
Computational Linguistics: Feature
Agreement

Raffaella Bernardi

Contents First Last Prev Next J

Contents

1 Admin . 4
2 Formal Grammars . 5

2.1 Recall: Undergeneration and Overgeneration 6
2.2 Undergeneration: Long-distance dep. 7
2.3 Relative clauses . 8
2.4 Overgeneration: Agreement . 12

3 Features and values . 13
3.1 Feature Pergolation . 14
3.2 Set of properties . 15

4 Constraint Based Grammars . 16
5 Feature Structures . 17
6 Agreement Feature . 19
7 Feature Path . 20

7.1 Directed Graphs . 21
7.2 Reentrancy . 23
7.3 Reentrancy as Coindexing . 24
7.4 FS: Subsumption . 25

Contents First Last Prev Next J

7.5 FS: Formal definition of Subsumption. RVD 26
7.6 Examples . 27
7.7 Exercise . 28
7.8 Exercise: (Cont’d) . 29

8 Operations on FS . 30
8.1 Unification of FS . 31

8.1.1 Partial Operation . 33
8.1.2 Unification: Formal Definition 34

8.2 Unification: Examples . 35
9 Augmenting CFG with FS . 36
10 Augmenting CFG wiht FS (cont’d) . 37

10.1 Head Features and Subcategorization 38
10.2 FG with Head and Subcategorization information 40
10.3 Example . 41
10.4 Home-work . 42
10.5 Not done on FS: . 43
10.6 NLTK tips to install it . 44

Contents First Last Prev Next J

1. Admin

I Have you tried to work with LaTex?

I Have you done the exercises on CFGs?

Contents First Last Prev Next J

2. Formal Grammars

We have seen

I that NL syntax cannot be represented by a Regular Language, because it has
nested dependencies anbn, anbmcmcn

I how to use CFG to recognize/generate and parse NL strings.

I that FGs can been weakly or strongly equivalent.

Today we introduce Feature Structures and augument CFG with features.

Contents First Last Prev Next J

2.1. Recall: Undergeneration and Overgeneration

We would like the Formal Grammar we have built to be able to recognize/generate
all and only the grammatical sentences.

I Undergeration: If the FG does not generate some sentences which are actu-
ally grammatical, we say that it undergenerates.

I Overgeneration: If the FG generates as grammatical also sentences which
are not grammatical, we say that it overgenerates.

Contents First Last Prev Next J

2.2. Undergeneration: Long-distance dep.

Consider these two English np. First, an np with an object relative clause:

“The witch who Harry likes”.

Next, an np with a subject relative clause:

“Harry, who likes the witch.”

What is their syntax? That is, how do we build them?

Contents First Last Prev Next J

2.3. Relative clauses

The traditional explanation basically goes like this. We have the following sentence:

Harry likes the witch

We can think of the np with the object relative clause as follows.

| |

the witch who Harry likes GAP(np)

That is, we have

1. extracted the np “the witch” from the object position, leaving behind an np-gap,

2. moved it to the front, and

3. placed the relative pronoun “who” between it and the gap-containing sentence.

Contents First Last Prev Next J

Contents First Last Prev Next J

Contents First Last Prev Next J

2.4. Overgeneration: Agreement

For instance, can the CFG we have built distinguish the sentences below?

1. He hates a red shirt

2. *He like a red shirt

3. He hates him

4. *He hates he

Contents First Last Prev Next J

3. Features and values

A ‘linguistic feature” is a property-like element that changes the grammatical be-
haviour of syntactic constituents:

I person: I go, you go, he goes

I number: he dances, they dance

I case: he brings John, John brings him

I tense: go, went, gone

I person: 1st, 2nd, 3rd

I number: singular, plural,

I case: accusative, locative etc

I tense: past, present, future,

See more at: http://grammaticalfeatures.net/ and RZ’s course.

Contents First Last Prev Next J

http://grammaticalfeatures.net/

3.1. Feature Pergolation

Last time we have spoken of the head of the phrase as the word characterizing the
phrase itself. E.g. the head of a noun phrase is the noun, the head of a verb phrase
is the verb, the head of a prepositional phrase is the preposition, etc.

Notice that its the head of a phrase that provides the features of the phrase.
E.g. in the noun phrase “this cat”, it’s the noun (“cat”) that characterizes the np
as singular.

Note, this also means that the noun requires the article to match its features.

Contents First Last Prev Next J

3.2. Set of properties

This can be captured in an elegant way, if we say that our non-terminals are no
longer atomic category symbols, but a set of properties, such as type of category,
number, person, case

Certain rules can then impose constraints on the individual properties that a
category involved in that rule may have.

