
Computational Linguistics:
Long-Distance Dependencies

Raffaella Bernardi
KRDB, Free University of Bozen-Bolzano

P.zza Domenicani, Room: 2.28, e-mail: bernardi@inf.unibz.it

Contents First Last Prev Next J

Contents

1 Summary. 4
2 Long-Distance Dependencies . 5

2.1 Unbounded Dependencies . 6
2.2 Kinds of long-distance dependencies 7
2.3 Strong unbounded dependencies . 8
2.4 Multiple extractions . 8
2.5 Island constraints . 9
2.6 Parasitic gaps . 10

3 Long Distance Phenomena in CFG . 11
4 Trasformational Grammar . 12

4.1 Trasformational Grammar: Parse Tree 13
4.2 Trasformational Grammars: Relative Clause 14

5 Non-Transformational Approaches . 15
5.1 A first solution . 16
5.2 Gap as features: NP rules . 17
5.3 Gap as features: Empty String . 18
5.4 Gap as Feature: S rule . 19

Contents First Last Prev Next J

5.5 Gap as Feature: VP rule . 20
5.6 Gap as Feature: Rel rules . 21
5.7 Lexicon . 22
5.8 Gap as features: Extension . 23
5.9 Gap as features: Multiple Extractions 24
5.10 Gap as features: PP rules . 25
5.11 Gap as features: VP rules . 26
5.12 Gap as features: VP rules (Cont’d) . 27
5.13 Is not a good grammar . 28
5.14 Practical Disadvantages . 29

6 Conclusion . 30

Contents First Last Prev Next J

1. Summary

In the first lesson after the Winter break, we summarized the first part of the course
and we saw that there were still some questions left open.

I Syntax:

1. Is NL a Context Free Language or do we need a more expressive Formal
Grammar?

2. Can CFG deal with long-distance dependencies?

I How do syntax and semantics relate?

We have answered the last question in the last two lessons.

Next week, we will answer question 1; now we look at long-distance dependencies
in more detail and give an answer to 2.

Contents First Last Prev Next J

2. Long-Distance Dependencies

We have seen that interdependent constituents need not be juxtaposed, but may
form long-distance dependencies, manifested by gaps

I Raynair services Pescara.

I What cities does Ryanair service [. . .]?

The constituent what cities depends on the verb service, but it is at the front of the
sentence rather than at the object position.

The displaced element is called the filler and the initial position is known as gap.

Contents First Last Prev Next J

2.1. Unbounded Dependencies

These dependencies may extend across arbitrarily many clause boundaries, therefore
they are also known as unbounded dependencies.

I wonder who [Sandy loves [. . .]]s

Kim, [Chris knows Sandy trusts [. . .]]s

Furthermore, in same cases the filler and the gap must agree on the case (as
above), others in which they don’t

Kim would be easy to bribe [. . .]

Finally, there are also phenomena of double gaps

1. That was the rebel leader who rivals of [. . .] shot [. . .].

2. This is a problem which1 John2 is difficult to talk to [. . .]2 about [. . .]1.

Contents First Last Prev Next J

2.2. Kinds of long-distance dependencies

1. Kim1, Sandy loves [. . .]1. (topicalization)

2. Who1 does Sandy loves [. . .]1? (wh-question)

3. This is the politician [who1 Sandy loves [. . .]1] (wh-rel. clause)

4. It’s Kim [who1 Sandy loves [. . .]1]. (it-cleft)

5. [What1 Kim loves [. . .]1] is Sandy. (pseudocleft)

6. I bought it1 for Sandy to eat [. . .]1. (purpose infinitive)

7. Sandy1 is hard to love [. . .]1 (tough movement)

8. This is the politician1 [Sandy loves [. . .]1] (relative clause)

The first five cases are known as strong unbounded dependencies, to indicate
that they require the filler and the gap to be of the same syntactic category.

Contents First Last Prev Next J

2.3. Strong unbounded dependencies

1. Kim1, Dana believes Chris knows Sandy trusts [. . .]1

2. [On Kim]1, Dana believes Chris knows Sandy depends [. . .]1.

3. *[On kim]1, Dana believes Chris knows Sandy trusts [. . .]1.

2.4. Multiple extractions

Multiple extractions like below are ungrammatical:

I The witch gave the house-elf to Harry.

I The house-elf which the witch gave [. . .] to Harry . . .

I The student who the witch gave the house-elf to [. . .] . . .

