
NuSMV: Planning as Model Checking ∗

Alessandra Giordani
agiordani@disi.unitn.it

http://disi.unitn.it/~agiordani

Formal Methods Lab Class, April 30, 2014

*These slides are derived from those by Stefano Tonetta, Alberto Griggio, Silvia Tomasi,
Thi Thieu Hoa Le for FM lab 2011/13

Alessandra Giordani (DISI) NuSMV Planning Apr 15, 2014 1 / 28

http://disi.unitn.it/~agiordani

Contents

1 Planning problem

2 Examples
The Tower of Hanoi
The Ferryman
Tic-Tac-Toe

Alessandra Giordani (DISI) NuSMV Planning Apr 15, 2014 2 / 28

Contents

1 Planning problem

2 Examples
The Tower of Hanoi
The Ferryman
Tic-Tac-Toe

3 / 28

The problem

Problem: Given a set of action operators OP, (a representation of)
an initial state I and goal state G, find a sequence of operator
applications o1, .., on, leading from the initial state to the goal state.

Idea: Encode it into a model checking problem.

4 / 28

Example

B B

GOAL

A C

A

INITIAL

C

T

Init : On(A,B),On(B,C),On(C ,T),Clear(A)
Goal : On(C ,B),On(B,A),On(A,T)
Move(b, s, d)

Precond : Block(b) ∧ Clear(b) ∧ On(b, s)∧
(Clear(d) ∨ Table(d))∧
b 6= s ∧ b 6= d ∧ s 6= d

Effect : Clear(s) ∧ ¬On(b, s)∧
On(b, d) ∧ ¬Clear(d)

5 / 28

Encoding in SMV

Initial states:

On(A,B) ∧ On(B,C) ∧ On(C ,T) ∧ Clear(A).

Goal states:
On(C ,B) ∧ On(B,A) ∧ On(A,T).

Action preconditions and effects:

Move(A,B,C)→
Clear(A) ∧ On(A,B) ∧ Clear(C)∧
Clear(B ′) ∧ ¬On(A′,B ′)∧
On(A′,C ′) ∧ ¬Clear(C ′).

6 / 28

Planning strategy

Specification: The goal is not reachable.

Plan: If the property is false, NuSMV produces a counterexample.
The counterexample is a plan to reach the goal.

7 / 28

Contents

1 Planning problem

2 Examples
The Tower of Hanoi
The Ferryman
Tic-Tac-Toe

8 / 28

The Tower of Hanoi

Mathematical game constisting of
three poles and N disks of different
sizes:

it starts with the disks in a stack
in ascending order of size on the
left pole (the smallest at the top
→ conical shape)

the goal is to move the entire
stack to the right pole:

only one disk may be moved
at a time
each move consists of moving
the upper disk from one pole
to another one
no disk may be placed on top
of a smaller disk

9 / 28

The Tower of Hanoi - Variables

MODULE main

-- Hanoi problem with three poles (left, middle, right)

-- and four ordered disks d1, d2, d3, d4,

-- disk d1 is the biggest one

VAR

d1 : {left,middle,right};

d2 : {left,middle,right};

d3 : {left,middle,right};

d4 : {left,middle,right};

move : 1..4; -- possible moves

DEFINE

move_d1 := move=1;

move_d2 := move=2;

move_d3 := move=3;

move_d4 := move=4;

10 / 28

The Tower of Hanoi - Macros

-- A block is clear iff there is no disk on it

-- di is clear iff di!=dj for every j>i

DEFINE

clear_d1 :=

d1!=d2 &

d1!=d3 &

d1!=d4;

clear_d2 :=

d2!=d3 &

d2!=d4;

clear_d3 :=

d3!=d4;

clear_d4 := TRUE;

11 / 28

The Tower of Hanoi - Initial states

-- initially all items are on the left pole

INIT

d1 = left &

d2 = left &

d3 = left &

d4 = left;

12 / 28

The Tower of Hanoi - Transitions

TRANS

move_d1 ->

-- only d1 changes

next(d1) != d1 &

next(d2) = d2 &

next(d3) = d3 &

next(d4) = d4 &

-- no other disks on d1

clear_d1 &

-- no smaller disks on the next pole

next(d1) != d2 &

next(d1) != d3 &

next(d1) != d4

...

