Domain-specific Mashups: From All to All You Need

Stefano Soi and Marcos Baez
Dipartimento di Ingegneria e Scienza dell'Inforntams
University of Trento

Via Sommarive, 14 38123
Trento, Italy
{soi,baez}@isi.unitn.it

Abstract. Last years, aside the proliferation of Web 2.0, agsisted to the
drastic growth of the mashup market. An increasmgnber of different

mashup solutions and platforms emerged, some fogusi data integration (a
la Yahoo! Pipes), others on user interface (Ulggnation and some trying to
integrate both Ul and data. Most of proposed sohsti have a common
characteristic: they aim at providing non-programsneiith a flexible and

intuitive general-purpose development environmewthile these generic

environments could be useful for web users to agvsimple applications, they
are often too generic to address domain-specifedsieand to allow users to
develop real-life complex applications. In partanl proposed mashup
mechanisms do not reflect those specific concdys dre proper of a given
domain, which domain-experts are familiar with aocduld autonomously

manage. We argue the need for domain-specific npasinohitectures, also
going beyond today's enterprise platforms, in whistandard mashup
mechanisms and components are driven by an undgrigomain-specific

layer. This layer will provide a service and compenecosystem built upon a
shared and uniform conceptual model specific fergtven domain. This way,
domain experts will be provided with mashup compaseand mechanisms,
following those well-known concepts and rules propé the domain they

belong to, that they are able to understand, udefarally, profitably compose.

In this paper, we will show the necessity of sustaechitecture through a real-
life use case in the context of scientific publicas and journals.

Keywords: domain specific mashups, vertical mashups, eed-aentric
mashups

1 I ntroduction

During last decade a vast amount of functionalitiese been made available as
online services, in form of Web Services, APIs, F8&n feeds and so on. While
these services can also be used independentlydnenother, putting them together to
create a value-adding combination could lead to hmowre fruitful results, as
described in [1]. This is exactly what mashup sohg try to achieve. In addition,

2 Stefano Soi and Marcos Baez

most of available mashup platforms aim at giving possibility to develop such
composite applications to domain experts, i.e.ugéth very limited programming
skills but deep knowledge of the domain being tbetext of the problem to be
solved. A number of studies (e.g., [2], [3]) dissumbout benefits of moving the
development of this kind of composite applicatinesn IT-experts to non-

programmers. This would be a radical paradigm dtifiging two main advantages,
that is, first, avoiding requirement transfer fratnmain-experts to IT-experts and,
moreover, allowing to face the development of sitweal applications that is

applications addressing transient or very speaiféeds for which the standard
development lifecycle is not adequate since it wadt be time- and cost-effective.

Current mashup building tools have the - non ttiviearget of enabling domain-
experts to develop such mashed up applicationsoutithalmost - any programming
skill or any intervention of expert developers. §hé often the main claim of
available mashup platforms but, from our studied @xperience in the mashup field,
we found that this claim is only partially fulfitie In particular, available mashup
solutions provide easy mechanisms, suited for mogfgammers, allowing them to
produce very simple applications (often just "tgpkcations") or covering only some
aspects of the integration needs of the usersVidilen users' needs go beyond this
complexity level, available solutions show up tHemitations.

In our opinion, main reasons underlying difficuitiein overcoming these
complexity limits are related to the fact that emtr mashup platforms (like [5],[6]
and similar) have the ambitious goal of "integrgtadl the Web". In other words, they
are not targeted at a specific domain but aim tee ghe possibility to make
interacting user interfaces (Uls) and services ogmirom completely different
domains and producers. For the time being, we tthiak"integrating all the Web" is
a too ambitious goal. The lack of widely adopteafficial or de facto - standards in
this area make the integration of highly heterogesecomponents a complex task
that, at the end, is not sufficiently supportedhwitechanisms well-suited for non-
programmers.

Starting from these considerations, we argue thertet is the need for domain-
specific mashup solutions. In particular, we pr@ptmsplace the mashup system upon
a layer defining concepts and policies of the gislemain. We will see that this layer
should include all the knowledge about the spedcifimain that could be then used to
ease the mashup development, making actually pgessd move the mashup
application development from IT-experts to domaipets.

