Computational Linguistics: Syntax I

RAFFAELLA BERNARDI

KRDB, FREE UNIVERSITY OF BOZEN-BOLZANO

P.zzA DOMENICANI, RoOM: 2.28, E-MAIL: BERNARDIQINF.UNIBZ.IT

Contents First Last Prev Next

SYNBAK « . ettt e e 4

Dependencyo 5
Long-distance Dependencies i, 6
3.1 Relative Pronouns i i, 7
3.2 Coordination 8
Formal Approacheso, 9
Sentence Structures: English..........o L 10
5.1 Exercises 11
Syntax Recognizero 12
6.1 NLs are not RL: Example I 13
6.2 NLs are not RL: Example IT............ 14
FSA for syntactic analysis i, 16
Formal Grammars: Definition..........., 17
8.1 Formal Grammar: Terminology 18
8.2 Derivations. 19
8.3 Formal Languages and FG 20
8.4 FG and Regular Languages 21

Contents First Last Prev Next

<

10
11

12
13
14
15
16
17
18
19
20

21

22

8.5 FSA and RG ..o o 22

Context Free Grammars.t .. 23
CFG: Formal Language 24
CFG: More derivationsouieneineneiniaanann 25
11.1 CFG: Language Generated............., 26
FG for Natural Languages ot 27
PSG: English Toy Fragment............ o ... 29
English Toy Fragment: Strings o, 30
English Toy Fragment: Phrase Structure Trees 31
Extending our grammar i 32
Summing up (I) ... 33
Summing up (IT) ... 34
Overgeneration and Undergeneration 35
Undergenerationo, 37
20.1 Undergeneration (Cont’d)ooviiiina.. 38
Trasformational Grammar 39
21.1 Trasformational Grammars: Relative Clauses........... 40
NeEXt StEPS + vttt e 41

Contents First Last Prev Next

1. Syntax

» Syntax: “setting out things together”, in our case things are words. The
main question addressed here is “How do words compose together to form a
grammatical sentence (s) (or fragments of it)?’

» Constituents: Groups of categories may form a single unit or phrase called
constituents. The main phrases are noun phrases (np), verb phrases (vp),
prepositional phrases (pp). Noun phrases for instance are: “she”; “Michael”;
“Rajeev Goré”; “the house”; “a young two-year child”.

Tests like substitution help decide whether words form constituents.

Another possible test is coordination.

Contents First Last Prev Next <«

2. Dependency

Dependency: Categories are interdependent, for example

Ryanair services [Pescara] Ryanair flies [to Pescara]
*Ryanair services [to Pescaral,, *Ryanair flies [Pescaral,,

the verbs services and flies determine which category can/must be juxtaposed. If
their constraints are not satisfied the structure is ungrammatical.

Contents First Last Prev Next <«

3. Long-distance Dependencies

Interdependent constituents need not be juxtaposed, but may form long-distance
dependencies, manifested by gaps

> does Ryanair service |...|7

The constituent depends on the verb service, but is at the front of the
sentence rather than at the object position.

Such distance can be large,
do you want me to book |...|?
do you want me to have the travel agent book |...|?

do you want me to have the travel agent nearby my office book

Contents First Last Prev Next <«

3.1. Relative Pronouns

Relative Pronoun (eg. who, which): they function as e.g. the subject or object of
the verb embedded in the relative clause (rc),

» [[the [student | .| knows Saral,c|n]np [left]y]s.

» [[the [book | Sara wrote |...|]yc|n]np [is interesting],]s.

Can you think of another relative pronoun?

Contents First Last Prev Next <«

3.2. Coordination

Coordination: Expressions of the same syntactic category can be coordinated
via “and”, “or”, “but” to form more complex phrases of the same category. For
instance, a coordinated verb phrase can consist of two other verb phrases separated
by a conjunction:

» There are no flights [[leaving Denver],, and [arriving in San Franciscol,,).,

The conjuncted expressions belong to traditional constituent classes, vp. However,
we could also have

b

» [[[[want to try to write [...|] and [hope to see produced |...|]] -

Again, the interdependent constituents are disconnected from each other.

