
Computational Linguistics: Introduction
to LCT and CL

Raffaella Bernardi
KRDB, Free University of Bozen-Bolzano

P.zza Domenicani, Room: 2.28, e-mail: bernardi@inf.unibz.it

Contents First Last Prev Next J

Contents

1 Course Info . 5
1.1 Grading . 6
1.2 Program . 6

2 Goals of Computational Linguistics . 7
3 The study of Natural Language . 8
4 Why computational models of NL . 9

5.1 Ambiguity: Phonology . 10
5.2 Ambiguity: Morphology . 10
5.3 Ambiguity: Syntax . 11
5.4 Ambiguity: Semantics . 11
5.5 Ambiguity: Discourse . 12

6 Morphology . 13
6.1 Morphemes . 14
6.2 Ways of forming new words . 15

7 Computational Morphology . 16
7.1 Modules . 16
7.2 The Lexicon and Morphotactics . 17

Contents First Last Prev Next J

8 Background Notions . 18
8.1 Formal Languages . 19

8.1.1 Concatenation . 20
8.2 Finite State Automata . 21

8.2.1 FSA as directed graph . 23
8.2.2 Finite State Recognizer . 24
8.2.3 Recognizer: an example . 25
8.2.4 Finite State Automata . 26
8.2.5 Finite State Automata with jumps 27
8.2.6 Important properties of FSA 28

8.3 Summing up: Formal Language & FSA 29
8.3.1 Regular Language . 30
8.3.2 Pumping Lemma . 31

9 FSA for Morphology Recognition/Generation 32
9.1 FSA for English Inflectional Morphology 32
9.2 FSA for English Derivational Morphology 33

10 Recognizers vs. Parsers . 35
10.1 Morphological Parsers . 36

11 What are FSA Good for in CL? . 37

Contents First Last Prev Next J

12 LCT Colloquia: Morphology . 38
13 Words: Classes . 39
14 Words: Classes (Cont’d) . 40

14.1 Applications . 41
14.2 LCT Colloquia: PoS . 42

15 Prolog and Information Sheet . 43

Contents First Last Prev Next J

1. Course Info

I Time: Thursdays and Fridays: 08:30-10:30. Labs Fridays: 10:30-12:30.

I Office hours: Thursdays 10:30-11:30 or by prior arrangement via e-mail.

I Course Materials: Lecture Notes, Readings (see the web.)

I Reference Material:

1. D. Jurasfky and J. H. Martin Speech and Language Processing. (see nr. of chapters
on the web.).

2. P. Blackburn and K. Striegnitz (BS) (online) Natural Language Processing Tech-
niques in Prolog

3. P. Blackburn and J. Bos (BB1) (online) Representation and Inference for Natural
Language A First Course in Computational Semantics

4. P. Blackburn and J. Bos (BB2) (online) Working with Discourse Representation
Structures

5. P. Blackburn, J. Bos and K. Striegnitz. (online) Learn Prolog Now!.

I Url: http://www.inf.unibz.it/~bernardi/Courses/ComLing04/index.html

Contents First Last Prev Next J

http://www.inf.unibz.it/~bernardi/Courses/ComLing04/index.html

1.1. Grading

1. LCT Seminars: You are invited to attend the LCT colloquia. (opt.) [10 %]

2. Readings and Critiques: You are asked to write a critiques of an article of
your choice or of an LCT seminar. (obl.) [10%]

3. Projects: You are to complete an independent project on some topic in CL
that must include a careful write-up and oral presentation. (obl.) [40%]

4. Final Exam: Written exercises on any of the topics discussed in class. (obl.)
[40% or 50%]

Calendar Last lecture and lab: 28/01/05. Final exam: 11th of February (TBC).

1.2. Program

I December: Fundamentals of Linguistics and Computational Lingusitics with
emphasis on: Morphology, Syntax, Parsing and Semantics.

I January: Discussion of more challenging linguistic phenomena and analysis of
some solution proposed in the literature, recently.

Contents First Last Prev Next J

2. Goals of Computational Linguistics

I Ultimate goal: To build computer systems that perform as well at using
natural language as humans do.

