
Computational Linguistics: Human
Computer Interaction

Raffaella Bernardi
KRDB, Free University of Bozen-Bolzano

P.zza Domenicani, Room: 2.28, e-mail: bernardi@inf.unibz.it

Contents First Last Prev Next J

Contents

1 Human-Computer Interaction via Natural Language 4
2 Natural Language Interfaces to Data Bases 5

2.1 Advantages & Disadvantages . 6
2.2 Experiments . 7
2.3 Linguistic problems . 8
2.4 Architecture . 9
2.5 Parsers: query analysis . 9
2.6 Sample architecture . 11
2.7 Which approach . 12
2.8 Response generation . 13
2.9 Restricted NL input . 14
2.10 NLIDBs as intelligent agents . 15
2.11 ACE: Attempto Control Natural Language 16
2.12 Online Demos . 17

3 Dialogue System . 18
3.1 Practical Dialogues . 19
3.2 Practical Dialogues Complexity . 20

Contents First Last Prev Next J

3.3 Example . 21
3.4 Observations . 22
3.5 Sample Architecture . 23
3.6 Computational Approaches . 24
3.7 Conventional Approach . 25
3.8 Protocols as Finite State Automata 26

3.8.1 Failure of simple DFA-protocols 29
3.8.2 Follow-up . 30
3.8.3 Protocol with memory . 31
3.8.4 Protocols with stacks . 32
3.8.5 Failure of protocols with stacks 33
3.8.6 Failure of protocols with stacks 34

3.9 Summary: Expressive power . 35
4 Conclusion . 37

Contents First Last Prev Next J

1. Human-Computer Interaction via Natural Lan-

guage

In the ’50 Machine Translation work pointed out serious problems in trying to deal
with unrestricted, extended text in open domains. This led researchers in the ’60
and early ’70 to focus on question-answering dialogues in restricted domain.

Attention shifted from developing NL systems to solving individual language-related
problems, e.g., to develop faster, and more efficient parsers.

Now, researchers are back to deal with unrestricted extended text and dialogues.

1. NLDB

2. Dialogue Systems,

3. QA

4. IQA

All of them aim at assisting users to access data from some source. Today we speak
of NLDB and Dialogue Systems, next time of QA and IQA.

Contents First Last Prev Next J

2. Natural Language Interfaces to Data Bases

NLDB refers to systems that allow the user to access information stored in a database
by typing requests in some natural language. Its history (see Androutsopoulos for
more details):

’60/’70 they were built having a particular DB in mind. No interest in portability
issues. E.g., LUNAR

late ’70 Dialogues; large DB; semantic grammars (domain dependent - no portable).
E.g. LADDEqR

early ’80 From English into Prolog evaluated against Prolog DB. Eg., CHAT-80

mid ’80 popular research area. Research focused on portability issues. E.g. TEAM

’90 NLIDBs did not gain the expected commercial acceptance. Alternative solutions
were successful (graphical or form-based interface). Decrease in the nubmer of
papers on the topic.

Contents First Last Prev Next J

2.1. Advantages & Disadvantages

I Advantages:

. NLDB should be easier to use. But: currently only limited subsets of NL.
Hence, training is needed.

. It supports anaphoric and elliptic expressions.

I Disadvantages:

. The NL coverage is not clear to the user. False positive expectation and
False negative expectation

. It is not clear to the user whether the rejected question is outside the
system’s linguistic coverage or the system’s conceptual coverage. Need of
diagnostic messages.

. User assume intelligence of the NLIDBs.

. NL is verbose and ambiguous.

. Tedious configuration.

Contents First Last Prev Next J

2.2. Experiments

I Training of the interfaces (graphical, SQL, NL). Then ask queries most of which
are similar to the ones used in the training period.

Results: NLIDBs seem to be better in queries where data from many tables
have to be combined and in queries that were not similar to the ones the users
had encountered during the training period.

I NL is an effective method of interaction for casual users with a good knowledge
of the DB, who perform question-answering tasks in a restricted domain.

I Another approach: Wizard of Oz experiment.