13 / 28

The Tower of Hanoi - Specification

-- spec to find a solution to the problem

CTLSPEC

! EF (d1=right & d2=right & d3=right & d4=right)

> NuSMV hanoi4.smv

-- specification !EF (((d1 = right & d2 = right) & d3 = right) & d4 = right) is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

d1 = left

d2 = left

d3 = left

d4 = left

move = 4

clear_d4 = 1

clear_d3 = 0

clear_d2 = 0

clear_d1 = 0

move_d4 = 1

move_d3 = 0

move_d2 = 0

move_d1 = 0

...

14 / 28

The Ferryman

A ferryman has to bring a goat, a cabbage, and a wolf safely across a
river.

The ferryman can cross the river with at most one passenger on his boat.
However he cannot leave unattended on the same side the cabbage and
the goat or the goat and wolf (because the goat would eat the cabbage or
the wolf would eat the goat).

Can the ferryman transport all the goods to the other side safely?

15 / 28

The Ferryman - Variables

MODULE main

VAR

-- the man and the three items

cabbage : {right,left};

goat : {right,left};

wolf : {right,left};

man : {right,left};

-- possible moves

move : {c, g, w, e};

DEFINE

carry_cabbage := move=c;

carry_goat := move=g;

carry_wolf := move=w;

no_carry := move=e;

16 / 28

The Ferryman

-- initially everything is on the right bank

ASSIGN

init(cabbage) := right;

init(goat) := right;

init(wolf) := right;

init(man) := right;

TRANS

carry_cabbage ->

cabbage=man &

next(cabbage)!=cabbage &

next(man)!=man &

next(goat)=goat &

next(wolf)=wolf

...

17 / 28

The Ferryman

-- goat and wolf must not be left unattended !

-- goat and cabbage must not be left unattended !

DEFINE

safe_state := (goat = wolf | goat = cabbage) -> goat = man;

goal := cabbage = left & goat = left & wolf = left;

-- spec to find a solution to the problem

CTLSPEC

! E[safe_state U goal]

18 / 28

Tic-Tac-Toe

Tic-tac-toe is a game for two players (X and O) who take turns marking
the squares of a board (→ a 3×3 grid). The player who succeeds in
placing three respective marks in a horizontal, vertical or diagonal row
wins the game.

The tic-tac-toe puzzle is modeled with an array of size nine.

1 | 2 | 3

____|___|____

4 | 5 | 6

____|___|____

7 | 8 | 9

| |

19 / 28

Tic-Tac-Toe - The board

-- a square of the board can be empty or filled:

-- "0" means empty,

-- "1" filled by player 1, "2" filled by player 2

VAR

B : array 1..9 of {0,1,2};

-- initially, all squares are empty

INIT

B[1] = 0 &

B[2] = 0 &

B[3] = 0 &

B[4] = 0 &

B[5] = 0 &

B[6] = 0 &

B[7] = 0 &

B[8] = 0 &

B[9] = 0;
20 / 28

Tic-Tac-Toe - The players

-- let us assume that player 1 is the first player

-- players move alternatively

VAR

player : 1..2;

ASSIGN

init(player) := 1;

next(player) := case

player = 1 : 2;

player = 2 : 1;

esac;

21 / 28

Tic-Tac-Toe - The moves

-- move=0 means no move

-- move=i with i>0 means the current player fills B[i]

VAR move : 0..9;

INIT move=0

TRANS

next(move=0) ->

next(B[1])=B[1] &

next(B[2])=B[2] &

next(B[3])=B[3] &

next(B[4])=B[4] &

next(B[5])=B[5] &

next(B[6])=B[6] &

next(B[7])=B[7] &

next(B[8])=B[8] &

next(B[9])=B[9]

...
22 / 28

Tic-Tac-Toe - The moves

-- move=i with i>0 means the current player fills B[i]

TRANS

next(move=1) ->

B[1] = 0 & next(B[1]) = player &

next(B[2])=B[2] &

next(B[3])=B[3] &

next(B[4])=B[4] &

next(B[5])=B[5] &

next(B[6])=B[6] &

next(B[7])=B[7] &

next(B[8])=B[8] &

next(B[9])=B[9]

...

