Computational Linguistics: Semantics

RAFFAELLA BERNARDI

KRDB, FREE UNIVERSITY OF BOZEN-BOLZANO P.ZZA DOMENICANI, ROOM: 2.28, E-MAIL: BERNARDI@INF.UNIBZ.IT

Contents

1	Exercise 1: W	ell formed formula	3
2	Exercise 2: λ -	conversion	5
3	Exercise 3: λ -	calculus and NL	7
4	Exercise 3: λ -	calculus and NL	13

1. Exercise 1: Well formed formula

Let j be a constant of type e; M of type $e \to t$; S of type $((e \to t) \to (e \to t))$, and P of type $(e \to t) \to t$. Furthermore, x is a variable of type e, and Y a variable of type $(e \to t)$.

Determine which of the following is well-formed, give its type.

- 1. $(\lambda x.M(x))(P)$.
- 2. $(\lambda x.M(x))(j)$.
- 3. $\lambda x.M(j)$.
- 4. $S(\lambda x.M(x))$.
- 5. $(\lambda Y.Y(j))(M)$
- 6. $\lambda x.(M(x) \wedge M(j))$
- 7. $(\lambda x.M(x)) \wedge M(j))$

Solution

1. no (since the function is of type $e \to t$ while the argument is of type $(e \to t) \to t$ (whereas it should be of type e.

2. yes, t

- 3. yes, $e \to t$
- 4. yes, $e \to t$
- 5. yes, t
- 6. yes, $e \to t$
- 7. no. (\wedge must connect expressions of type t)

2. Exercise 2: λ -conversion

Let j be a constant of type e; M of type $(e \to t)$, and A of type $e \to (e \to t)$. Furthermore, x and y are variables of type e, and Y is a variable of type $e \to t$. Reduce the following expression as much as possible by means of λ -conversion.

- 1. $\lambda x(M(x))(j)$
- 2. $\lambda Y(Y(j))(M)$
- 3. $\lambda x \lambda Y(Y(x))(j)(M)$
- 4. $\lambda x \forall y (A(x)(y))(j)$
- 5. $\lambda x \forall y (A(x)(y))(y)$
- 6. $\lambda Y(Y(j))\lambda x(M(x))$
- 7. $\lambda Y \forall x(Y(x)) \lambda y(A(x)(y))$

Solution:

- 1. M(j)
- 2. M(j)
- 3. M(j)
- 4. $\forall y A(j)(y)$
- 5. $\forall z.A(y)(z)$
- 6. M(j) (by replacing first Y with $\lambda x(M(x))$ and then x with j.
- 7. $\forall z.A(z)(x)$

Note, in 5 and 7 you have to rename variables. Direct λ -conversion is not possible: in 5. y is not free for x in $\forall y.(A(x)(y))$. Hence you have to rename the y by, e.g., z, so to be able λ -conversion. Similarly, in 7, you can rename x by z before apply λ -conversion.

3. Exercise 3: λ -calculus and NL

Given,

- ► new $\lambda Y_{e \to t} \cdot \lambda x_e \cdot (Y(x) \land new(x))_t : adj$
- ► book $\lambda x_e.(book(x))_t : n$
- ▶ student $\lambda x_e.student(x))_t : n$
- ► a $\lambda X_{(e \to t)} \lambda Y_{(e \to t)} (\exists x_e . X(x) \land Y(x)) : det$
- ▶ john j:np
- ▶ read $\lambda x_e . \lambda y_e . read(y, x) : tv$
- ▶ left $\lambda y_e.left(y): iv$

build the meaning representation and the parse tree for

1. John read a book

2. A new student left

3. John read a new book

4. A student read a book

Use the following CFG to build the parse trees.

s ---> np vp vp ---> iv vp ---> tv np np ---> det n n ---> adj n

Solution:

1. John read a book

▶ read u: λy.read(y, u)
▶ john read u: read(j, u).

- ▶ john read: $\lambda z.read(j, z)$
- ► a book: $\lambda Y.\exists x.Book(x) \land Y(x)$
- ▶ john read a book: $\exists x.Book(x) \land read(j,x)$

- 2. A new student left
 - ▶ new student: $\lambda y.Student(y) \land new(y)$

a new student: λY.∃x.(Student(x) ∧ new(x)) ∧ Y(x)
a new student left: ∃x.(Student(x) ∧ new(x)) ∧ left(x)

- 3. John read a new book
 - ▶ new book: $\lambda y.book(y) \land new(y)$
 - ▶ a new student: $\lambda Y.\exists x.(book(x) \land new(x)) \land Y(x)$

▶ john read: $\lambda u.read(j, u)$ (as in 1.)

▶ john read a new book: $\exists x.(book(x) \land new(x)) \land read(j,x)$

4. A student read a book

- ▶ *u* read a book: $\exists x.Book(x) \land Read(u, x)$ (see above)
- ▶ read a book: $\lambda u. \exists x. Book(x) \land Read(u, x)$
- ► a student: $\lambda Z.\exists y.Student(x) \land Z(u, y)$ (see above)
- ▶ a student read a book: $\exists y.Student(y) \land \exists x.Book(x) \land Read(y,x)$ (which is equivalent to $\exists y.\exists x.Student(y) \land (Book(x) \land Read(y,x))$)

4. Exercise 3: λ -calculus and NL

You know that e.g.

"Every student left" can be represented as $\forall x.Student(x) \rightarrow Left(x)$; "No student left" as $\neg \exists x.Student(x) \rightarrow Left(x)$, John dind't leave as $\neg leave(j)$. Use them to give the lambda terms for the words below.

- 1. every
- 2. everybody
- 3. no
- 4. nobody
- 5. didn't
- 6. did
- 7. and
- 8. or

Solution

- 1. every: $\lambda X.\lambda Y. \forall z. X(z) \rightarrow Y(z)$
- 2. every body: $\lambda Y. \forall z. Y(z)$
- 3. no: $\lambda X.\lambda Y.\neg \exists z.X(z) \rightarrow Y(z)$
- 4. nobody: $\lambda Y.\neg \exists z.Y(z)$
- 5. didn't: $\lambda Y.\neg Y$.
- 6. did: $\lambda Y.Y$.
- 7. and: $\lambda X.\lambda Y.Y \wedge X$
- 8. or: $\lambda X.\lambda Y.Y \lor X$