Contents First Last Prev Next J

2.3. Linguistic problems

I Quantifier scoping. Ambiguous, ad hoc solutions (e.g., choose only one reading
as possible, give different weights to QPs.)

I Conjunction and Disjunction: Sometime conjunctions in NL are actually in-
terpreted as disjunction. E.g., List all applicants who live in California and
Arizona. There are also cases of ambiguous use of “and”, e.g., Which minority
and female applicants know Fortran?”

I Nominal compound problem: E.g., “research department” vs. “research sys-
tem”. In the first case, the department carries out the research, in the second
the system is used in research.

I Anaphora: Use of pronouns and possessive determiners or noun phrases to
denote entities mentioned in the discourse. Solution: keep list of all entities,
use the most recent one as link to the anaphora. Use of world knowledge.

I Elliptical sentences. E.g., U1: “Who is the manager of the largest department?”
U2: “The smallest department?” Need of discourse model.

Contents First Last Prev Next J

2.4. Architecture

2.5. Parsers: query analysis

Pattern-matching Simple, but bad failures.

Syntax Based The user’s question is parsed and (each node of) the parse tree is
mapped directly to an expression is some DB query language. (eg. LUNAR).
The DB query language is designed to facilitate the mapping, since it is hard
to map the parse tree into e.g. SQL.

Semantic Grammar Difficult to port to other knowledge domain.

Intermediate representation languages NL question is transformed into an in-
termediate logical query –in terms of high level world concepts independent
of the DB structure. This query is then translated into a DB query language
supported by the underlying DBMS

E.g. JANUS: the semantic interpretation is built compositionaly –syntactic
rules correspond to semantic rules.

Contents First Last Prev Next J

E.g. LOQUI: linguistically based formal grammar. Importance of lexicon,
where the logical expressions corresponding to the words (possible leaf nodes)
are stored. Lexicon is domain dependent whereas the rule-to-rule correspon-
dence is not.

E.g. MASQUE: world models are used to specify the possible arguments of
some predicate . This info can be used to give the diagnostic message to the
user and specify whether there is a problem of conceptual coverage.

Contents First Last Prev Next J

2.6. Sample architecture

database

semantic interpreter

parse tree

parser

natural language input

query

database query

generator

database query

management system

database

retrieved results

response generator

response

logical

syntax rules

rules

semantic

lexicon

mapping to

DB info

world model

linguistic front-end

domain-dependent
knowledge

Contents First Last Prev Next J

2.7. Which approach

Advantages of the last approach: modularity of the architecture

I the linguistic front-end is independent of the underlying DBMS

I domain knowledge is separated from the rest of the front end

I reasoning modules can be added between the semantic interpreter and the DB
query generator.

Contents First Last Prev Next J

2.8. Response generation

Failure Explain cause of failure to retrieve answer.

False Presupposition The system should report the false presupposition about
the DB world.

Literal answers some time a literal answer would be “yes/no” but it won’t be
an acceptable answer. Cooperative answers can help. Sometime important to
reason about the user’s goal.

Misunderstandings translate the SQL query back to NL, (paraphrase modules)

Contents First Last Prev Next J

2.9. Restricted NL input

Currently systems use limited subsets of NL.

Limitation user doesn’t know which is this subset. Has to rephrase the question,
does not know which questions could be handled.

Long term aim to broad the linguistic coverage.

Alternative approach deliberately and explicitly restrict the set of NL the user
is allowed to input (controlled natural language.)

syntactic pattern E.g PRE.

menu-based E.g. NLMENU,

ontology-driven See Paolo Dongilli’s work.

complexity of NL fragments See Ian Pratt (in two weeks here!) and Camilo
Thorne works

Contents First Last Prev Next J

2.10. NLIDBs as intelligent agents

External modules could be used to reason

on the world To answer questions that cannot be answered by the DBMS

about user’s goal Dialogue-oriented systems driven by a reasoning module which
reasons about the goals and beliefs of both the user and the system.

