Free University of Bozen-Bolzano Faculty of Computer Science R. Bernardi (teacher)

Assignment: Computational Linguistics

13/01/05

NAME:
STUDENT NUMBER:
COURSE:
YEAR:
SIGNATURE:

Assignment marking overview

Note, if you have attended the LCT colloquia you can skip the first exercise.
Marks will follow the distribution below.
[Exercise 1: 10 marks]
Exercise 2: 4 marks
Exercise 3: 13 marks
Exercise 4: 13 marks
Total: 30 marks/ [40 marks]

Note, it is required to write down the answers in a very precise way, and in all formal details. Please, attach this cover sheet to your answers.

1) General [10 Marks]
(At the exam, here there will be general questions on any of the topic discussed in class, for which you might be asked to give a short description of the topic itself, the main challenges and techniques, and express your opinion on what you have learned about it.)
2) Morphology [4 Marks]

In English, any verb ending in -ize can be followed by the nominalizing suffixes -ation or -er. E.g. fossilize, fossilization. Note that the root of the verb is itself a noun (fossil). Similarly, from other nouns one can derive adjectives and adverbs by adding first -ful and then -ly.

Build a Finite State Automata to model this fragment of English derivational morphology.

3) Syntax [13 Marks]

This exercise focus on the different ways verbs may subcategorize. (a) Give a CFG able to recognize the sentences below as grammatical and the ones marked with by * as ungrammatical.

1. I disappeared
2. I prefer a pizza
3. I gave you a pizza
4. You said I disappeared
5. He told me I disappeared
6. I want to leave
7. I left on Thursday
8. I left Boston in the morning
9. I traveled from Boston to New York
10. *You said me john left
11. *I disappear Boston
12. ${ }^{*}$ I prefer
13. *I gave you
14. *I gave you on Thursday
15. *I gave from Boston to New York
(b) Build the syntactic tree for each of them following the CFG rules you have found.
4) Semantics [13 Marks]
(a) Give the lexical terms marked by their types for the words in the sentences below and (b) use the lambdacalculus to build compositionally the meaning representation of the following sentences.
1. I disappeared
2. I prefer a pizza
3. I gave you a pizza
4. You said I disappeared
5. Every student disappeared
6. Every student passed an exam

1 Solutions

1.1 Exercise 1

1.2 Exercise 2

```
s --> np vp
np --> det n
np --> pn
vp --> iv
vp --> tv np
vp --> dtv np np
vp --> vs s
vp --> vns np s
vp --> vi inf
inf --> pt i
vp --> iv np pp
vp --> iv pp
ppt --> pto inf
vp --> iv' pp' pp'
pp --> p np
iv --> disappeared
iv --> left
tv --> prefer
dtv --> gave
vs --> said
vns --> told
vi --> want
iv' --> traveled
i --> leave
pt --> to
pn --> I
```

(b)

1. $\left[\left[[I]_{p n}\right]_{n p}\left[[\text { disappeared }]_{i v}\right]_{v p}\right]_{s}$
2. $\left[\left[[I]_{p n}\right]_{n p}\left[[\text { prefer }]_{t v}\left[[a]_{d e t}[p i z z a]_{n}\right]_{n p}\right]_{v p}\right]_{s}$
3. $\left[\left[[I]_{p n}\right]_{n p}\left[[\text { gave }]_{d t v}[y o u]_{n p}\left[[a]_{d e t}[p i z z a]_{n}\right]_{n p}\right]_{v p}\right]_{s}$
4. $\left[\left[[\text { You }]_{p n}\right]_{n p}\left[[\text { said }]_{v s}\left[\left[[I]_{p n}\right]_{n p}[\text { disappeared }]_{i v}\right]_{v p}\right]_{s}\right]_{s}$
5. $\left[\left[[I]_{p n}\right]_{n p}\left[[t o l d]_{v n s}\left[[m e]_{p n}\right]_{n p}\left[[I]_{n p}[\text { disappeared }]_{i v}\right]_{v p}\right]_{s}\right]_{s}$
6. $\left[\left[[I]_{p n}\right]_{n p}\left[[\text { want }]_{v i}\left[[t o]_{p t}[\text { leave }]_{i}\right]_{\text {inf }}\right]_{v p}\right]_{s}$
7. $\left[\left[[I]_{p n}\right]_{n p}\left[[\text { left }]_{i v}\left[[\text { on }]_{p}[\text { Thursday }]_{n p}\right]_{p p}\right]_{v p}\right]_{s}$
8. $\left[\left[[I]_{p n}\right]_{n p}\left[[\text { left }]_{i v}[\text { Boston }]_{n p}\left[[\text { in }]_{p}\left[[\text { the }]_{\text {det }}[\text { morning }]_{n}\right]_{n p}\right]_{p p}\right]_{v p}\right]_{s}$
9. $\left[\left[[I]_{p n}\right]_{n p}\left[[\text { traveled }]_{i v^{\prime}}\left[[\text { from }]_{p}[\text { Boston }]_{n p}\right]_{p p}\left[[\text { to }]_{p}[\text { NewYork }]_{n p}\right]_{p p^{\prime}}\right]_{v p}\right]_{s}$
10. *You said me john left
11. *I disappear Boston
12. ${ }^{*}$ I prefer
13. ${ }^{*}$ I gave you
14. *I gave you on Thursday
15. *I gave from Boston to New York