Long-distance dependencies are challenging phenomena for formal approaches
to natural language analysis. We will study them after the winter break.

Contents First Last Prev Next <«

4. Formal Approaches

To examine how the syntax of a sentence can be computed, you must consider two
things:

1. The grammar: A formal specification of the structures allowable in the lan-
guage. [Data structures]

2. The parsing technique: The method of analyzing a sentence to determine
its structure according to the grammar. [Algorithm]

Contents First Last Prev Next <«

5. Sentence Structures: English

The structure of a sentences can be represented in several ways, the most common
are the following notations: (i) brackets or (ii) trees. For instance, “John ate the
cat” is a sentence (s) consisting of noun phrase (np) and a verb phrase (vp). The
noun phrase is composed of a verb (v) “ate” and an np, which consists of an article
(art) “the” and a common noun (n) “cat”.

[John,, [ate, [the..+ caty]np|up)s

Give the tree representation of this structure.

Contents First Last Prev Next <«

5.1. Exercises

Now represent in the format you prefer the sentences below:
I like a read shirt

I will leave Boston in the morning.

John saw the man with the telescope.

John thinks someone left.

Contents First Last Prev Next <«

6. Syntax Recognizer

In lecture 1, we have used FSA to recognize/generate natural language morphology,
and in Lab 1 you will do an exercise using FSA to concatenate words, i.e. at the

syntactic level.

We have said that FSA recognize/generate “Regular Languages”. But it has been
shown that at the syntactic level NLs are not regular.

Contents First Last Prev Next <«

6.1. NLs are not RL: Example 1

1. The cat died.

2. The cat the dog chased died.

3. The cat the dog the rat bit chased died.
4. ...

Let, determiner+noun be in the set A : { the cat, the dog, ...}, and the transitive
verbs in B : { chased, bit, ...}. Thus the strings illustrated above are all of the

form:

2™y~ died, where z € A and y € B, which can be proved to be not a RL.

Contents First Last Prev Next <«

6.2. NLs are not RL: Example II

Another evidence was provided by Chomsky in 1956. Let Sy, Sy,S, be declarative
sentences, the following syntactic structures are grammatical English sentences:

» If Sl, then SQ
» Either S5, or S,

» The man who said S5 is arriving today

In each case there is a lexical dependency between one part of each structure and
another. “If” must be followed by “then” “either” must be followed by “or”.

Contents First Last Prev Next <«

Moreover, these sentences can be embedded in English one in another.

If either the man who said S5 is arriving today or the man who said Sj
is arriving tomorrow, then the man who said S is arriving the day after.

Let
if —a
then —a
either — b
or — b

other words — ¢
The sentence above would be represented as abba.
This structure of nested dependencies can be represented more generally by a lan-
guage like zz® with z € {a,b}* and * denoting the reversal of the string z. (Eg.
abbabbabba) We can prove via the Pumping Lemma that this language is not in a
regular language.
Again, this is an example of open and closed balanced parentheses (or nested
dependencies) that are not in RL.

Contents First Last Prev Next <«

7. FSA for syntactic analysis

Finite state methods have been applied to syntactic analysis too. Although they
are not expressive enough if a full syntactic analysis is required, there are many
applications where a partial syntactic analysis of the input is sufficient.

Such partial analyses can be constructed with cascades of finite state automata (or
rather transducers) where one machine is applied to the output of another.

Anyway, in order to deal with syntactic analysis of natural language we need a
more powerful device than FSA (and of their corresponding formal grammars,
namely regular (or right linear) grammar (RG).)

Contents First Last Prev Next <«

8. Formal Grammars: Definition

A Formal Grammar (FG) is a formalism to give a finite representation of a Language.
A Grammar, G, is a tuple: G = (Vp, Vi, S, P), such that:

» Vr is the finite set of Terminal Symbols.

» Vy is the finite set of Non-Terminal Symbols.

» Terminal and Non-Terminal symbols give rise to the alphabet: V = VU Vy.

» Terminal and Non-Terminal symbols are disjoint sets: Vi N Vy = {}.

» S is the start symbol (Scope) of the Language, and S € Vy.

| 4

P is the finite set of Productions, P ={a — | a € VT A3 € V*}.