I Immediate goal To build computer systems that can process text and speech
more intelligently.

where, NL (Natural Language) is the language that people use to communicate
with one another and process means to analyze.

Contents First Last Prev Next J

3. The study of Natural Language

Natural Language is studied in several different academic disciplines, and each of
them has its set of problems and tools.

Discipline Typical Problems Tools

Linguistics How do words form phrases and sentences? Intuitions about well formedness
What constrains the possible meanings and meaning;
for a sentence? mathematical models of structure

Psycoling. How do people identify the sentence structures? Experimental techniques based on
How are word meanings identified? measuring human performance;
When does understanding take place? statistical analysis of observations

Philosophy What is meaning? Natural language argumentation using
How do words and sentences acquire it? intuition about counter-examples;
How do words identify objects in the world? math. models (eg. logic and model theory)

Com. Ling. How is the structure of sentences identified? Algorithms, data structures;
How can knowledge and reasoning be modeled? formal models of representation
How can language be used to accomplish and reasoning;

specific tasks? AI techniques; math. models

Contents First Last Prev Next J

4. Why computational models of NL

There are two motivations for developing computational models:

I Scientific: To obtain a better understanding of how language works. Com-
putational models may provide very specific predictions about human behavior
that can then be explored by the phsycholinguist.

I Technological: natural language processing capabilities would revolutionize
the way computers are used. Computers that could understand natural lan-
guage could access to all human knowledge. Moreover, natural language
interfaces to computers would allow complex systems to be accessible to ev-
eryone. In this case, it does not matter if the model used reflects the way
humans process language. It only matters that it works.

We are interested in linguistically motivated computational models of lan-
guage understanding and production that can be shown to perform well in specific
example domains.

Contents First Last Prev Next J

5.1. Ambiguity: Phonology

Phonology: It concerns how words are related to the sounds that realize them. It’s
important for speech-based systems.

1. ”I scream”

2. ”ice cream”

5.2. Ambiguity: Morphology

Morphology: It’s about the inner structure of words. It concerns how words are
built up from smaller meaning-bearing units.

1. Unionized (characterized by the presence of labor unions)

2. un-ionized in chemistry

Contents First Last Prev Next J

5.3. Ambiguity: Syntax

Syntax: It concerns sentence structure. Different syntactic structure implies differ-
ent interpretation.

1. I saw the man with the telescope

I [[saw v [the man]np [with the telescope]pp]vp]s
I [[saw v [[the man]np [with the telescope]pp]np]vp]s

2. Visiting relatives can be tiring.

5.4. Ambiguity: Semantics

Semantics: It concerns what words mean and how these meanings combine to form
sentence meanings.

1. Visiting relatives can be tiring.
2. Visiting museums can be tiring.

Same set of possible syntactic structures for this sentence. But the meaning of
museums makes only one of them plausible.

Contents First Last Prev Next J

5.5. Ambiguity: Discourse

Discourse: It concerns how the immediately preceding sentences affect the inter-
pretation of the next sentence

1. Merck & Co. formed a joint venturei with Ache Group, of Brazil. Iti will be
called Prodome Ltd.

2. Merck & Co.i formed a joint venture with Ache Group, of Brazil. Iti will
own 50% of the new company to be called Prodome Ltd.

3. Merck & Co. formed a joint venture with Ache Groupi, of Brazil. Iti had
previously teamed up with Merck in two unsuccessful pharmaceutical ventures.

Contents First Last Prev Next J

6. Morphology

Morphology is the study of how words are built up from smaller meaning-bearing
units, morphemes. It concerns the inner structure of words.

For instance,

I fog: it’s one morphem

I cats: it consists of two morphemes: cat + -s.

Contents First Last Prev Next J

6.1. Morphemes

Morphemes are divided into:

1. stems: they are the main morpheme of the word, supplying the main meaning.

2. affixes: they add additional meanings of various kinds. They are further
divided into:

I prefixes: precede the stem (English: unknown= un + known)

I suffixes: follow the stem (English: eats= eat + -s)

I circumfixes: do both (German: gesagt (said)= ge + sag + t)

I infixes: are inserted inside the stem (Bontoc -Philippines - fikas (strong),
fumikas (to be strong))

A word can have more than one affixes (e.g. re+write+s, unbelievably= believe
(stem), un-, -able, -ly).

