

DISI	 -‐	 Via	 Sommarive	 14	 -‐	 38123	 Povo	 -‐	 Trento	 (Italy)	

http://www.disi.unitn.it	

A SCIENTIFIC RESOURCE SPACE MANAGEMENT
SYSTEM

Cristhian Parra, Marcos Baez, Florian Daniel, Fabio Casati, Maurizio Marchese
University of Trento – Dipartimento di Ingegneria e Scienza dellʼInformazione
Via Sommarive 14, 38100 Trento, Italy
{parra,baez,daniel,casati,marchese}@disi.unitn.it,

Luca Cernuzzi
Universidad Católica “Nuestra Señora de la Asunción” – Departamento de Electrónica e Informática
Tte. Cantalupi y Tte. Villalón. Barrio Santa Ana. Asunción – Paraguay
lcernuzz@uca.edu.py

February 2010

Technical Report # DISI-10-013
Version 1.0

A Scientific Resource Space Management System

Cristhian Parra, Marcos Baez, Florian Daniel, Fabio Casati, Maurizio Marchese

University of Trento – Dipartimento di Ingegneria e Scienza dellʼInformazione
Via Sommarive 14, 38100 Trento, Italy

{parra,baez,daniel,casati,marchese}@disi.unitn.it,
Luca Cernuzzi

Universidad Católica “Nuestra Señora de la Asunción” – Departamento de Electrónica e Informática
Tte. Cantalupi y Tte. Villalón. Barrio Santa Ana. Asunción – Paraguay

lcernuzz@uca.edu.py

ABSTRACT
As the web continues to change the way we produce and dissemi-
nate scientific knowledge, traditional digital libraries are con-
fronted with the challenge of transcending their boundaries to
remain compatible with a world where the whole Web in itself is
the source of scientific knowledge. This paper discusses a re-
source-oriented approach for the management and interaction of
scientific services as a way to face this challenge. Our approach
consists in building a general-purpose, extensible layer for access-
ing any resource that has an URI and is accessible on the Web,
along with appropriate extensions specific to the scientific do-
main. We name the class of systems that have this functionality
Scientific Resource Space Management Systems, since they are
the resource analogous of data space management systems known
in literature. In this paper, we describe the motivations, concepts,
architecture, and implementation of the platform and one validat-
ing usage scenario.

Categories and Subject Descriptors
H.3.5 [On-line Information Services]: Web-based services.
H.3.7 [Digital Libraries]: Dissemination, Collection. D.2.11
[Software Architectures]: Service-oriented architectures. H.3.3
[Information Search and Retrieval]: Search process, Selection
process.

General Terms
Management, Documentation, Design

Keywords
Resource Space Management System, Scientific RSMS, Scientific
Resources, Karaku, ResMan

1. INTRODUCTION
Over the last decade, the increasing outburst of services available
on the Web has pushed forward new ways of producing and dis-
seminating knowledge online. For instance, in the context of sci-
entific knowledge today’s researchers have access to an over-
whelming space of scientific publications thanks to instruments
that range from traditional digital libraries (such as SpringerLink1

1 http://www.springerlink.com

and ACM2) to specialized search engines (such as Goo-
gleScholar3) and metadata services (such as DBLP4). But not
only: in addition to these rather “traditional” means of knowledge
dissemination, today’s Web 2.0 is characterized by instruments
that provide for the earlysharing of knowledge, e.g., wikis, blogs
or personal web sites. Even though these kinds of contributions
are not peer-reviewed, depending on the reputation of the author,
they might nevertheless have a huge impact on the scientific
community (think, for instance, of the so-called technology evan-
gelists). Then, there is an increasing interest in online repositories
where scientists can publish, share and discuss their contributions,
leveraging the power and typical features of social applications.
For instance, scientists might share and collaboratively enhance
teaching material like slides, books or videos or they might share
their data and experiments like, for instance, on myExperi-
ment.org where scientists share their scientific workflows.

These latter, novel kinds of contributions, however, are typically
not considered first-class citizens in scientific knowledge dis-
semination. Yet, we argue that in many cases they provide signifi-
cant contributions to science that complement the traditional re-
search papers. As such, they too need to be properly indexed and
made available to the public for search and access, a task that is
however not easy. The biggest hurdle we need to clear is the het-
erogeneity of these contributions. In fact, unlike in digital libraries
where there exist efforts toward the definition of standard means
(e.g., interfaces, languages, protocols) to access and query online
repositories, wikis, blogs or social applications typically do not
feature similar interfaces. Rather, they follow the recent trend of
exposing software interfaces on the Web, such as SOAP or REST-
ful web services, which can be used to programmatically interact
with them. Unfortunately, however, there are no standards for the
design of these kinds of web-accessible APIs and, as a conse-
quence, there is no single instrument to search and access these
heterogeneous sources in a uniform fashion, and each source re-
quires its own access logic.

Enabling users to search the described types of scientific contribu-
tions therefore requires a novel approach, especially as for what
regards the logic of how to access individual sources (multiple

2 http://portal.acm.org
3 http://scholar.google.com
4 http://dblp.uni-trier.de

technologies might be involved in a single query) and of how to
abstract them to the user (who doesn’t want to know about the
technicalities). The goal of this paper is to extend the reach of
search services, such as the ones supported by traditional digital
libraries, beyond their typical boundaries. For this purpose, we
leverage on ideas taken from dataspace management [1] so as to
develop what we call a Scientific Resource Space Management
System (sRSMS), which will allow us to access a variety of scien-
tific resources homogeneously, addressing the problem of hetero-
geneity and interoperability among scientific artifact sources (not
only digital libraries) in a novel fashion and enabling the easy
development of value-adding applications on top.