Note, this grammar will generate trees which are no-binary (e.g. 3.)

1.3 Exercise 4

(a) Lexical terms:

```
I := i
you := y
student := \lambdax.Student(x)
pizza }:=\quad\lambdax.Pizza(x
exam := \lambdax.Exam (x)
disappear := \lambdax.Disappear (x)
prefer := \lambdax.\lambday.Prefer (y,x)
prefer := \lambdax.\lambday.Passed (y,x)
gave := \lambdaz.\lambdax.\lambday.Student (y,x,z)
an/a}\quad:= \lambdaX.\lambdaY.\existsx.X(x)\wedgeY(x
every := \lambdaX.\lambdaY.\forallx.X(x) }\quad:Y(x
```

(b)

1. Disappear(i)
2. $\exists x \cdot \operatorname{Pizza}(x) \wedge \operatorname{Prefer}(i, x)$
3. $\exists x \cdot \operatorname{Pizza}(x) \wedge \operatorname{Gave}(\mathrm{i}, x, \mathrm{y})$
4. Said(y, Disappear(i))
5. $\forall x$.Student $(x) \rightarrow$ Disappear (x)
6. $\forall x \cdot \operatorname{Student}(x) \rightarrow \exists z \cdot \operatorname{Exam}(z) \wedge \operatorname{Passed}(x, z)$

7. $\exists z \cdot \operatorname{Exam}(z) \rightarrow \forall x \cdot \operatorname{Student}(x) \wedge \operatorname{Passed}(x, z)$

I give the solution of the last sentence by means of example (the others are easier). (Note, I skip some steps, you have to write down all of them)
(6a)

- an exam: $\lambda Y \cdot \exists x \cdot \operatorname{Exam}(x) \wedge Y(x)$
- Every student: $\lambda Y . \forall x$.Student $(x) \rightarrow Y(x)$
- u passed $y^{\prime}: \operatorname{Passed}\left(u, y^{\prime}\right)$
- u passed: $\lambda y^{\prime} . \operatorname{Passed}\left(u, y^{\prime}\right)$
- u passed an exam: $\exists x \cdot \operatorname{Exam}(x) \wedge \operatorname{Passed}(u, x)$
- passed an exam: $\lambda u \cdot \exists x \cdot \operatorname{Exam}(x) \wedge \operatorname{Passed}(u, x)$
- Every student passed an exam: $\forall x . \operatorname{Student}(x) \rightarrow \exists z . \operatorname{Passed}(x, z)$
(6b)
- an exam: $\lambda Y \cdot \exists x \cdot \operatorname{Exam}(x) \wedge Y(x)$
- every student: $\lambda Y . \forall x$.Student $(x) \rightarrow Y(x)$
- passed $u: \lambda y \cdot \operatorname{Passed}(y, u)$
- every student passed u : $\forall x \cdot \operatorname{Student}(x) \wedge \operatorname{Passed}(x, u)$
- every student passed: $\lambda u . \forall x . \operatorname{Student}(x) \wedge \operatorname{Passed}(x, u)$
- Every student passed an exam: $\exists z \cdot \operatorname{Exam}(z) \wedge \forall x \cdot \operatorname{Student}(x) \rightarrow \operatorname{Passed}(x, z)$