Contents First Last Prev Next <«

8.1. Formal Grammar: Terminology

In other words, Formal Grammars are string rewrite systems. The re-write rules
say that a certain sequence of symbols may be substituted by another sequence of
symbols. These symbols are divided into two classes:

» terminal: symbols that will appear in the string of the language generated by
the grammar.

» non-terminal: symbols that will be used only in the re-write process.

Contents First Last Prev Next <«

8.2. Derivations

To characterize a Language starting from a Grammar we need to introduce the
notion of Derivation.

» The notion of Derivation uses Productions to generate a string starting from
the Start symbol S.

» Direct Derivation (in symbols =)). If « — § € P and v, € V*, then yad =
789).

» Derivation (in symbols =%)). If a1 = ag, ap = a3, ...,@,_ 1 = a,, then
ap =" an,.

Contents First Last Prev Next <«

8.3. Formal Languages and FG

Generative Definition of a Language. We say that a Language L is generated by
the Grammar G, in symbols L(G), if:

L(G)={w eV} | S="w}
The above definition says that a string belongs to a Language if and only if:

1. The string is made only of Terminal Symbols;

2. The string can be Derived from the Start Symbol, S, of the Language.

Contents First Last Prev Next <«

8.4. FG and Regular Languages

We have said that the languages generated /recognized by a FSA are called “Regular
Languages”. The formal grammars that generate/recognize these languages are
known as “Regular Grammar” (RG) or Right Linear Grammars. (or Left Linear
Grammar).

Regular Grammars have rules of the form:

» A— B
» A—x
where A and B are non-terminal symbols and x is any string of terminals (possibly

empty). Moreover, a rule of the form: S — ¢ is allowed if S does not appear on the
right side of any rule.

Contents First Last Prev Next <«

8.5. FSA and RG

The association between FSA and RG is straight:

RG FSA
A— B from state A to state B reading x
A—zx from state A reading = to a designed final state.

start symbol initial state.

Asin FSA, the string already generated /recognized by the grammar has no influence
on the strings to be read in the future (no memory!).

See Artale’s Course on Principles of Compilers for more details.

Contents First Last Prev Next <«

9. Context Free Grammars

Formal Grammar more powerful than Regular Grammars are Context Free Gram-

mars (CFG).

These grammars are called context free because all rules contain only one symbol
on the left hand side — and wherever we see that symbol while doing a derivation,
we are free to replace it with the stuff on the right hand side. That is, the ‘context’
in which a symbol on the left hand side of a rule occurs is unimportant — we can
always use the rule to make the rewrite while doing a derivation.

There are more expressive kinds of grammars, with more than one symbol
on the left hand side of the rewrite arrow, in which the symbols to the right and
left have to be taken into account before making a rewrite. Such grammars are
linguistically important, and we will study them after Christmas.

A language is called context free if it is generated by some context free grammar.

Well known CFG are Phrase Structure Grammars (PSG) also known as Context
Free Phrase Structure Grammars and they are based on rewrite rules. They can
be used for both understanding and generating sentences.

Contents First Last Prev Next <«

10. CFG: Formal Language

Let’s start by using simple grammars that generate formal languages, rather than natural
language examples, as the formal examples are typically shorter. E.g., take the grammar
below.
Rules
Rulel S— AB Rule2 S—ASB
Rule3 A—a Rule4 B —b

the above grammar lets us rewrite ‘S’ to ‘aabb’. Try it your self!

S

ASB Rule 2
aSB Rule 3
aSb Rule 4
aABb Rule 1
aaBb Rule 3
aabb Rule 4

Such a sequence is called a derivation of the symbols in the last row, in this case, i.e. a
derivation of the string ‘aabb’.

Contents First Last Prev Next <«

11. CFG: More derivations

Note that there may be many derivations of the same string. For example,

S

ASB Rule 2

ASb Rule 4

aSb Rule 3

aABb Rule 1
aAbb Rule 4
aabb Rule 3

is another derivation of ‘aabb’.