In essence, our sRSMS provides homogeneous programmatic
access to scientific resources by (i) abstracting the various kinds
of scientific knowledge into a uniform conceptual model to sup-
port uniform access logics; (ii) abstracting the operations that the
services providing access to scientific knowledge support (from
simply accessing paper data and metadata, to extracting and tag-
ging content, crawling citations, accessing blogs and experiments,
changing access rights, posting, submitting for review, etc…);
and (iii) by hiding the tedious problem of accessing heterogene-
ous platforms, which very often are not even available for pro-
grammatic access but are only designed for web browser access
(e.g., SpringerLink, Google Scholar, blogspot, or wikis).
Motivating scenario. The idea of sRSMS was born in the context
of the EU project Liquidpub5, which aims at developing concepts,
models, metrics, and tools for an efficient (for people), effective
(for science), and sustainable (for publishers and the community)
way of creating, disseminating, evaluating, and consuming scien-
tific knowledge. For this purpose, several tools are under devel-
opment, providing advanced features on top of what we call the
scientific resource space. Among them, we aim, for instance, at
developing so-called Liquid Journals (LJs), i.e., personal collec-
tions of scientific resources (the journals) that evolve continuously
over time, following the dynamics of the resources it is built on
(the liquid aspect). For this purpose, it is necessary to query both
traditional, peer-reviewed journals and conferences, and the novel
kinds of contributions discussed above. In Figure 1 we illustrate
the idea that drives this paper: for the purpose of fast prototyping
and early validation of the LJ idea, we started implementing the
LJ Application as a monolithic block, which indeed allowed us to
achieve the expected results in short time. However, we also rec-
ognized that there is something more “under the hood”, which
deserves its own attention, especially in light of other advanced
features to be implemented: the abstraction and management of
the actual scientific resources.
Providing these features in a way that is as general and widely
applicable as possible and, at the same time, as useful and specific
(to the scientific domain) as possible is a non-trivial task. There
are several challenges that need to be answered: Which are the
best concepts and abstractions? Which features are general
enough to be really reused in practice? How does our resource
space look like? How do we deal with the heterogeneity of re-
sources? How do we query the resource space? Which interfaces
are suitable to provide programmatic access to application to be
developed on top? And so on.

5 http://project.liquidpub.org

Figure 1 From ad-hoc access of scientific resources to a dedi-

cated Scientific Resource Space Management System

Contributions. Building on this scenario, in this paper we pro-
vide the following contributions:
• We introduce the ideas of Resource Space Management

System (RSMS) and Scientific Resource Space Manage-
ment System (sRSMS) and describe the ideas and require-
ments that drive their development.

• We define our scientific resource space and show how to
abstract scientific resources of various natures along with
their operations. While anything identified by a URI is in
scope of a generic RSMS (whether it is a scientific resource
or not), here we aim at providing concepts and services for
scientific resources, such as built-in notions of authors, ref-
erences, and the like. Although tailored to the domain of
scientific publications, we will see that the introduced con-
cepts are extensible and easily applicable also to other do-
mains.

• We describe the implementation of our sRSMS, which is
able to provide homogenous programmatic access to re-
sources and web services, regardless of how they are im-
plemented as long as they are web-accessible.

• We show how our sRSMS can be leveraged to ease the de-
velopment of the Liquid Journal Application described
above and show how it similarly supports the development
of a prototype tool for the evaluation of a scientist’s scien-
tific impact on the community (see the ResEval application
in Figure 1).

• Finally, in doing so we aim at simplicity, flexibility and
collaborative extensibility. Our target users are people with
skills comparable to using spreadsheets or wikis. So, sim-
plicity is paramount if we want to support them in their
tasks. Yet, more expert users (e.g., other developers) might
feel the need to extend our sRSMS with own logics. Given
the large amount of services available, it is practically im-
possible to provide a monolithic infrastructure that incorpo-
rates all of them. It is also unfeasible to think that we can
develop (or even envision) all services that will use the
sRSMS or even that can be part of the core sRSMS. Our
sRSMS therefore facilitates extensibility by the community
in that developers can just register services that interface
with systems or scientific resources and that may be hosted
also by other parties (there is no need for plugging code in).

2. RELATED WORK
Our idea of resource space management system stems from the
area of dataspaces, which extends concepts from traditional data-
base management toward heterogeneous data sources [1][2]. In
particular, the idea of dataspaces is to allow building applications
over a dataspace layer by searching for and operating with multi-
ple data sources using a common interface. We extend the princi-
ples of dataspaces to a space of scientific resources, where re-
sources also have own behaviors (i.e., they have actions that can
be used to interact with them), and we aim to model scientific
entities in this space of resources as first class citizens. We differ
from dataspaces in that we do not only focus on the search prob-
lem, but we also provide abstractions for operating with scientific
entities at different levels of abstraction/granularity.

If we look at the Web, we see that electronic publishing, digital
libraries, electronic proceedings, on-line patents repositories and
more recently blogs and scientific news streaming are rapidly
expanding the amount of available scientific/scholarly digital
content.Search engines (like Google, Yahoo, Ask.com, and so on)
give users a first, shallow (but easy to use) level of integration
through keyword-based search, and have an excellent coverage of
material published on the Web. The introduction of smart ranking
algorithms, such as Google’s PageRank™, made this type of
search even more effective and fast. However, keyword-based
search has some heavy limitations, such as: document-level
granularity, lack of integration across results, lack of context for
keywords, difficulty in expressing complex queries (for example,
one cannot directly ask Google a query like “Give me all publica-
tions written between 2000 and 2009 by authors who have an h-
index above 10 in the specific research domain of interoperability
in Digital Libraries”). The problem is that general-purpose search
engines lack the necessary domain concepts and interaction capa-
bilities to properly handle scientific resources.

The Search Computing6 (SeCo) project aims at answering queries
that are similar to the one above by automatically deriving from
the query in input a suitable query execution plan, which can then
be used to orchestrate the interaction with individual search serv-
ices [3]. The goal of the project is to enable so-called multi-
domain search, i.e., the search of deep web data by accessing
multiple domain-specific search services in a coordinated fashion.
In order for search services to be accessed by the SeCo query
engine, they must have been registered in the platform. Resources
(the search services) are however interpreted as pure search serv-
ices, while in our sRSMS (i) we do not address only search serv-
ices, but also single scientific resources (e.g., an individual Goo-
gle Doc); (ii) we aim to handle scientific resources like full-
fledged services with their own interaction logic; and (iii) we try
to provide the resources’ features to upper layers in the software
stack in an abstract form.