I *The house-elf who the witch gave [. . .] to [. . .] . . .

Contents First Last Prev Next J

2.5. Island constraints

Although there is no bound on the distance between fillers and gaps, there are
a number of constraints about the relative position in which filler and their
corresponding gaps may appear. These are known as “island constraints” following
Ross 1967. E.g.

I The gap may not be in a relative clause if the filler is outside of it

*Which dog did you criticize the person [who kicked [. . .]]?

I A gap cannot be in coordinate conjoined structures not containing its
filler, unless all conjunctions have gaps by the same filler:

1. *What did they buy [[. . .] and forget their credit card at the store]?

2. What did they buy [[. . .] and forget [. . .] at the store?]

A great deal of research (in Linguistics!) has gone into these sorts of constraints.
Computational Linguistics should take profit of their understanding of these phe-
nomena when formalizing NL.

Contents First Last Prev Next J

2.6. Parasitic gaps

It can happen that two or more traces in the same sentence are bound by the same
filler.

That was the rebel leader who1 rivals of [. . .]1 shot [. . .]1.

The examples below show that the parasitic gap is the first one, which would cause
ungrammaticality if left alone (1), differently from the second gap (2)

1. *That was the rebel leader who rivals of [. . .] shot the British consul.

2. That was the rebel leader who agents of foreign powers shot [. . .].

Contents First Last Prev Next J

3. Long Distance Phenomena in CFG

Recall from lecture 2, that Context free rules work locally. For example, the rule

s→ np vp

tells us how an s can be decomposed into two parts, an np and a vp.

But we have seen that certain aspects of natural language seem to work in a non-
local, long-distance way.

Indeed, for a long time it was thought that such phenomena meant that grammar-
based analyses had to be replaced by very powerful new mechanisms (such as the
transformations used in transformational grammar).

Contents First Last Prev Next J

4. Trasformational Grammar

The traditional explanation basically goes like this. We have the following sentence:

Harry likes the witch

We can think of the np with the object relative clause as follows.

| |

the witch who Harry likes GAP(np)

That is, we have

1. extracted the np “the witch” from the object position, leaving behind an np-
gap,

2. moved it to the front, and

3. placed the relative pronoun “who” between it and the gap-containing sentence.

Contents First Last Prev Next J

4.1. Trasformational Grammar: Parse Tree

np

/ \

/ rel

/ / \

/ / s

/ / / \

np / / vp

/ \ / / / \

det n prel_1 np tv np

| | | | | |

the witch who Harry likes gap_1

| |

Contents First Last Prev Next J

4.2. Trasformational Grammars: Relative Clause

Recall: Relative clauses are an example of unbounded dependencies.

The word ‘dependency’ indicates that the moved np is linked, or depends on, its
original position.

The word ‘unbounded’ is there because this “extracting and moving” operation
can take place across arbitrary amounts of material. For example, from

--

| |

a witch, who a witch who Harry likes, likes GAP(np)

This way of thinking is reflected in Trasformational Grammar by means of the
movement operation that leaves a trace in the position from where the move
started.

Contents First Last Prev Next J

5. Non-Transformational Approaches

CTL and DCG can analyze the phenomena introduced above without making use
of the (computational expensive!!!) movement operation.

Projects A) People with strong Logic background (eg. Magdalena) could study how
CTL can be used to analyze long-distance phenomena. (Ref. to Moortgat 02)

B) People with knowledge of PROLOG (eg. Mantas and Linas) could implement in
PROLOG a DCG able to parse (at least some of) the sentences above. (Ref. to
Pereira 00)

Critiques Long-Distance phenomena are interesting also from a Psycolinguistics point
of view. Linas is going to read about it.

We will now look at a first solution in DCG.

Contents First Last Prev Next J

5.1. A first solution

Gerald Gazdar in ’81 introduced an alternative analysis which does not make use of
the complex mechanism of transformations.

He proposes an approach that doesn’t talk about moving bits of sentences round. He
just talks about missing information, and says which kind of information needs
to be shared with the other category.

The link with the movement story will be clear: but the new information-based
story is simpler, clearer and more precise.

Contents First Last Prev Next J

5.2. Gap as features: NP rules

Let’s first look at the NP rules:

i. np(nogap) --> det n.
ii. np(nogap) --> det n rel.
iii. np(nogap) --> pn.
iv. np(nogap) --> pn rel.
v. np(gap(np)) --> [].