Summarizing, the main contributions of this work:ar

 stating the need for moving from horizontal geng@@pose mashup solutions to
vertical domain-specific ones, allowing domain-axpéo autonomously compose
their applications playing in their well-know playpgind

» proposing a modular architecture that makes a eparation between mashup
layer and — pluggable — domain layer

 giving a first characterization of the “domain” @apt, in terms of domain entities
and rules, and first proposals on how the mashaifigoim should adapt to these.

1 For details and references about the concept tafitginal application we refer to the
Wikipedia page: http://en.wikipedia.org/wiki/Sitital _application

Domain-specific Mashups: From All to All You Need 3

To make our proposal clearer, we will explain theposed solutions with the help
of a use case, taken from the scientific publiceticontext. In particular, we will
make reference to a project our group is working, aalled LiquidPub
(http:/Mliquidpub.org/), and we will show how thelstion we propose could be
profitably applied in that context. This will beetllomain we will try to characterize
and on which verticalize. We will base our examptea mashup tool coming from
another project of our group, calleshshArt (http://mashart.org/), which provides a
complete mashup platform allowing famiversal Integration [7], that is seamless
integration of data, services and user interfat#s)(targeted to non-programmer
web users.

The rest of this paper is structured as followscti®a 2 will introduce and
describe the motivating scenario, with particukeierence to the LiquidPub project.
In Section 3 we will see in more detail how genenashup platforms work and what
are their limitations. Section 4 will propose armhatecture trying to overcome the
issues presented in the previous section. In Sediavill be presented the final
conclusions and future work.

2 Motivating Scenario: Knowledge Dissemination

The Web has pushed forward technological and sabiahges in different areas and
the scientific domain has not been the exceptioha$ opened a brand new world of
possibilities for how the scientific knowledge da@ consumed, produced, shared and
disseminated. This has motivated an extensive mesean how to exploit these
opportunities, leading to novalodels, new forms ofcientific contributions, metrics,
services andsources of information. Having a virtually infinite number of possibikts
also implies that there could be different ways afnsuming /disseminating
/evaluating the scientific research work. The d@&acof the right configuration in
terms of type of content (peer-reviewed paperspnmts, blogs, datasets...), the
metrics (h-index, citation count, pagerank,..), reea (reputed publishers, open
archives or the whole web) and the actual procelsgprebably depend on the final
usage scenario and the believes of the communitplementing a particular
dissemination model would normally require prograngrknowledge to produce the
required code (e.g., in java, perl, ruby...), follogia particular development process.
Considering that everybody in the scientific doma&s different thoughts on how to
do this, it will be unnecessarily limiting to rastrthis to programmers. It is clearly
something end-users, or domain experts, should le ® do, and not only
programmers.

Mashups provide the foundations for supporting sushenario. However, current
mashup platforms provide rather generic componems, so, at a level the scientist
(non-programmer) cannot manage. For exampleséientist strongly believes that i)
blogs and open archives are valid disseminatiomegnii) sharing and consumption
should be the main goal of a dissemination moded, therefore iii) sharing data
should be used as base to evaluate researchesenpng her a component that
connects to a web service as primary tool doeselgt her in the composition of the
dissemination model she believes in. Configuringl aviring components would
become extremely complex (e.g., setting up a waWbicge connection, or even

4 Stefano Soi and Marcos Baez

selecting the right web service), and the user Wdw required to provide the
mapping in terms of 1/0O among heterogeneous welicesr (when the whole concept
of “mapping” is probably obscure to her), to reflacflow and a process at such low
level. Maintaining and reasoning over such a coitiposwould also be a complex
task, not to mention that there is no way to ensaéthe final outcome is actually a
dissemination model. Hence, in this context, defirthe desired dissemination model
would not only be complex but it would require praxgming skills to specify the
mashup, regardless how fancy the user interfacétrbig

Thus, domain concepts and processes (e.g., natiopgblication, review, paper,
venue,...) should be exploited in order to reallyisidser in the composition. Taking
this as reference scenario, we discuss the limitatiand required extensions to
current mashup platforms, in the following sections

3 Understanding Current Mashups and their Limitations

As introduced in Section 1, the mashup approachldhwrovide domain-experts with
no programming skills with suitable mechanisms wiig them to develop
autonomously their situational applications, legdito the above mentioned
advantages in terms of responsiveness and effeetgeof solutions.