Indeed, our research also considers the problem of operating on
sources (not only search). Thus, a relevant area is that of services
integration and interoperability, where research on service com-
patibility [4], and recently on models and frameworks for service
integration, replaceability, and interoperability has produced re-
sults we build on in our work [5][6].

Besides general-purpose search engines, there are many open or
commercial digital libraries that specifically focus on the scien-

6 http://www.search-computing.it/

tific knowledge domain, such as Scopus7, Web of Knowledge8,
CiteSeer9, DBLP, or GoogleScholar, which typically offer a much
better and more flexible access to their content. Flexibility and
search effectiveness derive from the use of annotations of contents
and documents with structured metadata. As a consequence, they
can answer queries that are more complex than simple keyword
queries (in principle, even to the query specified above). How-
ever, they suffer from a much narrower coverage, and currently
there is very little – if any – integration between different services.
This means, for example, that DBLP or CiteSeer cannot answer
any query that requires gathering information from each other or
from related digital libraries like the patent library of EPO or the
project database of CORDIS10.

In the context of scientific knowledge, the challenge is therefore
developing applications that are capable of using these reposito-
ries to assist the scientific community above and beyond the pure
dissemination of information. One important thread of work is
related to the definition of standards for metadata for scien-
tific/scholarly content in order to support this kind of integration.
In particular:

 The Dublin Core Metadata Initiative11 (DCMI) is dedicated
to promoting the widespread adoption of interoperable meta-
data standards and developing specialized metadata vocabu-
laries for describing digital resources.

 OpenArchives Initiative Protocol for Metadata Harvesting12
(OAI-PMH) defines a mechanism for harvesting records con-
taining metadata from repositories. Thus, metadata from
many sources can be gathered together in one database, and
services can be provided based on this centrally harvested or
“aggregated” data.

 Online Information Exchange13(ONIX): is the international
standard for representing and communicating book industry
product information in electronic form.

 The Digital Object Identifier14 (DOI®) serves as an identifier
for digital objects on digital networks. It provides a system
for persistent and actionable identification and interoperable
exchange of managed information on digital networks.

All the above protocols, however, are focused on a top-down ap-
proach for supporting content interoperability (metadata from
repositories), which is only one angle of the problem we are fac-
ing in our approach. More specifically, it misses on recent bottom-
up trends of exposing scientific artifacts (not only papers) via
software interfaces on the Web, which can be used to program-
matically interact with them. In this respect, it is worth mention-
ing recent services, such as CiteUlike15, SciLink16, SciSpace17,
Mendeley18, or Zotero19, which provide scientists with the tools

7 http://info.scopus.com/
8 http://isiwebofknowledge.com/
9 http://citeseer.ist.psu.edu/
10 http://cordis.europa.eu/home_en.html
11 http://dublincore.org/
12 http://www.openarchives.org/OAI/openarchivesprotocol.html
13http://libraries.mit.edu/guides/subjects/metadata/standards/onix.

html
14 http://www.doi.org/
15 http://www.citeulike.org/
16 http://www.scilink.com
17 http://www.scispace.com/
18 http://www.mendeley.com/

for organizing and sharing papers, creating social communities,
and making contacts. However, these services, although very
interesting and useful, do not provide any reusable infrastructure
to build new applications on top. They can however be seen as a
new type of scientific resource that can be used by our sRSMS
infrastructure.

3. RESOURCE SPACE MANAGEMENT:
CONCEPTS AND REQUIREMENTS
Before introducing our interpretation of sRSMS, it is good to
clarify which are the theoretical assumptions and design principles
that drive the development of our sRSMS and that, we believe,
should be common to every RSMS, be it scientific or not. In this
section, we leverage on the ideas pushed forward in [1], where the
authors introduce the concept of Dataspace Management and
DataSpace Support Platform (DSSP) in the context of data man-
agement, and we describe our analogies in the context of resource
management. For instance, our idea of RSMS can be seen as re-
source counterpart of the DSSP.
Managing a space of resources means bringing together inside one
homogeneous environment a variety of heterogeneous kinds of
resources and providing suitable means to access and use re-
sources and to define and maintain all necessary relationships
among the resources. In short, a resource can be any artifact we
can refer to by a URI and that is accessible over the Web. This
notion is very general and captures the requirement of supporting
any arbitrary information such as simple web pages, online docu-
ments, web services, feeds, and so on. That is, resources might be
simple sources of data or content, but they might also be as com-
plex as SOAP or RESTful web services with their very own inter-
action logic. One of the main challenges in developing a RSMS is
exactly to hide all this complexity and heterogeneity that might
characterize the resources to be managed.

A resource space can then be defined as a set of resources and
relationships, where the set of resources limits the space to a man-
ageable number of resources, and the relationships express how
the resources in the space are interrelated. Theoretically, the big-
gest resource space with our definition of resource is the Web
itself, but, of course, we do not aim at providing a new way of
managing the Web. Instead, we think that only by setting suitable
boundaries for the resources to be considered, i.e., by limiting the
resource space, it is also possible to provide value-adding, novel
functionalities that justify the development of a dedicated RSMS.
For instance, in this paper we focus our attention to the specific
domain of scientific knowledge.
Given a resource space, resource space management means pro-
viding, on top of the resource space, functionalities that allow one
(either programmatically via suitable programmable interfaces or
via human interaction) to organize the space and to handle its
resources, making the most of their individual capabilities. Such
functionalities are to be enabled by the RSMS, of which we spe-
cifically identify the following services as basic features (adapted
from [1]):
− Cataloging of resources and of the content and services that

are accessible through those resources: This is the first and
foremost service of a RSMS. The catalog is the instrument
that allows one to define the actual resource space and to
limit it to a manageable size. Cataloging resources therefore

19 http://www.zotero.org/

means (i) defining the nature and capabilities or resources,
(ii) specifying and maintaining relationships among the re-
sources, (iii) storing and indexing the resources in the cata-
log, and (iv) managing the metadata that are necessary to
configure the resources in the resource space for access and
interaction.