Contents First Last Prev Next <«

11.1. CFG: Language Generated

The above grammar generates the language a"b" — ¢ (the language consisting of all
strings consisting of a block of a’s followed by a block of b’s of equal length, except
the empty string).

If we added the rule S — ¢ to this grammar we would generate the language a"b".
Therefore, these two languages are context free.

On the other hand, a"0"¢" is not. That is, no matter how hard you try to find
CFG rules that generate this language, you won’t succeed. No CFG can do the job.
The same holds for, e.g. a0 c"d™.

Again, there are formal ways to prove whether a language is or is not context free.

Contents First Last Prev Next <«

12. FG for Natural Languages

Now we will move to see how CFG have been applied to natural language. To this
end, it is convenient to distinguish rules from non-terminal to terminal symbols

which define the lexical entries (or lexicon).

» Terminal: The terminal symbols are words (e.g. sara, dress ...).

» Non-terminal: The non-terminal symbols are syntactic categories (CAT) (e.g.
np, vp, ...).
» Start symbol: The start symbol is the s and stand for sentence.

Contents First Last Prev Next <«

The production rules are divided into:

» Lexicon: Instead of writing np — sara, we will write: (sara,np). They form
the set LEX

» Grammatical Rules: They are of the type s — np vp.

A derivation of a sequence of words (ws,...w,) from the start symbol will be rep-
resented as,

(wy ... wy,s)

Contents First Last Prev Next <«

13. PSG: English Toy Fragment

We consider a small fragment of English defined by the following grammar G =
(LEX, Rules), with vocabulary (or alphabet) V' and categories CAT.

» LEX =V x CAT
> V = {Sara, dress, wears, the, new},

> CAT = {det,n,np, s,v,vp,adj},
> LEX = {(Sara, np), (the, det), (dress, n), (new, adj), (wears, v) }

» Rules = {s — np vp, np — det n, vp — v np,n — adj n}
Among the elements of the language recognized by the grammar, L(G), are

» (the, det) because this is in the lexicon, and
» (Sara wears the new dress, s) which is in the language by repeated applications
of rules.

Contents First Last Prev Next <«

14. English Toy Fragment: Strings

(Sara wears the new dress, s) is in the language. Try to prove it your self.

(1) (new dress,n) € L(G) because
n — adj n € Rules,
(new,adj) € L(G) (LEX), and
(dress,n) € L(G) (LEX)
(2) (the new dress, np) € L(G) because
np — det n € Rules,
(the, det) € L(G) (LEX), and
(new dress,n) € L(G) (1)
(3) (wears the new dress,vp) € L(G) because
vp — v np € Rules,
(wears,v) € L(G) (LEX), and
(the new dress, np) € L(G) (2)
(4) (Sara wears the new dress, s) € L(G) because
s — np vp € Rules,
(Sara,np) € L(G) (LEX), and
(wears the new dress, vp) € L(G) (3)

Now try to build the structure of the parsed string.

Contents First Last Prev Next

15. English Toy Fragment: Phrase Structure Trees

(new, adj) . (dress, n) n — adjn
adj n n
‘ | P
new dress adj n
({new, adj), (dress, n), n)
n s
P /\
adj n
‘ ‘ np vp
new dress | TN
Sara
v np
‘ /\
wears Jeot n
| P

the adj n
| |

new dress

Contents First Last Prev Next <«

16. Extending our grammar

Try to extend your grammar so to deal with the sentence you have analyzed before
and which are repeated below.

She likes a read shirt.
I will leave Boston in the morning.
John saw the man with the telescope.

John gave Mary a read shirt.

Contents First Last Prev Next <«

17. Summing up (I)

We have seen that

» There is a close correspondence between parse trees and derivations: every
derivation corresponds to a parse tree, and every parse tree corresponds to
(maybe many) derivations.

» PSG, besides deciding whether a string belongs to a given language, deals with
phrase structures represented as trees.

» An important difference between strings and phrase structures is that whereas
string concatenation is assumed to be associative, trees are bracketed struc-
tures.

» Thus trees preserve aspects of the compositional (constituent) structure or
derivation which is lost in the string representations.