What makes possible moving application developrfremt IT-experts to domain-
experts, is probably the complete separation ofs;ohnd thus of required skills,
among component and composition developer, as t@ejpic Figure 1.

IT expert Domain expert Final user
Component Publishes) Composition Mash u\g
Developer Discover Devel Mashes-up U uses
Develops Developer eveloper ser
—————

o3 Component I

Repository ——F
Ct'swnisg:epnt Mashup tool Mashed-up
P (visual editor) Application

Figure. 1. Separation of roles among component and comppsitieveloper. Dotted
representation among composition developer and upasber, indicates that both roles can be
covered by the same person, as typically happetieioontext of situational applications. The
figure is an adaptation of the one presented ih [15

The former is responsible to create and publishbihitding blocks that will be
glued together to realize the final composite agpion. These components will
implement or wrap some services or will represemiser interface. Complexity is
primarily pushed into components, leaving composgisimpler and lightweight. It is
clear that component development requires spgaiigramming skills, in particular

Domain-specific Mashups: From All to All You Need 5

in the web-programming field, since mashup platforane typically offered as web
applications, following the Software as a ServiadqS) approach [8]. To this end, a
number of web tools have been proposed to helpenplify the creation of services
and components (e.g., data extraction from web fageb clipping) [9]. Some
examples are OpenKapow and Dapper. Both this fmolgide simple mechanisms to
grab contents from web pages and expose extractd ab web services or RSS
feeds. However, this kind of tools still requires rmt negligible knowledge
of programming concepts to be effectively used.

Assuming that components have been developed add enailable, composition
developers, now, only need to define the businegic laddressing their needs,
connecting available components, usually throughpk visual mechanism (e.g.,
drag and drop). This operation should not need aayticular programming
knowledge or complex operation and should be tackle advanced web users that
have a deep knowledge in their domain but no skillprogramming. Typically, in
the context of situational applications developmémd domain-expert plays both the
mashup developer and mashup consumer role (astediby dotted representation in
Figure 1), since she develops compositions to aatenprocesses covering her
situational needs.

Providing autonomy in mashups composition to adegdnaeb users is the big
claim of most mashup platforms, but our experiesmee studies showed that it is not
actually fulfilled in general. Proposed solutiontwa domain-experts to compose
their applications without the need to write pragnaing code, but this does not mean
that the composition process is easily and intefyivaffordable by non-programmers
[10]. In the example of Section 2, this would tlase for the scientist trying to select
publication venues but that find herself with a wsdrvice connector. Analyzing
available mashup tools, we concluded that they diren confusing for domain-
experts, starting from the components selection, theven the vast amount of
available possibilities, could be time-consumingl @nror prone. For example, if we
analyze two popular visual environments for "Consunmashup” composition,
Yahoo! Pipes and Microsoft PopFlywe can see that they provide users with about
50 components for Yahoo! solution and more than f8@Microsoft one. Moreover,
when the needs require more complex mashup sotutioany tools either are no
more sufficient or start requiring to the compasitideveloper (domain expert) a
deeper and deeper understanding of programmingeptsicin fact, a significant part
of offered components provide functionalities titah be exploited only by those
users that have good programming knowledge (eemular expressions, loops).
Another important lack of currently available sabats is that almost none of them
provideuniversal integration, that is, as discussed in [7], the seamless iatiegr of
data, application, and user interface (Ul) comptsiecharacteristic that we consider
necessary to actually enable end-users to devéleip situational applications. For
instance, Yahoo! Pipes is mainly oriented towardadmtegration while Intel
MashMaker mainly focuses on Ul integration, but laild real-life complex
applications both ingredients are needed. In #ld Bf the "Enterprise mashup” tools
many efforts is being done to address some busorégsl issues, like security,

