversion

Warning: Accidental bounds, e.g. λx.λy.Love(y, x)(y) gives λy.Love(y, y). We need
to rename variables before performing β-conversion.

α-conversion is the process used in the λ-calculus to rename bound variables. For
instance, we obtain

λx.λy.Love(y, x) from λz.λy.Love(y, z).

When working with lambda calculus we always α-covert before carrying out β-
conversion. In particular, we always rename all the bound variables in the functor
so they are distinct from all the variables in the argument. This prevents accidental
binding.

Contents First Last Prev Next J

10. Lambda-Terms Interpretations

In the Logic course you’ve seen that an Interpretation is a pair consisting of a domain
(D) and an interpretation function (I).

I In the case of FOL we had only one domain, namely the one of the ob-
jects/entities we were reasoning about. Similarly, we only had one type of
variables. Moreover, we where only able to speak of propositions/clauses.

I λ-terms speak of functions and we’ve used also variables standing for func-
tions. Therefore, we need a more complex concept of interpretation, or better
a more complex concept of domain to provide the fine-grained distinction
among the objects we are interested in: truth values, entities and functions.

I For this reason, the λ-calculus is of Higher Order.

Contents First Last Prev Next J

10.1. Models, Domains, Interpretation

In order to interpret meaning representations expressed in FOL augmented with λ,
the following facts are essential:

I Sentences: Sentences can be thought of as referring to their truth value, hence
they denote in the the domain Dt = {1, 0}.

I Entities: Entities can be represented as constants denoting in the domain De,
e.g. De = {john, vincent, mary}

I Functions: The other natural language expressions can be seen as incomplete
sentences and can be interpreted as boolean functions (i.e. functions yielding
a truth value). They denote on functional domains DDa

b and are represented
by functional terms of type (a→ b).

For instance “walks” misses the subject (of type e) to yield a sentence (t).

. denotes in DDe
t

. is of type (e→ t),

. is represented by the term λxe(walk(x))t

Contents First Last Prev Next J

10.2. Lambda-calculus: some remarks

The pure lambda calculus is a theory of functions as rules invented around 1930
by Church. It has more recently been applied in Computer Science for instance in
“Semantics of Programming Languages”.

In Formal Linguistics we are mostly interested in lambda conversion and abstraction.
Moreover, we work only with typed-lambda calculus and even more, only with a
fragment of it.

The types are the ones we have seen above labeling the domains, namely:

I e and t are types.

I If a and b are types, then (a→ b) is a type.

Contents First Last Prev Next J

11. The Three Tasks Revised

Task 1 Specify a reasonable syntax for the natural language fragment of interest.
We can do this using CFG.

Task 2 Specify semantic representations for the lexical items. We know what
this involves

Task 3 Specify the translation of an item R whose parts are F and A with the
help of functional application. That is, we need to specify which part is to be
thought of as functor (here it’s F), which as argument (here it’s A) and then
let the resultant translation R′ be F ′(A′). We know that β-conversion
(with the help of α-conversion), gives us the tools needed to actually
construct the representation built by this process.

In the Lab we have seen that the solution proposed for task 1 leads itself to compu-
tational implementation naturally. Next week we will see that this holds for task 2
and 3 too (though we won’t go into the detail of it. If you are interested in it and
you know Prolog already: good topic for a project!)

Contents First Last Prev Next J

	CL: what have we achieved?
	Semantics
	Formal Semantics: Main questions
	Logical Approach
	Model: individual constants
	Model:one-place predicates
	Model: two-place predicates
	Example
	Relational and Functional Perspectives
	Exercises: Relations vs. Functions
	Summing up

	Formal Semantics: What
	Formal Semantics: How
	Formal Semantics: How (cont'd)
	Formal Semantics: How (Cont'd)
	Compositionality
	Ambiguity

	How far can we go with FOL?
	FOL: How?

	Building Meaning Representations
	Lambda Calculus
	Lambda-terms: Examples
	Functional Application
	Exercise
	-conversion

	Lambda-Terms Interpretations
	Models, Domains, Interpretation
	Lambda-calculus: some remarks

	The Three Tasks Revised
	Practical Info

