
Free University of Bozen-Bolzano Faculty of Computer Science

R. Bernardi (teacher)

Assignment: Computational Linguistics
13/01/05

NAME:
STUDENT NUMBER:
COURSE:
YEAR:
SIGNATURE:

Assignment marking overview

Note, if you have attended the LCT colloquia you can skip the first exercise.

Marks will follow the distribution below.

[Exercise 1: 10 marks]
Exercise 2: 4 marks
Exercise 3: 13 marks
Exercise 4: 13 marks
Total: 30 marks/ [40 marks]

Note, it is required to write down the answers in a very precise way, and in all formal details. Please, attach
this cover sheet to your answers.

1



1) General [10 Marks]

(At the exam, here there will be general questions on any of the topic discussed in class, for which you might
be asked to give a short description of the topic itself, the main challenges and techniques, and express your
opinion on what you have learned about it.)

2) Morphology [4 Marks]

In English, any verb ending in -ize can be followed by the nominalizing suffixes -ation or -er. E.g. fossilize,
fossilization. Note that the root of the verb is itself a noun (fossil). Similarly, from other nouns one can derive
adjectives and adverbs by adding first -ful and then -ly.

Build a Finite State Automata to model this fragment of English derivational morphology.

3) Syntax [13 Marks]

This exercise focus on the different ways verbs may subcategorize. (a) Give a CFG able to recognize the
sentences below as grammatical and the ones marked with by * as ungrammatical.

1. I disappeared

2. I prefer a pizza

3. I gave you a pizza

4. You said I disappeared

5. He told me I disappeared

6. I want to leave

7. I left on Thursday

8. I left Boston in the morning

9. I traveled from Boston to New York

10. *You said me john left

11. *I disappear Boston

12. *I prefer

13. *I gave you

14. *I gave you on Thursday

15. *I gave from Boston to New York

(b) Build the syntactic tree for each of them following the CFG rules you have found.

2



4) Semantics [13 Marks]

(a) Give the lexical terms marked by their types for the words in the sentences below and (b) use the lambda-
calculus to build compositionally the meaning representation of the following sentences.

1. I disappeared

2. I prefer a pizza

3. I gave you a pizza

4. You said I disappeared

5. Every student disappeared

6. Every student passed an exam

1 Solutions

1.1 Exercise 1

1.2 Exercise 2

s --> np vp
np --> det n
np --> pn
vp --> iv
vp --> tv np
vp --> dtv np np
vp --> vs s
vp --> vns np s
vp --> vi inf
inf --> pt i
vp --> iv np pp
vp --> iv pp
ppt --> pto inf
vp --> iv’ pp’ pp’
pp --> p np

iv --> disappeared
iv --> left
tv --> prefer
dtv --> gave
vs --> said
vns --> told
vi --> want
iv’ --> traveled
i --> leave
pt --> to
pn --> I

3



(b)

1. [[[I]pn]np[[disappeared]iv]vp]s

2. [[[I]pn]np[[prefer]tv[[a]det[pizza]n]np]vp]s

3. [[[I]pn]np[[gave]dtv[you]np[[a]det[pizza]n]np]vp]s

4. [[[Y ou]pn]np[[said]vs[[[I]pn]np[disappeared]iv]vp]s]s

5. [[[I]pn]np[[told]vns[[me]pn]np[[I]np[disappeared]iv]vp]s]s

6. [[[I]pn]np[[want]vi[[to]pt[leave]i]inf ]vp]s

7. [[[I]pn]np[[left]iv[[on]p[Thursday]np]pp]vp]s

8. [[[I]pn]np[[left]iv[Boston]np[[in]p[[the]det[morning]n]np]pp]vp]s

9. [[[I]pn]np[[traveled]iv′ [[from]p[Boston]np]pp[[to]p[NewY ork]np]pp′ ]vp]s

10. *You said me john left

11. *I disappear Boston

12. *I prefer

13. *I gave you

14. *I gave you on Thursday

15. *I gave from Boston to New York

Note, this grammar will generate trees which are no-binary (e.g. 3.)

1.3 Exercise 4

(a) Lexical terms:

I := i
you := y
student := λx.Student(x)
pizza := λx.Pizza(x)
exam := λx.Exam(x)
disappear := λx.Disappear(x)
prefer := λx.λy.Prefer(y, x)
prefer := λx.λy.Passed(y, x)
gave := λz.λx.λy.Student(y, x, z)
an/a := λX.λY.∃x.X(x) ∧ Y (x)
every := λX.λY.∀x.X(x) → Y (x)

(b)

1. Disappear(i)

2. ∃x.Pizza(x) ∧ Prefer(i, x)

3. ∃x.Pizza(x) ∧ Gave(i, x, y)

4. Said(y, Disappear(i))

5. ∀x.Student(x) → Disappear(x)

6. ∀x.Student(x) → ∃z.Exam(z) ∧ Passed(x, z)

4



7. ∃z.Exam(z) → ∀x.Student(x) ∧ Passed(x, z)

I give the solution of the last sentence by means of example (the others are easier). (Note, I skip some steps,
you have to write down all of them)

(6a)

• an exam: λY.∃x.Exam(x) ∧ Y (x)

• Every student: λY.∀x.Student(x) → Y (x)

• u passed y′: Passed(u, y′)

• u passed: λy′.Passed(u, y′)

• u passed an exam: ∃x.Exam(x) ∧ Passed(u, x)

• passed an exam: λu.∃x.Exam(x) ∧ Passed(u, x)

• Every student passed an exam: ∀x.Student(x) → ∃z.Passed(x, z)

(6b)

• an exam: λY.∃x.Exam(x) ∧ Y (x)

• every student: λY.∀x.Student(x) → Y (x)

• passed u: λy.Passed(y, u)

• every student passed u: ∀x.Student(x) ∧ Passed(x, u)

• every student passed: λu.∀x.Student(x) ∧ Passed(x, u)

• Every student passed an exam: ∃z.Exam(z) ∧ ∀x.Student(x) → Passed(x, z)

5