Contents First Last Prev Next J

2.11. ACE: Attempto Control Natural Language

Contents First Last Prev Next J

2.12. Online Demos

Examples of today NLDBs:

I ACE: http://attempto.ifi.unizh.ch/site/tools/

I Geo http://www.cs.utexas.edu/users/ml/geo-demo.html

I PENG: http://www.ics.mq.edu.au/~peng/PengEditor.html

I PRECISE

Contents First Last Prev Next J

http://attempto.ifi.unizh.ch/site/tools/
http://www.cs.utexas.edu/users/ml/geo-demo.html
http://www.ics.mq.edu.au/~peng/PengEditor.html

3. Dialogue System

Two uses of Dialogue Systems:

I Dialogues as a way of controlling and restricting the interaction.

I Dialogues based on human conversation to enhance the interaction with the
machine.

We focus not on human-human conversation rather on human-machine interactions
where a concrete task must be achieved. We call these dialogues practical (Allen
2001)

Contents First Last Prev Next J

3.1. Practical Dialogues

Practical Dialogues can be divided into: task-oriented dialogues, information-seeking
dialogues, advice and tutoring dialogues, and command and control dialogues.

The conversational competence required for practical dialogues, while still
complex, is significantly simpler to achieve than general human conversa-
tional competence. . . . Within the genre of practical dialogue, the bulk of
the complexity in the language interpretation and dialogue management
is independent of the task being performed.

Contents First Last Prev Next J

3.2. Practical Dialogues Complexity

2

user’s needs and provide responses that best further the
user’s goals. Such systems will create a new paradigm for
human-computer interaction.

Dialogue Task Complexity

There is a tremendous range of complexity of tasks suitable
for dialogue-based interfaces, and we attempt a broad clas-
sification of them in Figure 1. At the simplest end are the
fintie-state systems that follow a script of prompts for the
user. Such systems are in use today for simple applications
such as long-distance dialing by voice, and have already
proved quite successful. This technique works only for the
simplest of tasks.

The frame-based approach includes most of the spoken
dialogue systems constructed to date. In this approach, the
system interprets the speech to acquire enough information
in order to perform a specific action, be it answering a
question about train arrivals, or routing your call to the
appropriate person at a bank. The context is fixed in these
systems for they do only one thing. Specialized processing
techniques are used that take advantage of the specific do-
main. One can view the context as being represented as a
set of parameters that need to be before the system action
can be taken instantiated (e.g., Seneff and Polifroni, 2000).
For example, to provide information about train arrivals
and departures, the system needs to know parameters like
the train id number, the event involved (e.g., arriving or
departing), the day of travel, and so on (see Figure 2). The
action is performed as soon as enough information has
been identified. This approach has been used for systems
providing information about current movies (e.g., Chu-
Carroll, 1999), information about train schedules (e.g.,
Sturm et al, 1999), and for describing routes to restaurants
(e.g., Zue et al., 2000).

Because of the simplicity of these domains, it is possible
to build very robust language processing systems. One
does not need to obtain full linguistic analyses of the sen-
tences, and in fact most information can be extracted by

simple patterns designed for the specific domain. For ex-
ample, given the utterance “When does the Niagara Bullet
leave Rochester?” pattern-matching techniques could iden-
tify values for the following parameters: the train? (An-
swer: The Niagara Bullet); the event? (Answer: leaving);
the location? (Answer: Rochester). Even if speech recogni-
tion was poor and the recognized utterance was “Went up
the Niagara Bullet to leave in Chester”, patterns could still
extract the train (i.e., the Niagara Bullet) and event (i.e.,
leaving) and continue the dialogue.

The next level up in complexity involves representing
the task by a series of contexts, each represented using the
frame-based approach. For instance, for a simple travel
booking agent, the system may need to book a series of
travel segments, and each one would be represented by a
context containing the information about one travel leg. It
might also be able to book hotels and rental cars. With
multiple contexts, such systems must be able to identify
when the user switches contexts. It can be quite challeng-
ing to recognize cases where a user goes back and wants to
modify a previously discussed context, say to change some
detail about the first leg of a trip after discussing the sec-
ond leg. Examples of such work can be found within the
DARPA Communicator project (e.g., Xu and Rudnicky,
2000).