2 Microsoft PopFly was discontinued on August 2008t still remain an important mashup
platform example that attracted thousands of d@ezk

6 Stefano Soi and Marcos Baez

privacy, reliability and accountability. From theipt of view of domain-experts
usability, enterprise solutions suffer of the sapreblems of consumer ones. In
particular, although there exist powerful and caetglmashup solutions, they are
usually targeted at programming-skilled users. Aticeable example is the
Tibco® suite, providing users with a vast amount of ddfé components and
mechanisms, covering every possible need, but atigetly related to programming
concept that domain-experts could completely ignore however, difficultly
manage.

All the generic components and mechanisms thatablaimashup solutions, both
consumer and enterprise, provide and their progriagwmature limit the possibilities
of composition of domain-experts to "toy applicasb.

We argue that the main reasons for these limitatimgarding most of the
available tools need to be searched in their airbeiageneric-application building
tools. This general purpose attitude make it diffifor domain-experts to get familiar
with components, functionalities and mechanismsesgnting concepts and entities
they are not acquainted - and which they are ni@résted in. Moreover, such an
approach aims at integrating components from diffesources belonging to different
domains, so, very often, making possible the conication among different
components is a complex task still requiring spegifogramming efforts. Back to
our example of Section 2, this would be the cagsetlie scientist who wants to
aggregate, according to her, valid venues of sfienesources (e.g., publishers,
blogs, eprints) to incorporate them in her modehisTwould lead to complex
mappings requiring, most probably, some programrakils.

Overcoming these issues requires a different magblagform architecture
allowing domain experts to work in their naturahydround, where they are familiar
with concepts and issues, so that they can tabklelévelopment of their situational
applications. To the best of our knowledge, thenea related work actually exploring
the concept of domain-specific mashup. Next sectidlh describe our proposed
solution and architecture, aiming to enable rdal-kpplication development for
domain-experts.

4 Domain-specific Mashups

Domain-specific mashups is our proposal to exgloinain concepts at the mashup
composition level in order to put domain-expertstlad center by providing an

environment that can really assist them in the awsitipn of domain-specific

mashups. So, we need specific solutions pushingadomoncepts up to the
composition editor level, so that users can playthair well-known conceptual

environment. To achieve such a system, we propesedular architecture including

two main layers, as depicted in Figure 2.

3 http://www.tibco.com

Domain-specific Mashups: From All to All You Need 7

Web Browser

(a [t
b Jou SAE] R -

Repository Visual Editor Domain-expert
Domain-expert

Layer

Mashup

SOAP
ws

APIs 5
The Web -
RSS/AlOm pESTR
ws

Conceptual Service
Policy Model Ecosystem _

Domain
Layer
)
e)

Figure 2. High-level architecture of a domain-specific masiplatform.

The upper layer is the actudhshup Layer, that is, a mashup tool similar to some
available today. In particular, this layer shoult {east - include a composition visual
editor, providing end-user friendly mechanismsdomposition development through
a common web browser, and a component repositooyiging all the components
that could be useful for building compositions igigen domain. In addition, other
parts should be included at this level, like a imst environment able to run the
produced composition and other implementation-$ijgecomponents, but those go
beyond the scope of this work that is trying to®on the composition-development
phase seen from the domain-experts point of view. foposal to actually help and
enable domain-experts to autonomously create th@mnposite applications is to
transform our generic mashup tool into a domaireiigeone injecting domain
related concepts into the development environméning at this, we create
aDomain Layer that will be then plugged into tidashup Layer. This lower layer is
responsible for the domain characterization. Ineotivords, it will define all the
concepts and entities proper of the domain, thefirasentation and general rules
regulating the interactions among them. Furthermdnés layer will provide the
domain related ecosystem of services, either impiged inside the layer or
wrapping web-sourced services.

In this section we provide the two aspects covénredur proposal: modeling and
characterizing the domain and its projection torttashup platform.