Contents First Last Prev Next J

6.2. Ways of forming new words

There are two basic ways used to form new words:

1. Inflectional forms: It is the combination of a word stem with a grammatical
morpheme, usually resulting in a word of the same class as the original
stem, and usually filling some syntactic function like agreement. E.g. in En-
glish, past tense on verbs is marked by the suffix “-ed”, form by “-s”, and
participle by “-ing”.

2. Derivational forms: It is the combination of a word stem with a grammat-
ical morpheme, usually resulting in a word of a different class, often with
a meaning hard to predict exactly. E.g. Adverbs from noun: friendly from
friend. Noun from verbs: killer from kill. Adjectives from nouns: “computa-
tional” from “computation”, “unreal” from “real”.

Contents First Last Prev Next J

7. Computational Morphology

We want to build a system able to provide the stem and the affixes given a word as
input (e.g. cats → {cat + N + PL), or able to generate all the possible words made
of a given stem (e.g. cat → {cats, cat}). To this end we first of all need to have a
way to formally represent Morphology Theory studied by Linguists.

7.1. Modules

To build a morphological recognizer/generator, we’ll need at least the following:

lexicon: the list of stems and affixes, together with basic information about them
(e.g. Noun stem or Verb stem).

morphotactics: the model of the morpheme ordering, e.g. English plural mor-
pheme follows the noun rather than preceding it.

orthographic rules: spelling rules used to model the changes that occur in a
word, e.g. city becomes cities, i.e. “y” “ie”.

Contents First Last Prev Next J

7.2. The Lexicon and Morphotactics

Lexicon: It’s a repository of words. Having an explicit list of every word is impos-
sible, hence the lexicon is structured with a list of each of the stems and affixes of
the language.

Morphotactics: One of the most common way to model morphotactics is by means
of Finite State Automata (FSA).

Contents First Last Prev Next J

8. Background Notions

Before looking at how FSA are used to recognize/generate natural language morphol-
ogy we need to introduce some background notions, namely Formal Languages
and FSA.

Remark: The topics of this section are treated in details in Artale’s course Prin-
ciples of Compilers and in Calvanese’s course Theory of Computing. I just
repeat some of their slides and give the intuitions for the students who have not
attended their courses.

Contents First Last Prev Next J

8.1. Formal Languages

Formal Language Theory considers a Language as a mathematical object.

I A Language is just a set of strings. To formally define a Language we need
to formally define what are the strings admitted by the Language. Formal
notions:

1. Alphabet: A set of symbols, indicated by V (e.g., V ={1, 2, 3, 4, 5, 6, 7, 8, 9}).
2. String: A string over an alphabet, V , is a sequence of symbols belonging

to the alphabet (e.g., “518” is a string over the above V). The empty string
is denoted by ε.

3. Linguistic Universe: Indicated by V ∗, denotes the set of all possible
strings over V , included ε. The set V + denotes the set V − {ε} .

I To characterize a Language means to find a finite representation of all admis-
sible strings.

Contents First Last Prev Next J

8.1.1. Concatenation We have said that a language is a set of strings. An
important operation on strings is concatenation.

I At syntactic level, strings are words that are concatenated together to form
phrases.

I At morphological level, strings are morphemes that are concatenated to form
words. E.g.

Stem Language: {work, talk, walk}.
Suffix Language: {ε,−ed,−ing,−s}.

The concatenation of the Suffix language after the Root language, gives:

{work, worked, working, works, talk, talked, talking, talks,
walk, walked, walking, walks}

Contents First Last Prev Next J

8.2. Finite State Automata

A finite state generator is a simple computing machine that outputs a sequence
of symbols.

It starts in some initial state and then tries to reach a final state by making
transitions from one state to another.

Contents First Last Prev Next J

Every time it makes such a transition it emits (or writes or generates) a symbol.

It has to keep doing this until it reaches a final state; before that it cannot stop.