These constraints can force a certain property to have some specific value, but
can also just say that two properties must have the same value, no matter what
that value is. Using this idea, we could specify our grammar like this:

s ---> np vp : number of np= number of vp

np ---> Det n : number of np= number of n

vp ---> iv

Det ---> the

n ---> gangster : number of n= singular

n ---> gangsters : number of n= plural

iv ---> dies: number of iv = singular

iv ---> die : number of iv = plural

Contents First Last Prev Next J

4. Constraint Based Grammars

In computational linguistics such sets of properties are commonly represented as
feature structures.

The grammars that use them are known as constraint-based grammars, i.e. gram-
mars that can express constrains on the properties of the categories to be com-
bined by means of its rules. Roughly, a rule would have to say

s → np vp

only if the number of the np is equal to the number of the vp.

The most well known Constraint Based Grammars are Lexical Functional Grammar
(LFG, Bresnan ’82), Generalized Phrase Structure Grammar (GPSG, Gazdar et al.
’85), Head-driven Phrase Structure Grammar (HPSG, Pollard and Sag, ’87), Tree
Adjoining Grammar (TAG, Joshi et al. ’91).

Contents First Last Prev Next J

5. Feature Structures

Constraints-Based Grammars usually encode properties by means of Feature Structures
(FS). They are simply sets of feature-value pairs, where features are unalayzable atomic
symbols drown from some finite set, and values are either atomic symbols or feature
structures.

They are traditionally illustrated with the following kind of matrix-like diagram, called
attribute-value matrix (AVM) (It is common practice to refer to AVMs as “feature
structures” although strictly speaking they are feature structure descriptions.)

Feature1 Value1
Feature2 Value2
.
Featuren Valuen


For instance, the number features sg (singular) and pl plural, are represented as below.[

NUM sg
] [

NUM pl
]

Contents First Last Prev Next J

Similarly, the slightly more complex feature 3rd singular person is represented as[
NUM sg
PERS 3

]
Next, if we include also the category we obtain, e.g. CAT np

NUM sg
PERS 3


which would be the proper representation for “Raffaella” and would differ from the
FS assigned to “they” only with respect to (w.r.t.) the number.

Note that, the order of rows is unimportant, and within a single AVM, an attribute
can only take one value.

FS give a way to encode the information we need to take into consideration in order
to deal with agreement. In particular, we obtain a way to encode the constraints
we have seen before.

Contents First Last Prev Next J

6. Agreement Feature

In the above example all feature values are atomic, but they can also be feature
structures again. This makes it possible to group features of a common type to-
gether.

For instance, the two important values to be considered for agreement are NUM

and PERS, hence we can group them together in one AGR feature obtaining a more
compact and efficient representation of the same information we expressed above. CAT np

AGR

[
NUM sg
PERS 3

] 
Given this kind of arrangement, we can test for the equality of the values for both
NUM and PERS features of two constituents by testing for the equality of their AGR

features.

Contents First Last Prev Next J

7. Feature Path

A Feature Path is a list of features through a FS leading to a particular value. For
instance, in the FS below  CAT np

AGR

[
NUM sg
PERS 3

] 
the 〈AGR NUM〉 path leads to the value sg, while the 〈AGR PERS〉 path leads to the
value 3.

This notion of paths brings us to an alternative graphical way of illustrating FS,
namely directed graphs.

Contents First Last Prev Next J

7.1. Directed Graphs

Another common way of representing feature structures is to use directed graphs. In this
case, values (no matter whether atomic or not) are represented as nodes in the graph, and
features as edge labels. Here is an example. The attribute value matrix CAT np

AGR

[
NUM sg
PERS 3

] 
can also be represented by the following directed graph.

Paths in this graph correspond to sequences of features that lead through the feature
structure to some value. The path carrying the labels AGR and NUM corresponds to the
sequence of features 〈AGR, NUM〉 and leads to the value sg.

Contents First Last Prev Next J

7.2. Reentrancy

The graph that we have just looked at had a tree structure, i.e., there was no node
that had more than one incoming edge. This need not always be the case. Look at
the following example:

Here, the paths 〈Head, AGR 〉 and 〈Head, SUBJ, AGR 〉 both lead to the same node,
i.e., they lead to the same value and share that value. This property of feature
structures that several features can share one value is called reentrancy. It is one
of the reasons why feature structures are so useful for computational linguistics.

Contents First Last Prev Next J

7.3. Reentrancy as Coindexing

In AVM, reentrancy is commonly expressed by coindexing the values which are
shared. Written in the matrix notation the graph from above looks as follows. The
boxed 1 indicates that the two features sequences leading to it share the value.

Contents First Last Prev Next J

7.4. FS: Subsumption

We have said that feature structures are essentially sets of properties. Given two
different sets of properties an obvious thing to do is to compare the information
they contain.