41 Characterizing the Domain: Domain L ayer

In order to leverage domain-experts knowledge i@ gdomposition, we need to
understand the concepts, properties, rules andegses that make the domain. The
definition of these elements is key to the selectbthe right level of abstraction for
users. To this end, we rely on the definition of ttonceptual model, the business
level operations and the domain rules.

Conceptual model. In the context of a particular domain, there apmcepts and
relations among these concepts that are knowneidéimain and familiar to domain
experts. These concepts are commonly representeal ¢onceptual model. For

8 Stefano Soi and Marcos B:

instance, in Figure, we show a ossible conceptual model for the exarr

introduced in Section
H 11

IEHH!IHHHiI
Journal

appears

Sc1. Resource

Lifecycle I Issue

| Sci. Resource

I Journal

releases

proviced by

augmentzd with

Entity

M1

Iliiiiiiiaiiiiill

IHHIHEHHHI

Person

Figure 3. Liquid journals conceptual model

Reputation

MN

The Figure above captures the concepts in the launel dissemination domain.
is based on the liquid journmodel, which represents a family of models from
traditional ones to the onesore social and web-aware [[11n this model we can s¢
thatjournal is a firstclass entity composed sfientific resources (papers, blogs
datasets, ...), organized journal issues, driven byeditorsand that follows a certai
lifecycle. We can also see thscientific resources belong to certain sources (venu

Business-level operations. Operations and processes that affect the sharezbpts
are highly relevantThese relate to users' ev-day life and as such provide the le
at which the expert can better reason. Followingesample, these are the operati
which are meaningful in the domain suchpublish, evaluate, review, submit, and
other more social such share, annotate, search, etc.

Business rules. Business rules are well known by domain experteyTare very
important as they give shape to the business kgitprocesses. In our example,
could establish as a busin rule that whatever publication model we follow, need
to first select/review a paper bef¢publishing it in journal.

The information we have described above is presenthe domain but nc
exploited in the mashup composition. Mashup comjosienvronments strongl
rely on the domain expert to build application frasually lov-level components
and so they do little or nothing to assist users.iffject these elements into t
composition environment we propose to bu Domain Layer as a way of iding the
unnecessary complexity which is currently exposedusers. Althoughwe are
convinced thathe complexity coulcbe pushed intdhe component design, havi
such a platform will make component development lmeasier and would enst
consistency andinally, smooth composition. Another good reason for hasinch a
layer is thdancreasing existencef domain specific ecosystems. Thus, in pract
terms, concepts and operations are captured tjpimala platform exposing an AF
In our example, théquid journal platform provides the services and key entities

Domain-specific Mashups: From All to All You Need 9

RESTful services This platform builds on existing sources of imf@tion (e.qg.,
Google Scholar, eprints, DBLP) and allows uppertato access them using the
common conceptual model in Figure 3. Solving thietogeneity at this level has the
advantage of not only providing homogeneous progmatit access, but also of
avoiding taking complex mappings to the mashup renment by preparing the
components according to the shared concepts. Okeptaking these and all the
domain elements described here requires some wonkake it happen. We discuss
these and other related issues in the next subsecti

4.2 Taking the Domain into the Mashup Platform

Injecting the domain information provided by theoggstem into the composition
environment requires some work on both the complotevelopment and the mashup
platform. More precisely, it requires (i) a progisign of the components in what
regards the level of abstraction and compositian, riaking the composition
environment aware (to some extent) of the businedss by defining some
composition rules, and thus taking to the mashyr@mment what is already on the
backend, and (iii) making the environment aware tloé coupling among the
components (and concepts managed by the compoiemigier to assist users in the
component selection.

In what follows we describe our approach using masshs reference platform,
albeit the ideas described here could be appliedi®r mashup platforms.