So, what does the generator in the pictures say?

It laughs.

It generates sequences of symbols of the form ha! or haha! or hahaha! or hahahaha!

and so on. Why does it behave like that? Well, it first has to make a transition emitting
h. The state that it reaches through this transition is not a final state. So, it has to keep
on going emitting an a. Here, it has two possibilities: it can either follow the ! arrow,
emitting ! and then stopping in the final state or it can follow the h arrow emitting an h

and going back to the state where it just came from.

Contents First Last Prev Next J

8.2.1. FSA as directed graph Finite state generators can be thought of as
directed graphs. And in fact finite state generators are usually drawn as directed
graphs. Here is our laughing machine as we will from now on draw finite state
generators:

The nodes of the graph are the states of the generator. We have numbered them,
so that it is easier to talk about them. The arcs of the graph are the transitions,
and the labels of the arcs are the symbols that the machine emits. A double circle
indicates that this state is a final state and the one with the black triangle is the
start.

Contents First Last Prev Next J

8.2.2. Finite State Recognizer Finite state recognizers are simple computing
machines that read (or at least try to read) a sequence of symbols from an input
tape. That seems to be only a small difference, and in fact, finite state generators
and finite state recognizers are exactly the same kind of machine. Just that we are
using them to output symbols in one case and to read symbols in the other case.

An FSA recognizes (or accepts) a string of symbols if starting in an intial state it
can read in the symbols one after the other while making transitions from one state
to another such that the transition reading in the last symbol takes the machine
into a final state.

That means an FSA fails to recognize a string if:

I it cannot reach a final state; or

I it can reach a final state, but when it does there are still unread symbols left
over.

Contents First Last Prev Next J

8.2.3. Recognizer: an example So, this machine recognizes a laughter.

For example, it accepts the word ha! by going from state 1 via state 2 and state
3 to state 4. At that point it has read all of the input and is in a final state. It
also accepts the word haha! by making the following sequence of transitions: state
1, state 2, state 3, state 2, state 3, state 4. Similarly, it accepts hahaha! and
hahahaha! and so on. However, it does not accept the word haha?. Although it
will be able to read the whole input (state 1, state 2, state 3, state 2, state 3), it
will end in a non-final state without anything left to read that could take it into
the final state. So, when used in recognition mode, this machine recognizes exactly
the same words that it generates, when used in generation mode. This is something
which is true for all finite state automata.

Contents First Last Prev Next J

8.2.4. Finite State Automata Try to think of what language is recognized or
generated by the FSA below.

Contents First Last Prev Next J

8.2.5. Finite State Automata with jumps

It has a strange transition from state 3 to state 1 which is reading/emitting #. We
will call transitions of this type jump arcs (or ε transitions). Jump arcs let us
jump from one state to another without emitting or reading a symbol. So, #
is really just there to indicate that this is a jump arc and the machine is not reading
or writing anything when making this transition.

This FSA accepts/generates the same language as our first laughing machine, namely
sequences of ha followed by a !. Try it yourself.

Contents First Last Prev Next J

8.2.6. Important properties of FSA

I All in all, finite state generators can only have a finite number of different
states, that’s where the name comes from.

I Another important property of finite state generators is that they only know
the state they are currently in. That means they cannot look ahead at the
states that come and also don’t have any memory of the states they have been
in before or the symbols that they have emitted.

I An FSA can have several intial and final states (it must have at least one initial
and one final state, though).

Contents First Last Prev Next J

8.3. Summing up: Formal Language & FSA

I A formal language is a set of strings. E.g. {a, b, c}, {the, a, student, students}.

I Strings are by definition finite in length.

I The language accepted (or recognized) by an FSA is the set of all strings it
recognizes when used in recognition mode.

I The language generated by an FSA is the set of all strings it can generate when
used in generation mode.

I The language accepted and the language generated by an FSA are exactly the
same.

I FSA recognize/generate Regular Language.