A particularly important concept for comparing two feature structures is subsump-
tion.

We say that a less specific feature structure subsumes an equally or more specific
one, namely a feature structure F1 subsumes (v) another feature structure F2 iff all
the information that is contained in F1 is also contained in F2.

The minimum element w.r.t. the subsumption ordering is the feature structure that
specifies no information at all (no attributes, no values). It is called the “top” and is
written T or []. Top subsumes every other AVM, because every other AVM contains
at least as much information as top.

Contents First Last Prev Next J

7.5. FS: Formal definition of Subsumption. RVD

A feature structure F1 subsumes (v) another feature structure F2 iff

I For every feature x in F1, F1(x) v F2(x) (where F1(x) means “the value of
the feature x of feature structure F1”),

I For all paths p and q in F1 such that F1(p) = F1(q), it is also the case that
F2(p) = F2(q).

Notice that subsumption is reflexive, transitive and anti-symmetric.

Contents First Last Prev Next J

7.6. Examples

The following two feature structures for instance subsume each other.

[
NUM sg
PERS 3

] [
PERS 3
NUM sg

]
They both contain exactly the same information, since the order in which the fea-
tures are listed in the matrix is not important.

Contents First Last Prev Next J

7.7. Exercise

And how about the following two feature structures?

[
NUM sg

] [
PERS 3
NUM sg

]
Well, the first one subsumes the second, but not vice versa. Every piece of informa-
tion that is contained in the first feature structure is also contained in the second,
but the second feature structure contains additional information.

Contents First Last Prev Next J

7.8. Exercise: (Cont’d)

Do the following feature structures subsume each other?[
NUM sg
GENDER masc

] [
PERS 3
NUM sg

]
The first one doesn’t subsume the second, because it contains information that the
second doesn’t contain, namely GENDER masc.

But, the second one doesn’t subsume the first one either, as it contains PERS 3

which is not part of the first feature structure.

Contents First Last Prev Next J

8. Operations on FS

The two principal operations we need to perform of FS are merging the infor-
mation content of two structures and rejecting the merger of structures that are
incompatible.

A single computational technique, namely unification, suffices for both of the pur-
poses.

Unification is implemented as a binary operator that accepts two FS as arguments
and returs a FS when it succeeds.

Contents First Last Prev Next J

8.1. Unification of FS

Unification is a (partial) operation on feature structures. Intuitively, it is the opera-
tion of combining two feature structures such that the new feature structure contains
all the information of the original two, and nothing more. For example, let
F1 be the feature structure [

CAT np
AGR

[
NUM sg

]]
and let F2 be the feature structure[

CAT np
AGR

[
PERS 3

]]
Then, what is F1 t F2, the unification of these two feature structures? CAT np

AGR

[
NUM sg
PERS 3

] 
Contents First Last Prev Next J

8.1.1. Partial Operation Why did we call unification a partial operation?
Why didn’t we just say that it was an operation on feature structures?

The point is that unification is not guaranteed to return a result. For example,
let F3 be the feature structure

[
CAT np

]
and let F4 be the feature structure

[
CAT vp

]
Then F3 t F4 does not exist. There is no feature structure that contains all the
information in F3 and F4, because the information in these two feature structures
is contradictory. So, the value of this unification is undefined. (It’s result is marked
by ⊥, i.e. an improper AVM that cannot describe any object (the opposite of T).)

Contents First Last Prev Next J

8.1.2. Unification: Formal Definition Those are the basic intuitions about
unification, so let’s now give a precise definition. This is easy to do if we make use
of the idea of subsumption, which we discussed above.

The unification of two feature structures F and G (if it exists) is the smallest feature
structure that is subsumed by both F and G. That is, (if it exists) F t G is the feature
structure with the following three properties:

1. F v F t G (F t G is subsumed by F)

2. G v F t G (F t G is subsumed by G)

3. If H is a feature structure such that F v H and G v H, then F t G v H (F t G is
the smallest feature structure fulfilling the first two properties. That is, there
is no other feature structure that also has properties 1 and 2 and subsumes F

t G.)

If there is no smallest feature structure that is subsumed by both F and G, then we
say that the unification of F and G is undefined.

Contents First Last Prev Next J

8.2. Unification: Examples[
NUMBER sg

]
t
[
PERSON 3rd

]
=

[
NUMBER sg
PERSON 3rd

]
[
NUMBER sg

]
t
[
NUMBER []

]
=
[
NUMBER sg

]
[] indicates that the value is left unspecified, hence it can be successfully matched
to any value in a corresponding feature in another structure.

Exercises.

Contents First Last Prev Next J

9. Augmenting CFG with FS

We have seen that agreement is necessary, for instance, between the np and vp: they
have to agree in number in order to form a sentence.