At Rochester, we are primarily interested in the design
of systems for the next two levels of complexity shown in
Figure 1. In these, the tasks are too complicated to repre-
sent as a series of parameterized contexts. In fact, these
tasks require the system to maintain an explicit model of

Parameter Possible Values

The train ID? BN101, ...

The event? Departure, arrival

The location? Avon, Bath, Corning, ...

The date/time range? Monday, Aug 3, afternoon, ...

Figure 2: Context for a Train Information Task

Technique Used Example Task Task Complexity Dialogue Phenomena
handled

Finite-state Script Long-distance dialing least complex User answers questions

Frame-based Getting train arrival and
departure information

User asks questions, simple
clarifications by system

Sets of Contexts Travel booking agent Shifts between predetermined
topics

Plan-based Models Kitchen design consultant Dynamically generated topic
structures, collaborative ne-

gotiation subdialogues

Agent-based Models Disaster relief manage-
ment

most complex Different modalities (e.g.,
planned world and actual

world)

Figure 1: Dialogue and Task Complexity

Contents First Last Prev Next J

3.3. Example

Finite State Script and Frame Based systems are handled by robust pattern match-
ing techniques and do not use deep language understanding whereas the others do.
A simple interaction containing several challenges is the following from Allen et al.

1. USR: We need to get the woman in Penfield to Strong

2. SYS: OK

3. USR: What vehicles are available?

4. SYS: There are ambulances in Pittsford and Webster

5. USR: Ok. Use one from Pittsford

6. SYS: Do you know that Route 96 is blocked due to construction?

7. USR: Oh

8. SYS: Let’s use the interstate instead

9. USR: OK. I’ll dispatch the crew

Contents First Last Prev Next J

3.4. Observations

1. Utterance (1) “We need to get the woman in Penfield to Strong” is needed to
establish a joint objective

2. Utterance (2) “OK” confirms the joint objective

3. Utterance (3) “What vehicles are available?” initiate a problem-solving act.

4. (4) “There are ambulances in Pittsford and Webster” only those available am-
bulances near to the place are listed.

5. (5) “Ok. Use one from Pittsford” it’s an attempt to specify a solution.

6. (6) “Do you know that Route 96 is blocked due to construction?” is a clarifi-
cation question asked by the system.

7. . . .

Many challenges! See also the course “Introduction to Linguistics” (e.g., speech
Acts)

Contents First Last Prev Next J

3.5. Sample Architecture

dialogue controller

generation

natural language

module

natural language output

natural language

natural language input

of natural language input

logic expression capturing meaning

logic expression capturing meaning

of natural language output

logic query

results

dialogue control
rules to reason

about the world

database holding

data about the world

reasoning about

the world module

module

interpretation

current state

of discourse

rules

Contents First Last Prev Next J

3.6. Computational Approaches

From Fernandez and Endriss (2007)

I Conventional Approach focused on public and conventional aspects of com-
munication. A dialogue is seen as a conversational scoreboard that keeps track
of the state of the conversation.

I Plan Based Approach This approach is also known as mentalistic approach.
Attention is focused on the mental attitudes such as knowledge, belief, desire
and intention. The most well known framework based on this is BDI (Cohen
and Levesque 1990).

Contents First Last Prev Next J

3.7. Conventional Approach

I The main idea is that each participant’s contribution determines a set of pre-
ferred options for follow-up in the dialogue.

I A few standard interaction patterns are identified, viz. Questions are usually
followed by answers and proposals are usually either accepted, rejected or coun-
tered.

I Hence, protocols can be seen as formal constructs modelling the public conven-
tions behind these interaction patterns.

I Conventional protocols are used in multiagent systems to characterize coherent
interaction between software agents. In this case, protocols describe the set of
allowed or legal dialogue continuations.

I In natural language dialogues, protocols characterize the range of preferred or
less-marked follow-ups in particular dialogue situations. The violation of a
protocol can also be informative, as it can be seen as signalling a topic or task
change (topic shift).