Contents First Last Prev Next J

8.3.1. Regular Language Given an alphabet V ,

1. {} is a regular language

2. For any string x ∈ V ∗, {x} is a regular language.

3. If A and B are regular languages, so is A ∪B.

4. If A and B are regular languages, so is AB.

5. If A is a regular language, so is A∗.

6. Nothing else is a regular language.

Recall: V ∗ denotes the set of all strings formed over the alphabet V . A∗ denotes
the set of all strings obtained by concatenating strings in A in all possible ways.

Examples For example, let V = {a, b, c}. Then since aab and cc are members of V ∗

by 2, {aab} and {cc} are regular languages. By 3, so is their union, {aab, cc}. By 4,
so is their concatenation {aabcc}. Likewise, by 5 {aab}∗ {cc}∗ are regular languages.

Contents First Last Prev Next J

8.3.2. Pumping Lemma For instance, a non-regular language is, e.g., L =
{anbn | n > 0}. More generally, FSA cannot generate/recognize balanced open and
closed parentheses (since they cannot count).

You can prove that L is not a regular language by means of the Pumping Lemma.

Roughly note that with FSA you cannot record (no memory!) any arbitrary number
of a’s you have read, hence you cannot control that the number of a’s and b’s has
to be the same. In other words, you cannot account for the fact that there exists a
relation of dependency between an and bn.

Formally If L is an infinite FSA language over alphabet V , then there are strings
x, y, z ∈ Σ∗ such that y 6= ε and xynz ∈ L for all n > 0.

Hence, if you can prove that such x, y, z do not exist in L than L is not a regular
language.

See Calvanese’ s course for more details.

Contents First Last Prev Next J

9. FSA for Morphology Recognition/Generation

9.1. FSA for English Inflectional Morphology

Let’s build an FSA that recognizes English nominal inflection. Our lexicon is:

reg-stem plural pl-irreg-stem sing-irreg-stem
fox -s geese goose
cat sheep sheep
dog mice mouse

Contents First Last Prev Next J

9.2. FSA for English Derivational Morphology

Let’s build an FSA that recognizes English adjectives. Our lexicon is:

adj-root1 adj-root2 Suffix-1-2 Suffix-1 Affix-1
clear big -er -ly un-
happy cool -est
real

Contents First Last Prev Next J

Contents First Last Prev Next J

10. Recognizers vs. Parsers

We have seen that we can give a word to a recognizer and the recognizer will say
“yes” or “no”. But often that’s not enough: in addition to knowing that something
is accepted by a certain FSA, we would like to have an explanation of why it was
accepted. Finite State Parsers give us that kind of explanation by returning the
sequence of transitions that was made.

This distinction between recognizers and parsers is a standard one:

I Recognizers just say “yes” or “no”, while

I Parsers also give an analysis of the input (e.g. a parse tree).

This distinction does not only apply to FSA, but also to all kinds of machines
that check whether some input belongs to a language and we will make use of it
throughout the course.

Contents First Last Prev Next J

10.1. Morphological Parsers

The goal of morphological parsing is to find out what morphemes a given word
is built from. For example, a morphological parser should be able to tell us that
the word cats is the plural form of the noun stem cat, and that the word mice
is the plural form of the noun stem mouse. So, given the string cats as input, a
morphological parser should produce an output that looks similar to cat N PL.

Project Students who know about Finite State Transducers could carry out a project
on their use as Morphological Parsers. See BS for more information.

Contents First Last Prev Next J

11. What are FSA Good for in CL?

Finite-state techniques are widely used today in both research and industry for natural-
language processing. The software implementations and documentation are improving
steadily, and they are increasingly available. In CL they are mostly “lower-level” natural
language processing:

I Tokenization

I Spelling checking/correction

I Phonology

I Morphological Analysis/Generation

I Part-of-Speech Tagging

I “Shallow” Syntactic Parsing

Finite-state techniques cannot do everything; but for tasks where they do apply, they are
extremely attractive.

In fact, the flip side of their expressive weakness being that they usually behave very
well computationally. If you can find a solution based on finite state methods, your
implementation will probably be efficient.

Contents First Last Prev Next J

12. LCT Colloquia: Morphology

Judith Knapp The application of CL tools for
computer assisted language learning:
Experiences with WordManager

Date 13-01-05
Time 16:00-18:00
Place CS Seminar Room

Abstract available from the LCT Colloquia page (see the course web page).