Building domain components. Good quality components are key to the success of
any mashup platform and derived applications, ani she case for domain-specific
components. Thus, in addition to known practicascfimponent development (e.g.,
[12]), building domain components puts some exgability requirements. To reach
users, we must select the right level of abstractfor the components and
composition. It should be the one at which usersl fin the environment only
concepts they know, expressed with the same tetaggpi.e., components should be
meaningful to the domain expert and be relatech& lusiness-levebncepts and
operations. In practice, we pass from components that reptgast technology (e.g.,
a component connecting to a service) to comporthatshave a precise semantic that
is familiar to the domain expert (e.g., the comptrtbat publishes a paper). This is a
conceptual shift.

Components should also be designed for smooth csitigpon Composing
components should be straightforward to domain egpand complex mappings
avoided to the possible extent. To this end, coraptmevents and operations /O
should be presented in terms of the domain concéptgsractical terms, this means
that a domain-specificamespace should be made available to the component
definition. Additionally, to ease and, at the satm@e, check the component
development process, the platform could possiblpvide a domain-specific
component editor able to guide developers in theegdion of new components

“http://docs.google.com/Doc?docid=0ARoLwWpXLTjBGZGt6i0tI8yZGOON3Y4Y24&hl=en

10 Stefano Soi and Marcos Baez

(particularly for their descriptors), based on kmewledge coming from thBomain
Layer (e.g., available entities and their representajions

In Listing 1, we illustrate the definition of a cponent designed taking into
account a domain-level operation for providing fiemifunctionality, and domain-
concepts in the I/O to ease the composition.

<?xm version=*1.0" encodi ng=“utf-8" ?>
<mdl version="0.1" xm ns:1j=" http://1iquidjournal.org/schena/liquidjournal.xsd">
<conponent nane=“Publ i sh” bi ndi ng="conponent/ U " stateful ="yes”
url ="http://mashart. org/registry/ X/ Publish/">
<event nanme=“Paper published” ref="onPublish">
<out put name="Publ i shed Entity” type="lj:entity”></output>
</ event >
<operati on nane=“Publ i sh paper” ref="doPublish">
<input name="Entity” type="lj:entity”"></input>
</ oper ati on>
</ conponent >
</ md| >

Listing 1. MDL of the component Publish

As seen in th&ublish component I/O refers to the typstity, an abstraction
introduced in the conceptual model. A strong pointhis approach is that it does not
introduce any change into the MDL (mashArt Desaipt_anguage, used to define
each component of the mashArt platform) but itadtrces higher level types based
on the conceptual model. In Listing 2 we show péthe definition of the XSD used
to make the mashup platform aware of the conceptoale?.

<?xm version="1.0" encodi ng="utf-8" ?>
<xs:schema ... xmns:tns="http://1iquidjournal.org/schema/liquidjournal.xsd">

<xs: conpl exType nanme="entity">
<xs: choi ce>
<xs:element ref="tns:liquidjournal" />
<xs: el enent ref="tns:issue" />
<xs:el ement ref="tns:sci Resource" />
</ xs: choi ce>
</ xs: conpl exType>

</ xs: schema>

Listing 2. XSD Definition of domain-level concepts

Business-level composition policies. As mentioned before, business rules are
important and usually enforced at the backendrdieioto ensure some patterns in the
output and help users in the definition of consistenashups we believe it is
important to abstract these rules and take thetihetdevel of composition. Of course,
domain rules can be very complex to be completahpd to the composition, so we
target composition policies as a tool for "assistdrather than "enforcement”. There

5 The complete XSD can be found here https://davidioub.org/svn/liquidpub/
prototype/ljdemo/server/resources/meta/liquidjoursa

Domain-specific M ashups: From All to All You Need 11

could be different ways of defining such policidsjt in this paper we consider
syntactic constraints based on category of comgsrensimple starting strategy (that
will be then extended in future). Components primgdsome common functionality
could be categorized and category-level policieBndd on them. Thus, policies
allowing/denying cross-category couplings coulddeéined. Taking our scenario as
an example, we could define categories sucheeigw processes, selection modes,
publication modes, sources and venues, people, metrics and entities, and on these
define policies such as publication cannot be peréal before the selectioNote that
categorization is not mandatory and so "free" camepts not regulated by the
policies are perfectly allowed. Implementation-wigslicies can be defined using
XML and the mashup editor can check and guide ger during the composition
based on the rules regulating that domain.