The first four rules say that an English NP can consist of:

i. a determiner and a noun (for example: “a witch”), or
ii. a determiner and a noun followed by a relative clause (for example: “a witch who likes

Harry”), or
iii. a proper name (for example: “Harry”), or
iv. a proper name followed by a relative clause (for example: “Harry, who likes a house-

elf”).

All these NPs are ‘complete’ or ‘ordinary’ NPs. Nothing is missing from them. That
is why the extra argument on NP contains the value nogap.

Contents First Last Prev Next J

5.3. Gap as features: Empty String

What about the fifth rule?

v. np(gap(np)) --> [].

This tells us that an NP can also be realized as an empty string — that is, as
nothing at all. Obviously, this is a special rule: it’s the one that lets us introduce
gaps. It says:

we are free to use ‘empty’ NPs, but such NPs have to be marked by a
feature which says that they are special.

Hence in this rule, the value of the extra argument is gap(np). This tells us that we
are dealing with a special NP — one in which the usual NP information is absent.

Contents First Last Prev Next J

5.4. Gap as Feature: S rule

Now for the S rule.

s(Gap) --> np(nogap) vp(Gap).

This rule says that an S consists of an NP and a VP.

I No empty subject Note that the NP must have the feature nogap. This
simply records the fact that in English the NP in subject position cannot
be realized by the empty string (in some languages, for example Italian,
this is possible in some circumstances).

I Feature Passing Moreover, note that the value of the Gap variable carried
by the VP (which will be either nogap or gap(np), depending on whether the
VP contains empty NPs) is unified with the value of the Gap variable on the
S. That is, we have here an example of feature passing: the record of the
missing information in the verb phrase (if any) is passed up to the sentential
level, so that we have a record of exactly which information is missing in the
sentence.

Contents First Last Prev Next J

5.5. Gap as Feature: VP rule

The VP rule is

vp(Gap) --> tv np(Gap).

This rule says that a VP can consist of an ordinary transitive verb together with an
NP.

Note that this rule also performs feature passing: it passes the value of Gap
variable up from the NP to the VP. So the VP will know whether the NP carries
the value nogap or the value gap(np).

Contents First Last Prev Next J

5.6. Gap as Feature: Rel rules

Now for the relativization rules:

1. rel --> prorel s(gap(np)).
2. rel --> prorel vp(nogap).

1. The first rule deals with relativization in object position — for example, the
clause “who Harry likes” in “The witch who Harry likes”.

The clause “who Harry likes” is made up of the relative pronoun “who” (that is,
a prorel) followed by “Harry likes”. What is “Harry likes”? It’s a sentence that is
missing its object NP — that is, it is a s(gap(np)), which is precisely what the first
relativization rule demands.

2. The second rule deals with relativization in subject position — for example, the
clause “who likes the witch” in “Harry, who likes the witch”.

The clause “who likes the witch” is made up of the relative pronoun “who” (that is,
a prorel) followed by “likes the witch”. What is “likes the witch”? Just an ordinary
VP — that is to say, a vp(nogap) just as the second relativization rule demands.

Contents First Last Prev Next J

5.7. Lexicon

And that’s basically it. We only have to add a few lexical rules and we’re ready to
go. Here’s some lexicon:

n --> [house-elf].

n --> [witch].

pn --> [harry].

det -->[a].

det -->[the].

tv --> [likes].

tv --> [watches].

prorel --> [who].

Contents First Last Prev Next J

5.8. Gap as features: Extension

Let’s try to extend the tiny fragment with verbs such as “give” which subcategorize
for an NP followed by a PP.

Consider the following sentence:

“The witch gave the house-elf to Harry”.

We can relativize the NP argument of “give” (that is, the NP “the house-elf”) to
form:

“the house-elf who the witch gave [. . .] to Harry”.

Moreover, we can also relativize the NP that occurs in the PP “to Harry”. That is,
we can take “Harry” out of this position, leaving the “to”, behind to form:

“Harry, who the witch gave the house-elf to [. . .]”.

We would like our DCG to handle such examples.

Contents First Last Prev Next J

5.9. Gap as features: Multiple Extractions

But note — there are also some things that the DCG should not do, namely perform
multiple extraction. There are now two possible NPs that can be moved: the
first argument NP, and the NP in the PP. Can both be moved at once? In some
languages, yes. In English, no. That is, in English

“*The house-elf who the witch gave”,

is not an NP.

So when we write our DCG, not only we have to make sure we generate the NPs
we want, we also have to make sure that we don’t build NPs using multiple
extraction.