Contents First Last Prev Next J

3.8. Protocols as Finite State Automata

Deterministic Finite State Automata (DFA) have been used to represent communi-
cation protocols.

Continuous update protocol specifies a class of dialogues between two agents A and
B where A continuously updates B on the value of some proposition.

Contents First Last Prev Next J

 A: inform(c) B: acknowledge

 A: inform(c)
B:end A:end

0 1 2

 3 4

Contents First Last Prev Next J

Definition for DFA-based protocol A DFA-base protocol is a quintuple 〈Q, q0, F,L, δ〉
consisting of finite set of dialogue states Q, including an initial state q0 ∈ Q and a
set of final states F ⊆ Q, a communication language L, and a transition function
δ : Q× L → Q.

The elements of the communication language L are utterances and are constructed
from a finite set A of agents (or dialogue participants), a finite set M of dialogues
moves (or illocutory acts) , and a content language C. We assume that every utter-
ance has the structure i : m(c) with i ∈ A,m ∈ M and c ∈ C. We consider only
two participants dialogues, hence A = {A,B}

Contents First Last Prev Next J

3.8.1. Failure of simple DFA-protocols In natural language dialogue it’s
not uncommon to find embedded pairs of questions and answers (particularly in
information oriented interaction). Eg.

(1) A: Who should we invite? [Q1]
(2) B: Should we invite Bill? [Q2]
(3) A: Which Bill? [Q3]
(3) A: Jack’s brother. [A3]
(3) A: Oh, yes. [A2]
(3) A: Ok, the we should invite Gill as well. [A3]

Replying to a question with another question (2) and asking for clarification (3) are
very common phenomena in natural language dialogue.

Simple DFA-protocols as in Definition 1 fails to model these kinds of dialogues.

To overcome these limitations we can provide DFA-protocols with memory. But
first let’s look at a definition of “follow-up” utterance.

Contents First Last Prev Next J

3.8.2. Follow-up

Definition 2: Possible follow-up Given the current dialogue state q, an utterance u
constitutes a possible follow-up of the dialogue iff there exists a state q′ ∈ Q such
that δ(q, u) = q′ holds.

Before a dialogue start we are in the initial state q0. The dialogue state then gets
updated whenever an utterance is performed, following the transition function δ. A
complete dialogue conforms to a given protocol iff it is accepted by the DFA, i.e. iff
each utterance is the dialogue is a possible follow-up and the final utterance leads
to a final state in F .

Contents First Last Prev Next J

3.8.3. Protocol with memory Unlimited memory could be added by “abstract
data type” (ADTs) such as “stack’s”, queues, sets or lists.

Every ADT comes with a set of basic operations, e.g. stacks come with push(x),
pop and top.

Definition 3: protocols with memory A protocol with memory based on a given
ADT is a sextuple (Q, q0, F,L,L′, δ) consisting of a finite set of dialogues states
Q, including an initial state q0 and a set of final states F ⊆ Q, a communication
language L, a memory alphabet L′, and a transition function δ : Q×Γ×L → Q×Γ,
where Γ denotes the set of all possible configurations of the memory component.

Definition 4: possible follow-up Given the current dialogue state q and the current
configuration of the memory component x, an utterance u constitutes a possible
follow-up of the dialogue iff there exists a state q′ ∈ Q and a configuration x′ ∈ Γ
such that δ(q, x, u) = (q′, x′).

A complete dialogue conforms to a given protocols with memory iff it is accepted
by the automaton in question.

Contents First Last Prev Next J

3.8.4. Protocols with stacks A stack allows us to store arbitrarily large amounts
of information that are accessible in a last-in-first-out (LIFO) manner.

Such information can be manipulated by means of the function top, which returns
the top element on the stack, and the operation push(x), which pushes element x
onto the stack, and pop, which removes the top element from the stack.

Example: QUD Questions under discussion (Ginzburg 1996, 2007): the last question
asked is the more salient question under-discussions which will be the first one to
be answered. This can be modeled by a stack.