23 / 28

Tic-Tac-Toe - The end of the game

-- "win1" means player 1 wins

-- "win2" means player 2 wins

DEFINE

win1 := (B[1]=1 & B[2]=1 & B[3]=1) |

(B[4]=1 & B[5]=1 & B[6]=1) |

(B[7]=1 & B[8]=1 & B[9]=1) |

(B[1]=1 & B[4]=1 & B[7]=1) |

(B[2]=1 & B[5]=1 & B[8]=1) |

(B[3]=1 & B[6]=1 & B[9]=1) |

(B[1]=1 & B[5]=1 & B[9]=1) |

(B[3]=1 & B[5]=1 & B[7]=1);

win2 := ...

24 / 28

Tic-Tac-Toe - The end of the game

-- "draw" means nobody wins

draw := !win1 & !win2 &

B[1]!=0 & B[2]!=0 & B[3]!=0 & B[4]!=0 &

B[5]!=0 & B[6]!=0 & B[7]!=0 & B[8]!=0 & B[9]!=0;

TRANS

(win1 | win2 | draw) <-> next(move)=0

25 / 28

Tic-Tac-Toe - Specification

A strategy is a plan that need to be accomplished for winning the game
“if the opponent has two in a row, play the third to block them”

-- SPECIFICATIONS

-- PLAYER 2

-- player 2 does not have a "winning" strategy

CTLSPEC

! (AX (EX (AX (EX (AX (EX (AX (EX (AX win2)))))))))

-- player 2 has a "non-losing" strategy

CTLSPEC

AX (EX (AX (EX (AX (EX (AX (EX (AX !win1))))))))

...

26 / 28

Tic-Tac-Toe - Specification

A strategy is a plan that need to be accomplished for winning the game
“if the opponent has two in a row, play the third to block them”

-- SPECIFICATIONS

-- PLAYER 2

-- player 2 does not have a "winning" strategy

CTLSPEC

! (AX (EX (AX (EX (AX (EX (AX (EX (AX win2)))))))))

-- player 2 has a "non-losing" strategy

CTLSPEC

AX (EX (AX (EX (AX (EX (AX (EX (AX !win1))))))))

...

26 / 28

Tic-Tac-Toe - Specification

A strategy is a plan that need to be accomplished for winning the game
“if the opponent has two in a row, play the third to block them”

-- SPECIFICATIONS

-- PLAYER 2

-- player 2 does not have a "winning" strategy

CTLSPEC

! (AX (EX (AX (EX (AX (EX (AX (EX (AX win2)))))))))

-- player 2 has a "non-losing" strategy

CTLSPEC

AX (EX (AX (EX (AX (EX (AX (EX (AX !win1))))))))

...

26 / 28

Tic-Tac-Toe - Specification

A strategy is a plan that need to be accomplished for winning the game
“if the opponent has two in a row, play the third to block them”

-- SPECIFICATIONS

-- PLAYER 2

-- player 2 does not have a "winning" strategy

CTLSPEC

! (AX (EX (AX (EX (AX (EX (AX (EX (AX win2)))))))))

-- player 2 has a "non-losing" strategy

CTLSPEC

AX (EX (AX (EX (AX (EX (AX (EX (AX !win1))))))))

...

26 / 28

Tic-Tac-Toe - Let’s play

Suppose player one fills 5:

NuSMV > check_ctlspec -p ’AG (B[1]=0 & B[2]=0 & B[3]=0 & B[4]=0 & B[5]=1 &

B[6]=0 & B[7]=0 & B[8]=0 & B[9]=0 & player=2 -> ! EX (AX (EX (AX (EX (AX

(EX (AX !win1))))))))’ ... -> State: 2.2 <- B[5] = 1 player = 2 move = 5

-> State: 2.3 <- B[9] = 2 player = 1 move = 9 ...

Player two may fill 9.

27 / 28

Tic-Tac-Toe - Exercises

-- player 2 has also a "non-winning" strategy

-- player 2 does not have a "losing" strategy

-- player 2 does not have a "drawing" strategy

-- player 2 has a "non-drawing" strategy

-- player 1 does not have a "winning" strategy

-- player 1 has a "non-losing" strategy

-- player 1 has also a "non-winning" strategy

-- player 1 does not have a "losing" strategy

-- player 1 does not have a "drawing" strategy

-- player 1 has a "non-drawing" strategy

28 / 28

	Planning problem
	Examples
	The Tower of Hanoi
	The Ferryman
	Tic-Tac-Toe