Mashup composition environment. The information about the domain components
and policies should finally be reflected on the mgs composition environment.
Domain components provide the opportunity to maleammgful suggestions based
on components coupling (I/0O matching) and so intoeda basic yet useful proactive
behavior in the component selection. In its simple® could see composition as a
domino where the domain-expert select componentsngnthe compatible ones.
Domain policies provide even richer informationli€ies will have higher priority
over coupling based suggestions, filtering out eamking eligible components. In
addition to this, the mashup composition environtmaould provide intuitive Ul
representation for components and the connectieng., (meaningful icons for
components) to ease the selection.

Finally, having composition information at this é&vwill enable further
improvements in the composition environment. It ldomake it easier to extract
usage information that could be used to improvestiection process (by reusing past
experiences), since all components are definedisiness level, making possible to
extract the semantics of the compositions and usage

5 Conclusion

In this paper we have introduced domain-specifishm@s as a way to inject domain
knowledge into the mashup composition, with thémdte goal of providing domain-
experts with the tools to compose mashup applicatirom familiar domain
concepts. Our approach rather than proposing antémgical change, proposes a
paradigm shift in going from generic platforms withainly low level (and
technological-oriented) components to domain-speciértical extensions. To this
end, we have introduced a layered architecturehitlwwe distinguish the mashup
layer from a domain layer that can be plugged tme @efinition of this domain layer
is what allows us to describe the level of absimactamiliar to the user. In addition,
the separation among the two layers allows the sauashup tool to be reused for
different domain verticals, simply replacing thederlying domain layer.

As immediate future work we need to investigate enon how to define and
model the domain characteristics (entities andsjugeich that they are at the same

12 Stefano Soi and Marcos Baez

time useful to help the composition phase but alsbtoo rigid, guaranteeing the
needed flexibility. Then, we plan to go from thenceptual modeling to the actual
implementation of the extensions to the mashuprenmient. In particular, we plan to
do that working on the mashArt platform and on deenain of scientific publishing,
as introduced in this paper.

6 References

[1] A. Jhingran. Enterprise information mashupsegnating information, simply. In VLDB
‘06, pages 3—4. VLDB Endowment, 2006.

[2] I. Floyd, M. Jones, D. Rathi, M. Twidale. Web Baups and Patchwork Prototyping: User-
driven technological innovation with Web 2.0 ande@[Source Software. Proc. Of HICCS
‘07

[3] S. Bitzer, M. Schumann. Mashups: An ApproachQweercoming the Business/IT Gap in
Service-Oriented Architectures. Proc. of AMCIS 2009.

[4] J. Wong and J. I. Hong. Making mashups with mmige: towards end-user programming for
the web. Proc. of the SIGCHI '07, pag. 1435-14080,72

[5] Yahoo! Pipes project. [Online] http://pipes.ygahcom/.

[6] Intel MashMaker project. [Online] http://mashkea.intel.com/.

[7] F. Daniel, F. Casati, B. Benatallah, M. Shan. dstUniversal Composition: Models,
Languages and Infrastructure in mashArt. Proc.RIDE, Pages 428-443.

[8] M. Shan. Software as a Service(SaaS) The cigdle of application service hosting, Proc.
of Int. Conference on Web Engineering, Como, Italyy 2007.

[9] F. Daniel, S. Soi, F. Casati. Search Computirighallenges and Directions, edited by S.
Ceri and M. Brambilla, LNCS, Volume 5950, March 20%@ringer, Pages 72-93.

[10] R. Tuchinda, P. Szekely, C. A. Knoblock. BuilgiMashups by example. In Proc. of the
13th international Conference on intelligent Useeifaces 1Ul '08, p. 139-148

[11] M. Baez, F. Casati, A. Birukou, M. Marchese. uiijjournals: Knowledge dissemination
in the Web Era. http://eprints.biblio.unitn.it/ane&/00001814/

[12] Daniel, F., Matera, M.: Turning Web applicat®into mashup components: issues, models
and solutions. Proc. of ICWE’2009.