The basic idea is that non-terminal symbols no longer are atomic, but are feature
structures, which specify what properties the constituent in question has to have.

So, instead of writing the (atomic) non-terminal symbols s, vp, np , we use feature
structures CAT where the value of the attribute is s, vp , np . The rule becomes

[CAT s] → [CAT np] [CAT vp]

That doesn’t look so exciting, yet.

Contents First Last Prev Next J

10. Augmenting CFG wiht FS (cont’d)

But what we can do now is to add further information to the feature structures
representing the non-terminal symbols. We can, e.g., add the information that the
np must have nominative case:

[CAT s] →
[
CAT np
CASE nom

]
[CAT vp]

Further, we can add an attribute called NUM to the np and the vp and require that
the values be shared. Note how we express this requirement by co-indexing the
values.

[CAT s] →

 CAT np
CASE nom
NUM 1

 [CAT vp
NUM 1

]
Exercises

Contents First Last Prev Next J

10.1. Head Features and Subcategorization

We’ve seen that to “put together” words to form constituents two important notions
are the “head” of the constituent and its dependents (also called the arguments the
head subcategorize for).

Head Recall, the features are percolated from one of the children to the parent. The
child that provides the features is called the head of the phrase, and the features
copied are referred to as head features.

Subcategorization The notion of subcategorization, or valence, was originally de-
signed for verbs but many other kinds of words exhibit form of valence-like behav-
ior. This notion expresses the fact that such words determine which patterns of
argument they must/can occur with. They are used to express dependencies.

1. an intransitive verb subcategorizes (requires) a subject.

2. a transitive verb requires two arguments, an object and a subject.

3. . . .

Contents First Last Prev Next J

See COMLEX set (Macelod et. al. ’98) for a subcategorization-frame tagset.

Contents First Last Prev Next J

10.2. FG with Head and Subcategorization information

In some constraints based grammars, e.g. HPSG, besides indicating the category of
a phrase, FS are used also to sign the head of a phrase and its arguments.

In these grammars, the CAT (category) value is an object of sort category (cat) and
it contains the two attributes HEAD (head) and SUBCAT (subcategory). The HEAD

value of any sign is always unified with that of its phrasal projections.

Schema Schematically the subcategorization is represented as below.

 ORTH word
CAT category
HEAD

[
SUBCAT 〈1st required argument, 2nd required argument, . . .〉

]


Contents First Last Prev Next J

10.3. Example

For instance, the verb “want” would be represented as following
ORTH want
CAT verb

HEAD

[
SUBCAT 〈[CAT np] ,

[
CAT vp
HEAD [VFORM INFINITIV E]

]
〉
]


Also other words have subcategorization frames. For instance, the prepositions
while vs. during

I Keep your seathbelt fasted while we are taking off.

I *Keep your seathbelt fasted while takeoff

I *Keep your seathbelt fasted during we are taking off.

I Keep your seathbelt fasted during takeoff

Exercises

Contents First Last Prev Next J

10.4. Home-work

For next time (02.10), who is reading the following paper and write a short summary
on it?

“Head-Driven Phrase Structure Grammar Linguistic Approach, Formal Founda-
tions, and Computational Realization” by Robert D. Levine and W. Detmar Meur-
ers

Next papers are due by 05.10 (Joshi 2009) and (de Marneffe et ali. 2014); 09.10.
(Lewis and Steedman 2014)).

Contents First Last Prev Next J

10.5. Not done on FS:

1. Implementing Unification

2. Parsing with Unification Constraints

3. Types and Inheritance

If you know Python and what to learn more on FS the http://www.nltk.org/ has
a module nltk.featstruct. Try to instal NLTK by next time.

Contents First Last Prev Next J

http://www.nltk.org/

10.6. NLTK tips to install it

Contents First Last Prev Next J

	Admin
	Formal Grammars
	Recall: Undergeneration and Overgeneration
	Undergeneration: Long-distance dep.
	Relative clauses
	Overgeneration: Agreement

	Features and values
	Feature Pergolation
	Set of properties

	Constraint Based Grammars
	Feature Structures
	Agreement Feature
	Feature Path
	Directed Graphs
	Reentrancy
	Reentrancy as Coindexing
	FS: Subsumption
	FS: Formal definition of Subsumption. RVD
	Examples
	Exercise
	Exercise: (Cont'd)

	Operations on FS
	Unification of FS
	Partial Operation
	Unification: Formal Definition

	Unification: Examples

	Augmenting CFG with FS
	Augmenting CFG wiht FS (cont'd)
	Head Features and Subcategorization
	FG with Head and Subcategorization information
	Example
	Home-work
	Not done on FS:
	NLTK tips to install it