Contents First Last Prev Next J

3.8.5. Failure of protocols with stacks

(1) A: Where were you on the 15th? [Q1]
(2) A: Do you remember talking to anyone after the incident? [Q2]
(3) B: I didn’t talk to anyone [A2]
(4) B: I was at home [A1]

(3’) B: I was at home [A1]
(4’) B: I didn’t talk to anyone [A2]

The questions under discussion could be answered in any order, they are in what has
been called a “coordinate structure” (Asher 1998). When this is the case, a protocol
based on a DFA plus a stack would not be appropriate to handle this phenomenon.

Protocols with stacks of sets This can be modelled by using a DFA together with a
finite stack of sets.

Contents First Last Prev Next J

3.8.6. Failure of protocols with stacks When successive questions are asked
by a single speaker, the DFA-protocols with stacks fails.

(1) A: Who will you be inviting? [Q1]
(2) A: And why? [Q2]
(3) B: Mary and Bill, I guess [A1]
(4) A: Aha [Ack]
(5) B: Yeah, (because) they are very undemanding folks [A2]

The first question asked seem to take precedence over the last one –only after the
first question is answered does the second question get addresses. This suggest that
the order in the QUD is not determined solely by conventional means, but is also
guided by semantic relation that may hold between its elements.

Ginzubrg (2007) identifies differences in terms of the relation that are said to hold
between the questions: coordination in case questions can be answered in any order,
and query extension in case they are more naturally answered in the order in which
they have been posed.

To account for this, complex relations between the elements of the content language
C would have to be encoded as part of the definition of the transition function δ.

Contents First Last Prev Next J

3.9. Summary: Expressive power

1. DFA with a stack corresponds to a push-down automaton. Hence, we can claim
that the class of dialogues conforming to protocols with a stack strictly
includes the class of dialogues conforming to DFA-based protocols.

2. DFA enriched with a stack of sets is not more expressing that that of a push-
down automaton (with a simple stack). Hence, we can claim that the class
of dialogues conforming to protocols with a stack is the same as the
class of dialogues conforming to protocols with a stack of sets.

3. Adding a set to a DFA does in fact not increase the expressive power, because
the range of all possible configuration of the set component could be encoded
into a larger DFA. Hence, we can conclude that the class of dialogues con-
forming to DFA-based protocols is the same as the class of dialogues
conforming to protocols with a set.

Contents First Last Prev Next J

Abstract Models Examples
Shallow rules simple communication protocols

(Endriss et al. 2003)
DFA finite state model of grounding

(Traum, 1994)
DFA + set (=DFA) commonly accepted facts

(Ginzburg, 1996)
DFA + stack (=pushdown automata) simplified questions under discussion

(Ginzburg, 1996)
DFA+stack of sets (=pushdown automata) questions under discussion

(Ginzburg, 1996)
DFA+list (=Turing machine) explicit representation of dialogue history

Contents First Last Prev Next J

3.10. Online Demo

DORIS http://www.coli.uni-saarland.de/ bos/doris/

Contents First Last Prev Next J

h

4. Conclusion

Do you want to know more about the topic?

See Allen or Jurafsky’s textbooks.

Come to today LCT Colloquium on “ From Natural Language to Databases via
Ontologies” Leonardo Lesmo. (17:00-18:00, Seminar Room)

Next LCT colloquia on the 24th and 28th of May are on this topic.

No KBDB (David Toman) class this morning!

Contents First Last Prev Next J

	Human-Computer Interaction via Natural Language
	Natural Language Interfaces to Data Bases
	Advantages & Disadvantages
	Experiments
	Linguistic problems
	Architecture
	Parsers: query analysis
	Sample architecture
	Which approach
	Response generation
	Restricted NL input
	NLIDBs as intelligent agents
	ACE: Attempto Control Natural Language
	Online Demos

	Dialogue System
	Practical Dialogues
	Practical Dialogues Complexity
	Example
	Observations
	Sample Architecture
	Computational Approaches
	Conventional Approach
	Protocols as Finite State Automata
	Failure of simple DFA-protocols
	Follow-up
	Protocol with memory
	Protocols with stacks
	Failure of protocols with stacks
	Failure of protocols with stacks

	Summary: Expressive power

	Conclusion