− Querying/Searching the resource space: Once a resource
space is defined, in order to provide access to its resources it
must be possible to query or search for resources. With que-
rying we refer to exactly answering structured queries over
the resource space, analogously to how we query a rela-
tional database. With searching we mean search in terms of
keyword-based, unstructured queries, analogously to how
we query the Web.

− Supporting complex workflows over resources in the re-
source space: Some maintenance operations or application
features on top of the RSMS might require the execution of
coordinated actions over resources in the space. Such fea-
ture could be, for instance, achieved by supporting
workflows of operations over the resources or compositions
of web service interactions.

− Monitoring and handling events: As resources are not
static and evolve over time – especially on the Web where
not only contents but also programmatic interfaces and,
hence, the features provided by the resources typically
change at a fast pace – it is important to keep the local de-
scription of the resources in the catalog up to date. Depend-
ing on the nature of the resources, it might be possible to
monitor their evolution (e.g., via events emitted by the re-
sources) or it might be necessary to query them for updates.

− Analyzing resources and the resource space: Managing a
resource space means understanding the health of the space
and taking actions in case of problems. Doing so requires
the RSMS to provide basic analysis features that inform
about the state of the space. The supported analysis features
may vary depending on the type of resource and resource
space supported by the system.

− Discovering of resources in the resource space: Next to
managing the dynamics of the resources in a resource space,
it is also necessary to manage the dynamics of the resource
space itself, since on the Web continuously new resources
are created and others are destroyed. It is therefore also im-
portant to be able to discover (e.g., by crawling the Web)
those new resources that satisfy the membership require-
ments of the resource space and to add them to the space, al-
lowing the space to grow autonomously.

Ideally, a RSMS supports all of the above features, plus additional
ones that vary depending on the specific application domain they
focus on. In practice, already a subset of the above features may
provide substantial help to its users, especially if – in addition to
the pure management of resources – the system also provides
effective instruments that allow the user to handle resources and
to interact with them at the level of abstraction that best suits the
chosen domain. In the next section, we show how this additional
layer could look like if we focus on the scientific knowledge do-
main; then we explain how resource management in the resulting
sRSMS is supported by our underlying RSMS.

4. MANAGING SCIENTIFIC RESOURCES
A generic RSMS as discussed in the previous section allows us to
interpret the Web as resource space in which all URI-accessible
artifacts are resources. The goal of this paper is to go beyond the
mere technology abstraction and to also provide suitable domain
concepts that not only simplify the access of and interaction with
resources, but also represents them in a way that can be under-
stood by non-IT people and domain experts. Doing so will allow
us to widen the accessibility of our sRSMS from IT experts to
average web users. In this section, we show how we achieve this
in our sRSMS called Karaku20.
We have seen that the notion of resource is very general and cap-
tures the requirement of supporting any arbitrary resource on the
Web. If we refine the idea of resource in the context of scientific
knowledge, we can define a scientific resource as any resource
that represents an important concept in the domain of scientific
knowledge dissemination. For instance, documents (e.g., a Google
Doc or a blog entry), experiments results in the form of datasets,
metadata information like DBLP’s records about scientific publi-
cations and authors, authors themselves, and so on can be seen as
resources. A scientific resource space is therefore the space that
contains all the scientific resources we think are necessary to de-
scribe the space.
In order to develop our sRSMS, we have followed a two layered
architectural design, where the upper layer provides the set of
functionalities that are domain-specific (domain specific catalog
and caching, query support, monitoring and crawling), and the
base layer provides a set of core services to support the manage-
ment of generic resources (catalog, access and interaction). Next
we show how we specify the scientific resource space in Karaku
and also explain Karaku’s high-level architecture. Then we focus
on the actual resource management.

4.1 Modeling the Scientific Resource Space
In order to support and push forward a group of innovative scien-
tific services, the first step is to speak the same language used in
the domain of scientific research. The first step is therefore to
define a comprehensive conceptual model that supports all possi-
ble entities and relationships in the specific domain that will be
common for all services built upon this layer. Although many
initiatives are being done to come up with such a model (e.g.
OAI-MPH), none of them have had an impact enough as to be-
come the industry “de facto” standard. In this paper we therefore
introduce our own model, which is tailored to the specific features
we want to support in the sRSMS. But before proceeding with the
description of the actual model, we describe the modeling formal-
ism (i.e., the meta-model) Karaku understands for the definition
and operation of the scientific resource space.
Specifically, we can model the scientific resource space by means
of three basic constructs (very similar to the well-known Entity-
Relationship notation):

• Entities: entities define the domain concepts we want to
manage in the sRSMS. Entities are the domain-specific
representation of the resources available on the Web

20 http://project.liquidpub.org/karaku/. Karaku is a Guaraní word

traditionally used to refer to the core of an issue. It was chosen
as the name of this project because it is the core element in the
overall Liquidpub project platform.

and, as such, can be characterized by means of a name,
properties, and possible operations (i.e., actions) that
can be performed on the resource.

• Relations: relations (or relationships) define connec-
tions between two different entities (e.g., cited by,
coauthored with, it is affiliated to). Relations are at the
basis of query evaluation and allow the query engine to
relate different entities.

• Annotations: annotations represent extended informa-
tion attached to both relations an entities (e.g., com-
ments, specialized attributes like tags or similar). Anno-
tations can be used to improve search performance and
to specify how to bind entities to actual concepts.