Further readings/information on the use of FSA for morphology: http://www.cis.
upenn.edu/~cis639/docs/xfst.html

Contents First Last Prev Next J

http://www.cis.upenn.edu/~cis639/docs/xfst.html
http://www.cis.upenn.edu/~cis639/docs/xfst.html

13. Words: Classes

Traditionally, linguists classify words into different categories:

I Categories: words are said to belong to classes/categories. The main cat-
egories are nouns (n), verbs (v), adjectives (adj), articles (art) and adverbs
(adv).

The class of words can be divided into two broad supercategories:

1. Closed Class: Those that have relatively fixed membership. E.g. prepositions,
pronouns, particles, quantifiers, coordination, articles.

2. Open Class: nouns, verbs, adjectives, adverbs.

Contents First Last Prev Next J

14. Words: Classes (Cont’d)

A word in any of the four open classes can be used to form the basis for a phrase.
This word is called the head of the phrase and indicates the type of thing, activity,
or quality that the phrase describes. E.g. “dog” is the head in: “The dog”, “the
small dog”, “the small dog that I saw”.

I Constituents: Groups of categories may form a single unit or phrase called
constituents. The main phrases are noun phrases (np), verb phrases (vp),
prepositional phrases (pp). Noun phrases for instance are: “she”; “Michael”;
“Rajeev Goré”; “the house”; “a young two-year child”.

Tests like substitution help decide whether words form constituents.

Can you think of another test?

See Jurafsky & Martin, pp. 289-296 for more details on the single categories and
phrases.

Contents First Last Prev Next J

14.1. Applications

More recently, linguists have defined classes of words, called Part-of-Speech (PoS)
tagsets with much larger numbers of word classes. PoS are used to label words in
a given collection of written texts (Corpus). These labels turn out to be useful in
several language processing applications.

I Speech synthesis: A word’s PoS can tell us something about how the word is
pronounced. E.g. “content” can be a noun or an adjective, and it’s pronounced
differently: CONtent (noun) vs. conTENT (adjective).

I Information Retrieval: A word’s PoS can tell us which morphological affixes
it can take, or it can help selecting out nouns or other important words from a
document.

I Theoretical Linguistics: Words’ PoS can help finding instances or frequen-
cies of particular constructions in large corpora.

Contents First Last Prev Next J

14.2. LCT Colloquia: PoS

Paolo Dongilli Rule-based part-of-speech tagging
Date 9-12-04
Time 16:00-18:00
Place CS Seminar Room

The abstract is available from the LCT site.

Contents First Last Prev Next J

15. Prolog and Information Sheet

This afternoon: Crash Course on Prolog:

Time: 16:00-18:00

Place: E5.31

Topics: Facts, Rules and Queries; Recursive Predicate Definitions; How Prolog
Answers Queries; Lists.

Please, fill in the Information Sheet, and give it to me now!

Contents First Last Prev Next J

	Course Info
	Grading
	Program

	Goals of Computational Linguistics
	The study of Natural Language
	Why computational models of NL
	Ambiguity: Phonology
	Ambiguity: Morphology
	Ambiguity: Syntax
	Ambiguity: Semantics
	Ambiguity: Discourse
	Morphology
	Morphemes
	Ways of forming new words

	Computational Morphology
	Modules
	The Lexicon and Morphotactics

	Background Notions
	Formal Languages
	Concatenation

	Finite State Automata
	FSA as directed graph
	Finite State Recognizer
	Recognizer: an example
	Finite State Automata
	Finite State Automata with jumps
	Important properties of FSA

	Summing up: Formal Language & FSA
	Regular Language
	Pumping Lemma

	FSA for Morphology Recognition/Generation
	FSA for English Inflectional Morphology
	FSA for English Derivational Morphology

	Recognizers vs. Parsers
	Morphological Parsers

	What are FSA Good for in CL?
	LCT Colloquia: Morphology
	Words: Classes
	Words: Classes (Cont'd)
	Applications
	LCT Colloquia: PoS

	Prolog and Information Sheet