Contents First Last Prev Next <«

18. Summing up (II)

» The language generated by a grammar consists of all the strings that the
grammar classifies as grammatical.

» A CFG recognizer is a program that correctly tells us whether or not a string
belongs to the language generated by a PSG.

» A CFG parser is a program that correctly decides whether a string belongs to
the language generated by a CFG and also tells us what its structure is.

» A Context Free Language is a language that can be generated by a CFG.

Contents First Last Prev Next <«

19. Overgeneration and Undergeneration

We would like the Formal Grammar we have built to be able to recognize/generate
all and only the grammatical sentences.

» Overgeneration: If the FG generates as grammatical also sentences which
are not grammatical, we say that it overgenerates.

» Undergeration: If the FG does not generate some sentences which are actu-
ally grammatical, we say that it undergenerates.

For instance, can the CFG we have built distinguish the sentences below?

1. She likes a read shirt
*She like a read shirt
I like him
*1 like he

-~ W N

Contents First Last Prev Next <«

In the lab we will see an easy way of handling these problems with CFG in Prolog.
On Thursday, we will see how to enrich CFG so to deal with such differences, namely
how to deal with agreements.

Contents First Last Prev Next <«

20. Undergeneration

Context free rules work locally. For example, the rule

s — np vp

tells us how an s can be decomposed into two parts, an np and a vp.

But we have seen that certain aspects of natural language seem to work in a non-
local, long-distance way. Indeed, for a long time it was thought that such phe-
nomena meant that grammar-based analyses had to be replaced by very powerful
new mechanisms

Contents First Last Prev Next <«

20.1. Undergeneration (Cont’d)

Consider these two English np. First, an np with an object relative clause:
“The witch who Harry likes”.

Next, an np with a subject relative clause:
“Harry, who likes the witch.”

What is their syntax? That is, how do we build them?

Today we will briefly see a fairly traditional explanation in terms of movement,
gaps, extraction, and so on. After the winter break we will look into more modern
approaches.

Contents First Last Prev Next <«

21. Trasformational Grammar

The traditional explanation basically goes like this. We have the following sentence:
Harry likes the witch
We can think of the np with the object relative clause as follows.

the witch who Harry likes GAP(np)

That is, we have

1. extracted the np “Harry” from the subject position, leaving behind an np-gap,

2. moved it to the front, and

3. placed the relative pronoun “who” between it and the gap-containing sentence.

Contents First Last Prev Next <«

21.1. Trasformational Grammars: Relative Clauses

Recall: Relative clauses are an example of unbounded dependencies. The word
‘dependency’ indicates that the moved np is linked, or depends on, its original
position. The word ‘unbounded’ is there because this “extracting and moving”
operation can take place across arbitrary amounts of material. For example, from

a witch, who a witch who Harry likes, likes GAP(np)

Contents First Last Prev Next <«

22. Next Steps

We said that to examine how the syntax of a sentence can be computed, we must
consider two things:

1. The grammar: A formal specification of the structures allowable in the lan-
guage. [Data structures]

2. The parsing technique: The method of analyzing a sentence to determine
its structure according to the grammar. [Algorithm]

We have seen 1. today, we will look at 2. next Thursday.

Contents First Last Prev Next <«

	Syntax
	Dependency
	Long-distance Dependencies
	Relative Pronouns
	Coordination

	Formal Approaches
	Sentence Structures: English
	Exercises

	Syntax Recognizer
	NLs are not RL: Example I
	NLs are not RL: Example II

	FSA for syntactic analysis
	Formal Grammars: Definition
	Formal Grammar: Terminology
	Derivations
	Formal Languages and FG
	FG and Regular Languages
	FSA and RG

	Context Free Grammars
	CFG: Formal Language
	CFG: More derivations
	CFG: Language Generated

	FG for Natural Languages
	PSG: English Toy Fragment
	English Toy Fragment: Strings
	English Toy Fragment: Phrase Structure Trees
	Extending our grammar
	Summing up (I)
	Summing up (II)
	Overgeneration and Undergeneration
	Undergeneration
	Undergeneration (Cont'd)

	Trasformational Grammar
	Trasformational Grammars: Relative Clauses

	Next Steps