The former two constructs allow us to model the scientific re-
source space. Via annotations, it is possible to extend the scien-
tific entities by adding more attributes and technical details. In-
deed, we can think of the space of scientific resources as con-
glomeration of resources being tagged with different “types”,
relationships, and allowed actions. Defining such a classification
allows us to manage resources more easily while also providing
guidelines for further specializations.

Figure 2. Conceptual model of the scientific research space

Figure 4 shows the model of the scientific resource space we cur-
rently support in Karaku. Boxes represent entities, connectors
represent relations, and rhombuses label the relations. The figure
does not render annotations, which we skip for presentation pur-
poses. The entities we want to manage are:

i) Scientific contributions (SC): these represent the actual sci-
entific knowledge artifacts, such as papers, reviews, blog en-
tries, experiments, etc. The scientific contributions are the
main entity around which we define the other four entities.

ii) Person: scientific contributions are produced by people,
which we represent by means of the Person entity. Depending
on their involvement in the knowledge production process,
people may play different roles from the perspective of the
scientific contribution, which we represent by means of suit-
able relationships.

iii) Communities: communities refer to groups of people work-
ing in a same field or area of research. Knowledge about the
communities and the involvement of people in communities is
particularly interesting if we want to assess the “quality” or
impact of a researcher within his community. Communities
typically evolve frequently over time.

iv) Collections: collections are predefined aggregations of both
people (e.g., institutions) and scientific contributions (e.g.,
conference proceedings). Typically, collections are persistent
in time or change only at a very slow pace.

v) Events: events are occasions taking place at a particular time,
e.g., conferences, meetings, workshops, etc. bringing together
people for discussion and publication of scientific results.

Here we concentrate on the definition of the scientific resource
space. In the next section, we map these scientific entities to the
resource space by defining suitable resource types that encapsu-
late the properties (and metadata), states and behavior of the
above scientific entities. The properties are type-specific and al-
low us to define the information that characterizes particular in-
stances and also their relations with other resources.

Regarding the model in Figure 2, the essence is not just the model
in itself (although we found this simple model fits our needs fairly
well, it is possible to argue that others are as good) but the fact
that it can be extended or even replaced by another in the same
sRSMS architecture (by means of the three introduced modeling
constructs), offering in this way an opportunity to explore the
concepts that form the foundations of scientific activity.

It is also important to notice that any domain can develop its own
RSMS based on the same high-level constructs and the basic ac-
cess layer that is discussed in this paper. The scientific community
could even develop a new scientific RSMS, much more complex
and expressive than the one we describe in this paper.

4.2 Karaku Architecture
Given the above characterization of our scientific resource

space, we need also a number of services to interact with it. In

Figure 3 we show the overall architecture of our platform, includ-
ing the following functional components:

i) Scientific Catalog: locally stores the above model of the sci-
entific resource space, along with the necessary annotations.

ii) Query Engine: provides the mechanisms to answer the que-
ries of the clients, expressed in a domain-specific query lan-
guage expressed over the scientific catalog. Thanks to this
module, upper layers will have access to different resources,
regardless of the specificities of the source, by the means of
queries like “Get Contributions of Person X where Topic is
equal to Y” or “Get Top-K Contributions of Collection Z”. The
scientific resource space would be useless without a well-
designed query language to take advantage of it.

iii) Metadata Management: provides the basic CRUD function-
alities over the resources expressed in terms of the proposed
conceptual model.

iv) Updater: provides capabilities to pull in metadata from the
underlying RSMS, in order to populate and keep updated the
locally cached metadata, used for efficient query processing.

In the current version of the prototype, the Metadata Management
component has been fully implemented and tested; it is exposed as
RESTful web service API. The other components are at the proto-
type level. It is worth to mention that in the whole project’s design
and implementation we have followed a resource oriented archi-
tecture approach [7] to be compliant with the latest tendencies on
web services development.

Using the RESTful API provided by the query engine, a client can
execute simple queries in the form of HTTP operations over the
components in the model (e.g., it is possible to retrieve the list of
all contributions by means of the following HTTP GET request:
http://project.liquidpub.org/karaku/contribution.xml).

Figure 3. Architecture of the Karaku sRSMS

All these components provide a common model for the resources
in the focused domain according to the model introduced in Sec-
tion 4.1. Yet, we still have to face the problem of accessing the
actual resources in the resource space. For this purpose, we rely
on the Generic RSMS Access Layer shown in Figure 3 and de-
scribed in the following.

5. TRANSPARENT ACCESS TO RE-
SOURCES ON THE WEB
The access layer of our RSMS provides us with abstractions for
modeling the vast amount of resources the Web offers and allows
us to take into account also the software aspects involved in ac-
cessing the resources. Indeed, the huge variety of resources that
can be part of our sRSMS is managed by different service provid-
ers that may or may not have an API (e.g., Google Docs, various
flavors of wikis, Flickr, Google Scholar, etc). We refer to these
service providers as resource managers.
In the scenario depicted by resources and resource managers in
the Web era, it is not trivial to provide abstractions, given the
heterogeneity in the resource managers. For instance, in Figure 4
we illustrate such heterogeneity showing some examples of cur-
rently available and relevant scientific domain services, all of
them providing access to their content (the scientific contribu-
tions) via different APIs/protocols.

Figure 4. Service heterogeneity in the Resource Space

The reason for separating our general model in two layers is
mainly the applicability. In the upper layer we focus on the re-
quirements of the scientific domain, to provide a support platform
for services that need to access scientific resources. The concepts
used in the Access Layer are instead general and could be used in
any other domain.

In the following we discuss the details of our access layer mid-
dleware, ResMan21 Error! Reference source not found., whose
main function is to abstract the technical access-to-resource spe-
cifics, providing for them a universal resource space access layer.
We also include a discussion of the prototypal implementation of
the component.