Now, we can develop our previous DCG to do this — but the result is not something
a linguist (or indeed, a computational linguist) should be proud of. Let’s take a closer
look.

Contents First Last Prev Next J

5.10. Gap as features: PP rules

First of all, we need a bit more lexicon: we’ll add the verb “gave” and the preposition
“to”:

datv --> [gave].

p --> [to].

As we are going to need to build prepositional phrases, we need a rule to build them.

The rule has to say that a prepositional phrase can be built out of a preposition
followed by an NP.

Moreover, we have to use the extra argument to pass up the value of the Gap feature
from the NP to the PP. So the PP will know whether the NP is ordinary one, or a
gap.

pp(Gap) --> p np(Gap).

Contents First Last Prev Next J

5.11. Gap as features: VP rules

Now comes the crucial part: the new VP rules. We need to allow single extractions,
and to rule out double extractions. Here’s how this can be done — and this is the
part linguists won’t like:

vp(Gap) --> datv np(nogap),pp(Gap).

vp(Gap) --> datv np(Gap),pp(nogap).

We have added two VP rules.

1. The first rule insists that the NP argument be gap-free, but allows the possi-
bility of a gap in the PP.

2. The second rule does the reverse: the NP may contain a gap, but the PP may
not.

Contents First Last Prev Next J

5.12. Gap as features: VP rules (Cont’d)

Either way, at least one of the VPs two arguments must be gap-free, so multiple
extractions are ruled out.

Now, this does work since it generates the grammatical sentences we saw, and
moreover, it refuses to accept multiple extractions.

So why would a linguist not approve of this DCG?

Contents First Last Prev Next J

5.13. Is not a good grammar

Because we are handling one construction — the formation of VPs using DATV
verbs — with two rules.

The role of syntactical rules is to make a structural claim about the combination
possibilities in our language. Thus there should be one rule for building VPs out of
DATV verbs, for there is only one structural possibility: datv verbs take an NP and
a PP argument, in that order.

We used two rules not because there were two possibilities, but simply to do a bit of
‘feature hacking’: by writing two rules, we found a cheap way to rule out multiple
extractions. But this is a silly way to write a grammar.

As we saw when we discussed the case example (3 lesson), one of the roles of features
is precisely to help us minimize the number of rules we need — so to add extra
rules to control the features is sheer craziness!

Contents First Last Prev Next J

5.14. Practical Disadvantages

There are also practical disadvantages to the use of two roles. For a start, many
unambiguous sentences now receive two analyses. For example,

“The witch gave the house-elf to Harry”

is analyzed two distinct ways.

Such spurious analyses are a real nuisance — natural language is ambiguous
enough anyway. We certainly don’t need to add to our troubles by writing DCGs
in a way that guarantees that we generate too many analyses!

Furthermore, adding extra rules is just not going to work in the long run. As we
add more verb types, we are going to need more and more duplicated rules. The
result will be a mess, and the grammar will be ugly and hard to maintain.
We need a better solution — and there is one.

. . . that Mantas and Linas are going to study and explain to us

;)

Contents First Last Prev Next J

6. Conclusion

Hence, the answer to the question

Can CFG deal with long-distance dependencies?

is YES.

The mechanism is known as Gap Threading and makes use of difference list to obtain
the feature passing.

Next week we will compare some well known Formal Grammars used by currently
used by Computational Linguists and answer the question of:

Is NL a Context Free Language or do we need a more expressive Formal
Grammar?

Remark If you have not done it yet, please let me know by Tuesday which paper
you will review.

Contents First Last Prev Next J

	Summary
	Long-Distance Dependencies
	Unbounded Dependencies
	Kinds of long-distance dependencies
	Strong unbounded dependencies
	Multiple extractions
	Island constraints
	Parasitic gaps

	Long Distance Phenomena in CFG
	Trasformational Grammar
	Trasformational Grammar: Parse Tree
	Trasformational Grammars: Relative Clause

	Non-Transformational Approaches
	A first solution
	Gap as features: NP rules
	Gap as features: Empty String
	Gap as Feature: S rule
	Gap as Feature: VP rule
	Gap as Feature: Rel rules
	Lexicon
	Gap as features: Extension
	Gap as features: Multiple Extractions
	Gap as features: PP rules
	Gap as features: VP rules
	Gap as features: VP rules (Cont'd)
	Is not a good grammar
	Practical Disadvantages

	Conclusion

