Computational Linguistics: Semantics

RaffaElla Bernardi

KRDB, Free University of Bozen-Bolzano
P.zza Domenicani, Room: 2.28, e-mail: Bernardi@inf.unibz.it

Contents

1 Exercise 1: Well formed formula 3
2 Exercise 2: λ-conversion 5
3 Exercise 3: λ-calculus and NL 7
4 Exercise 3: λ-calculus and NL 13

1. Exercise 1: Well formed formula

Let j be a constant of type $e ; M$ of type $e \rightarrow t ; S$ of type $((e \rightarrow t) \rightarrow(e \rightarrow t))$, and P of type $(e \rightarrow t) \rightarrow t$. Furthermore, x is a variable of type e, and Y a variable of type $(e \rightarrow t)$.
Determine which of the following is well-formed, give its type.

1. $(\lambda x . M(x))(P)$.
2. $(\lambda x . M(x))(j)$.
3. $\lambda x \cdot M(j)$.
4. $S(\lambda x \cdot M(x))$.
5. $(\lambda Y . Y(j))(M)$
6. $\lambda x \cdot(M(x) \wedge M(j))$
7. $(\lambda x . M(x)) \wedge M(j))$

Solution

1. no (since the function is of type $e \rightarrow t$ while the argument is of type $(e \rightarrow t) \rightarrow t$ (whereas it should be of type e.
2. yes, t
3. yes, $e \rightarrow t$
4. yes, $e \rightarrow t$
5. yes, t
6. yes, $e \rightarrow t$
7. no. (\wedge must connect expressions of type t)

2. Exercise 2: λ-conversion

Let j be a constant of type $e ; M$ of type $(e \rightarrow t)$, and A of type $e \rightarrow(e \rightarrow t)$. Furthermore, x and y are variables of type e, and Y is a variable of type $e \rightarrow t$. Reduce the following expression as much as possible by means of λ-conversion.

1. $\lambda x(M(x))(j)$
2. $\lambda Y(Y(j))(M)$
3. $\lambda x \lambda Y(Y(x))(j)(M)$
4. $\lambda x \forall y(A(x)(y))(j)$
5. $\lambda x \forall y(A(x)(y))(y)$
6. $\lambda Y(Y(j)) \lambda x(M(x))$
7. $\lambda Y \forall x(Y(x)) \lambda y(A(x)(y))$

Solution:

1. $M(j)$
2. $M(j)$
3. $M(j)$
4. $\forall y A(j)(y)$
5. $\forall z . A(y)(z)$
6. $M(j)$ (by replacing first Y with $\lambda x(M(x))$ and then x with j.
7. $\forall z . A(z)(x)$

Note, in 5 and 7 you have to rename variables. Direct λ-conversion is not possible: in 5. y is not free for x in $\forall y .(A(x)(y))$. Hence you have to rename the y by, e.g., z, so to be able λ-conversion. Similarly, in 7, you can rename x by z before apply λ-conversion.

3. Exercise 3: λ-calculus and NL

Given,

- new $\lambda Y_{e \rightarrow t} \cdot \lambda x_{e} \cdot(Y(x) \wedge n e w(x))_{t}: a d j$
- book $\lambda x_{e} \cdot(\operatorname{book}(x))_{t}: n$
- student λx_{e}.student $\left.(x)\right)_{t}: n$
- a $\lambda X_{(e \rightarrow t)} \lambda Y_{(e \rightarrow t)}\left(\exists x_{e} \cdot X(x) \wedge Y(x)\right): \operatorname{det}$
- john $j: n p$
- read $\lambda x_{e} \cdot \lambda y_{e} \cdot \operatorname{read}(y, x): t v$
- left λy_{e}.left $(y): i v$
build the meaning representation and the parse tree for

1. John read a book
2. A new student left
3. John read a new book
4. A student read a book

Use the following CFG to build the parse trees.
s ---> np vp
vp ---> iv
vp ---> tv np
np ---> det n
n ---> adj n

Solution:

1. John read a book

- read $u: \lambda y \cdot \operatorname{read}(y, u)$
- john read $u: \operatorname{read}(j, u)$.
- john read: $\lambda z \cdot \operatorname{read}(j, z)$
- a book: $\lambda Y . \exists x \cdot \operatorname{Book}(x) \wedge Y(x)$
- john read a book: $\exists x \cdot \operatorname{Book}(x) \wedge \operatorname{read}(j, x)$

2. A new student left

- new student: $\lambda y \cdot \operatorname{Student}(y) \wedge \operatorname{new}(y)$
- a new student: $\lambda Y . \exists x .(\operatorname{Student}(x) \wedge n e w(x)) \wedge Y(x)$
- a new student left: $\exists x .(\operatorname{Student}(x) \wedge n e w(x)) \wedge \operatorname{left}(x)$

3. John read a new book

- new book: $\lambda y . \operatorname{book}(y) \wedge$ new (y)
- a new student: $\lambda Y \cdot \exists x \cdot(\operatorname{book}(x) \wedge \operatorname{new}(x)) \wedge Y(x)$
- john read: $\lambda u \cdot \operatorname{read}(j, u)$ (as in 1.)
- john read a new book: $\exists x .(\operatorname{book}(x) \wedge n e w(x)) \wedge \operatorname{read}(j, x)$

4. A student read a book

- u read a book: $\exists x \operatorname{Book}(x) \wedge \operatorname{Read}(u, x)$ (see above)
- read a book: $\lambda u . \exists x . \operatorname{Book}(x) \wedge \operatorname{Read}(u, x)$
- a student: $\lambda Z . \exists y . \operatorname{Student}(x) \wedge Z(u, y)$ (see above)
- a student read a book: $\exists y \cdot \operatorname{Student}(y) \wedge \exists x \cdot \operatorname{Book}(x) \wedge \operatorname{Read}(y, x)$ (which is equivalent to $\exists y \cdot \exists x . \operatorname{Student}(y) \wedge(\operatorname{Book}(x) \wedge \operatorname{Read}(y, x)))$

4. Exercise 3: λ-calculus and NL

You know that e.g.
"Every student left" can be represented as $\forall x$.Student $(x) \rightarrow \operatorname{Left}(x)$; "No student left" as $\neg \exists x$.Student $(x) \rightarrow \operatorname{Left}(x)$, John dind't leave as \neg leave (j). Use them to give the lambda terms for the words below.

1. every
2. everybody
3. no
4. nobody
5. didn't
6. did
7. and
8. or

Solution

1. every: $\lambda X \cdot \lambda Y \cdot \forall z \cdot X(z) \rightarrow Y(z)$
2. everybody: $\lambda Y . \forall z . Y(z)$
3. no: $\lambda X . \lambda Y \cdot \neg \exists z \cdot X(z) \rightarrow Y(z)$
4. nobody: $\lambda Y . \neg \exists z . Y(z)$
5. didn't: $\lambda Y . \neg Y$.
6. did: $\lambda Y . Y$.
7. and: $\lambda X . \lambda Y . Y \wedge X$
8. or: $\lambda X . \lambda Y . Y \vee X$