5.1 The Basic Resource Space
In Section 4.1, we have introduced the model of the scientific
resource space we support in Karaku, and we have explained that
each of the entities can be annotated with meta-data that allows us
to bind the entities with resources types, i.e., with a physical ac-
cess mechanism. In this section, we look at how we bind resource
types to actual resources. Figure 5 show the conceptual model
that introduces the necessary concepts and that is also the rela-
tional model for the resource space catalog of ResMan.

Figure 5. Resource space conceptual model

The first two elements of our model, Resources and Resource
Manager, have already been introduced in Section 4. To illustrate
their difference, let’s consider two examples: a specific scientific
article in Google Scholar is a resource while the Google Scholar
service is the resource manager. In principle, there are no limita-
tions for the kind of resource managers we can support, as long as
they provide services for resources. Indeed, the third element we
consider is the service or action. Actions describe the services
provided by resource managers and that allow us to operate with

21 http://project.liquidpub.org/resman

the resources (e.g., to share, publish or search documents, or more
complex actions such as crawling a web site such as scholar or
Citeseer for scientific metadata).

At the level described above, the basic elements provide opera-
tions and properties, which are specific to the actual resource
managers. For example, operating on a Google Scholar indexed
article will be constrained to the set of Google Scholar-specific
actions, these actions signatures and formats. Therefore, to free
upper layers of implementing resource managers-specific opera-
tions, we provide a set of abstractions on top of these basic ele-
ments.

Incidentally, these abstractions are natural extensions of the basic
elements. Thus, the first abstraction we consider is the resource
type, which characterizes families of resources with similar be-
havior. For example, all the documents from Google Docs are of
the type “Google Doc Document”, documents stored in a SVN
repository are of the type “SVN document” and if we consider a
higher level of abstraction we can say that documents from both
resource managers are of the type “Document”. This idea can also
be applied to resource managers, so we can group them into re-
source manager types to denote general classifications such as
repositories, search engines, control version systems, etc.

Then, it is also the case that, even though the managing applica-
tion is different, the kinds of actions that can be executed on the
resource are similar. For example, in both Wiki and Google-Docs
we can have the possibility of changing the access rights, publish-
ing, etc. Some of these actions are semantically equivalent but
may require different parameters (i.e., the “signature” details are
different). We include in our model the action type abstraction as
a way of providing a common interface for these semantically
equivalent actions. In doing so, we can provide homogenous ac-
cess to resources supporting the action-type. Finally, the model of
resource space presented here will allow us to manage arbitrary
resources at different levels of abstractions using a homogeneous
interface.

5.2 ResMan Architecture
The universal RSMS access layer builds on the model introduced
in the previous section and provides seamless access to resources
disseminated over the Web. As depicted in Figure 6, the RSMS
universal access layer architecture is composed of two main mod-
ules: the resource space management and the access management
modules. These two modules run the machinery for providing
homogeneous access to resources and transparent extensibility in
terms of multiple resource managers’ support.

Figure 6. RSMS architecture

Resource space management. The resource space management
module allows extending the resource managers (repositories,
search engines, blogs, etc) available to the upper layers. Thus, this
module allows us to register resource managers and the related
resources and actions. It also manages the mapping between these
constructs and the abstractions of resource types, action types and
resource manager types. The link between the actual resource
managers and the abstractions we provide is performed through
adapters [6], described in the next subsection.

The registration or resource managers is performed using a spe-
cialized service that enables resource manager providers and pro-
grammers to populate a registry of resource managers and to make
them available to upper layers. Note that it is also possible to de-
fine and register composite resources by combining actions from
different resources into a complex resource type. This is particu-
larly interesting for applications in which the conceptual resource
can be composed of multiple low level artifacts (e.g., a virtual
folder that contains elements which are references to Google docs,
Zoho, or MS Word documents stored in an SVN). From the per-
spective of a client using the module, this acts as a “dictionary”
that offers information about the resources, actions, resource man-
agers and their abstractions, available in the registry.

Access management. The access management module allows
interfacing with different repositories and libraries through a stan-
dard interface. This module is able to operate on resources of the
same type (e.g. documents) with the same set of operations (e.g.,
create, delete, share) using the resource-type level of abstraction.
In other words, this module allows executing actions on the re-
source managers registered from the resource space management
module. Note that this is different from executing operations di-
rectly on the adapters where one can perform operations only on
actual resources, and so the set of operations available are specific
to those specific resources. For example, consider executing the
operation “sharing” over a set of resources provided by different
resource managers. The actual implementation of the action
“share” will likely have a different signature in each adapter. The
access module abstracts these differences allowing clients to oper-
ate at the action type level of abstraction, which in this example
will be the “share” action type.

As illustrated in Figure 7, the interaction with the resource man-
agers (the services providers) is performed through adapters. The
Access Management module interfaces with the adapters and
exposes their functionalities to the upper layers. The added value

here is the possibility of working with different resources manag-
ers at a different level of abstraction; i.e., clients of this module do
not need to know the details of the actual resource managers, in-
deed, they do not need to know which resource manager is provid-
ing a given service. The access management module, according to
the specification of the resource types, manages this interaction.

5.3 The role of adapters
The approach we follow to guarantee extensibility, interoperabil-
ity and maintainability is to provide a set of core modules that can
manage the adapters and access to resource managers through
these adapters. Each adapter provides a definition of the resources
and operations supported and, if necessary, the implementation of
the logic for accessing the resource managers (e.g., in case no API
is provided). Figure 7 illustrates how the interaction with the
adapters is performed.

Adapters are provided by third parties and made available to the
upper layers through the resource space management module,
which adds the adapter to the registry of adapters. Note that the
approach we take here allow us to extend the services we provide
access to without introducing changes into the platform. This is
one of the key aspects of the flexibility provided by the architec-
ture.
To illustrate the above, consider the procedure for registering
adapters. This procedure involves the adapter provider (the one
that hosts the adapter) registering the adapter definition using the
service provided by the RSMS’ access layer for that purpose. This
definition involves the mapping between the existing resource
types (e.g., documents, pictures, etc) and action types (e.g., share,
export, update, etc.) and the implementations provided by the
adapter (and offered by the correspondent resource manager).
This definition is then processed by the resource space manager,
which registers these implementations. This is possible since re-
sources types and action types have unique identifiers that allow
reusing their definitions. However, nothing prevents an adapter to
register new resource types and action types. In this case, these
new definitions become available to other potential implementa-
tions.

As a result of the registration procedure, a new resource manager
becomes available to the platform, implementing a set of actions
and offering support for resources, sharing common functionali-
ties with other resource managers semantically equivalent at
given abstraction level.

Figure 7 Adapters registration and operations execution

To make this more concrete, assume we want create a new re-
source type to operate, with the same actions, on documents sub-
ject to version control. Using ResMan, we have to perform the
following call to the REST API:

POST http://project.liquidpub.org/resman/resource-type.xml
Body:
<resourcetype>
<name>Versioned Document</name>
<description> Resource type for versioned documents </description>
<user-ref>http://project.liquidpub.org/gelee/api/user/8901</user-ref>
<creation-date>2009-12-02</creation-date>
<actiontype-list>
<link href=http://project.liquidpub.org/resman/action-type/145
value="Ckeckout"/>
<link href=http://project.liquidpub.org/resman/action-type/141
value="Commit"/>
<link href=http://project.liquidpub.org/resman/action-type/144
value="Rollback"/>
 …
</actiontype-list>
</resourcetype>
ResponseLocation:
http://project.liquidpub.org/resman/resource-type/1.xml

The above call returns the URI to the newly created resource type.
In the definition, we reference the action types that will be al-
lowed by all the “Versioned Documents”. Then, clients can get
the resource type definition by asking ResMan about the resource
type identified by the URI.

GET http://project.liquidpub.org/resman/resource-type/1.xml
Response:
<resourcetype>

<name>Versioned Document</name>
…

<adapter-list>
<link href="http://demo.liquidpub.org/resman/adapter/38"
value="SVN Client"/>
</adapter-list>

</resourcetype>

In the RSMS extensibility approach, the resource manager and the
concept of resource type collectively support a flexible binding
approach that can range from static to dynamic binding to both
adapters and (for services using the RSMS) to resources.
Static binding to adapters is implemented by restricting (for a
given RSMS client, or for all clients) access to a given (set of)
resources to go through a specified adapter - and therefore using a
specific mapping between generic actions at the resource type
level and actual operations.

However in general it is possible to change dynamically the
adapter we use to access a given resource: the mappings are speci-
fied and the adapters are registered, this is transparent to RSMS’
access layer clients. Besides load balancing, the key benefit here
is reliability and the ability to leverage the community to maintain
a complex distributed system: in fact, sources, especially sources
that do not assume they are accessed programmatically such as
google scholar, change their interface from time to time and the
parser/crawler needs to be changed accordingly. It is therefore
possible that from time to time adapters became obsolete and
returns errors. In this case the RSMS’ access layer can dynami-
cally switch to another adapter, and by keeping track of the last
working adapter can also direct the choice towards one that has
already embraced and implemented the change.
Notice that unlike traditional web service scenario, dynamic bind-
ing here is “provider-enabled” in that the provider of the adapter
makes sure to define the mapping with the resource type actions
as opposed to the RSMS (the “client” of the adapter “service”)
having to somehow figure out how to talk to the service or having
to impose a standardization on the adapter interface.

6. USE CASE: LIQUID JOURNALS
As stated in the introduction, the Web has changed the way we
create, consume, share and disseminate scientific knowledge. In
this scenario, the obstacle to dissemination is not longer publish-
ing, which can be achieved by simply putting a contribution on-
line, but rather making a contribution visible (on the author's side)
and quickly identifying interesting contributions in a sea of publi-
cations (from the reader's side). Yet, the current dissemination
model continues unaware of these changes and obstacles, and so
in the Web remains hidden a vast amount of interesting scientific
content and new opportunities for creating, sharing, evaluating
and disseminating knowledge, unexploited.
Through liquid journals, researchers can find and share “interest-
ing” scientific content, such as blogs, experiments, datasets, “re-
lated” to a certain area of research. Interesting content is brought
to the user usually by querying the Web for contributions match-
ing her explicit and implicit preferences. These preferences go
beyond the selection process and cover the evaluation, review and
publication phases; and so, liquid journals support a whole spec-
trum of models from the more traditional ones to the ones more
social and web-aware. This is mainly due to the deconstructed
nature [9] of liquid journals that allows us to see the different
roles of publishers as independent services provided by potentially
different actors on the Web. Liquid journals22 therefore represent
an approach that leverages the opportunities and the lessons
learned from the social web.

Besides the strong conceptual requirements in terms of models of
dissemination, publication, collaboration and sharing, that is, re-
defining the notion of journal, building the liquid journal model
implies modeling the Web as a source. This has both conceptual
and infrastructural implications. Thus, as the core part of the
model resides in leveraging the features offered by the Web, deal-
ing with the underlying nature and problems of accessing Web
resources just falls outside the real value of liquid journals as a
model, and so, this could become the reason for not taking such
interesting model into practice.

Here is where the sRSMS comes into play, providing the abstrac-
tion of the Web as a homogeneous source that liquid journals can
query as it were a single database, i.e., the abstraction of scientific
resource space. On top of this abstraction, liquid journals can
build a conceptual model based on a consistent view of scientific
web resources, and so embracing the new types of scientific con-
tributions the Web has made possible. Therefore, from a concep-
tualization point of view, liquid journals can focus on defining
collaboration and behavior models, and other journal-related con-
cepts, while letting the sRSMS take care of the specifics.

More importantly, from the infrastructure point of view, the
sRSMS provides the machinery for solving the heterogeneity of
the underlying sources and mashing them up into uniform set of
APIs for manipulating and querying the scientific web resources.
Again, building the liquid journal infrastructure on top will con-
centrate the efforts on the high-level and actual journal features,
such as capturing user interests and ranking the results according
to their relevance.

Note that being part of the ecosystem built on top of the sRSMS,
sharing the same underlying notions, will trigger high-level inter-
actions and synergies. For example, services providing evaluation

22 http://project.liquidpub.org/research-areas/liquid-journal

metrics can be beneficiated of the data of liquid journals and liq-
uid journals can be beneficiated by these metrics, which could be
used, for example, in the ranking. This is case for liquid journals
and the Reseval23 tool (see overall architecture in Figure 1). This
synergy is encouraged by the resource space and mediated by the
sRSMS. Recall the architecture, services on top can use and feed
the resource space.

Figure 8. Applications on top of the sRSMS

Let us illustrate the interaction between the liquid journals appli-
cation and the sRSMS by showing an example of how the sRSMS
enables liquid journals to query the Web. Consider the case an
author wants to get interesting contributions on the topic “Web
services”, and so she defines a liquid journal expressing this pref-
erence. Instead of limiting the contributions brought to the user to
what is already on the system (as in social bookmarking services),
the sRSMS enables the journal to go directly to the Web to get the
contributions. This certainly makes the difference to the author. In
Figure 9 we provide an example of how the user’s ideal journal is
translated into a query.

Figure 9. Liquid Journal Use Case example

23 http://project.liquidpub.org/reseval/

As seen in Figure 9, executing this query is not trivial. The
sRSMS needs to decompose the query expressed in terms of the
scientific resource space entities, identify the adapters providing
support for the resource managers selected by the user, translate
the query to each adapter in terms of resources, and finally get the
results back and join them according to the scientific resource
space schema.

We can also see the workflow such query will follow. The process
starts in the query engine, whose main job is to build the proper
calls for the access layer based on the input query. Within the
sRSMS, some metadata can be cached in the scientific catalog to
answer queries faster. The query engine will also access this cata-
log and then pack all the results before deliver them to the client.
The scientific catalog will be constantly updated by de updater,
where some crawling and monitoring process are always running.

Once the query is parsed and expressed in the terms of resources
(e.g., pdf files) and actions (e.g., search), the resource space man-
agement component will map them to proper resource managers
(e.g., IEEE, ACM, SpringerLink, etc.). Given this, the access
management component will use the resource managers’ defini-
tion to find the corresponding adapters. The adapters then, will
perform the calls to the actual service providers interfaces, getting
the required resources to build the requested result.

At the end of the process, the Liquid Journals service will push all
the results to the person’s home page, enabling him to choose on a
much more easy manner. We could go further and also add a con-
nection to some metrics service (e.g., to get citation counts) to
assess the contributions on the query result, providing more rele-
vant information to support the decisions of the LJ editor.

Thanks to the extensibility properties of our sRSMS, all we need
to enrich our LJ with a citation-based ranking is the corresponding
adapter for calling the metrics service in order to get the “cita-
tions” resource.

7. CONCLUSION
In this paper, we have introduced concepts, an architecture, and an
implementation of a Scientific Resource Space Management Sys-
tem (sRSMS). The system aims at providing a homogeneous view
over and access to a space of scientific resources, in which the
resources are sourced from the Web and accessible via a variety
of different, heterogeneous technologies. Technological details are
hidden to the users of the sRSMS via two layers of abstraction:
first, we describe individual resources via resources types, and
then we bind resource types to domain concepts. The final goal is
to enable the users of the sRSMS to operate on the scientific re-
source space via domain-specific, intuitive instruments, such as
the one represented by the Liquid Journal use case.

The innovative aspects of the proposed sRSMS are a combination
of universality, which allows us to manage any web-accessible
resource; accessibility, in terms of homogeneous and source-
independent access to resources; simplicity, in terms of the general
model and of the abstractions used, and extensibility, which is a
property of both the model (which allows us to define different
new resources and actions at different levels of abstraction) and of
the architecture (that allows us to plug in new resource managers
without introducing changes to the system).

The concepts, models and architectures are not theoretical only,
but have been implemented in a functional prototype of as RSMS.
The code is available in open source and we invite the reader to
contribute to these and other tools of Liquidpub. Our future works

include integrating the sRSMS into the Liquidpub platform, ex-
tending the resource space to other related domains, and analyzing
new usage scenarios to improve the sRSMS’s applicability.

8. REFERENCES
[1] M. Franklin, A. Halevy, D. Maier. From databases to

dataspaces: a new abstraction for information management.
SIGMOD Rec. 34, 4 (Dec. 2005), pp. 27-33.

[2] A. Halevy, M. Franklin, D. Maier. Principles of dataspace
systems. PODS, 2006.

[3] D. Braga, S. Ceri, F. Daniel, D. Martinenghi. Optimization of
Multi-Domain Queries on the Web. VLDB 2008, pp. 562-
573, Auckland, New Zealand, August 2008

[4] B. Benatallah, F. Casati, F. Toumani. Web services conversa-
tion modeling: A Corner-stone for EBusiness Automation.
IEEE Internet Computing, 8(1), 2004.

[5] S. R. Ponnekanti and A. Fox. Interoperability among Inde-
pendently Evolving Web Services. Middleware '04. Toronto,
Canada, 2004.

[6] B. Benatallah, F. Casati, D. Grigori, H. R. M. Nezhad, and F.
Toumani. Developing adapters for web services integration.
CAiSE, 2005.

[7] Marcos Báez, Cristhian Parra, Fabio Casati, Maurizio
Marchese, Florian Daniel, Kasia di Meo, Silvia Zobele, Carlo
Menapace, Beatrice Valeri: Gelee: Cooperative Lifecycle
Management for (Composite) Artifacts. IC-
SOC/ServiceWave 2009: 645-646

[8] H. Overdick. The resource-oriented architecture. IEEE Con-
gress on Services (Services 2007), 2007, pp. 340–347.

[9] J. Smith, “Free Content The deconstructed journal–a new
model for academic publishing,” Learned publishing, vol.
12, 1999, pp. 79–91.

