NuSMV: Property Specification *

Alessandra Giordani
agiordani@disi.unitn.it
http://disi.unitn.it/~agiordani

Formal Methods Lab Class, April 15, 2014

*These slides are derived from those by Stefano Tonetta, Alberto Griggio, Silvia Tomasi,
Thi Thieu Hoa Le for FM lab 2011/13

Alessandra Giordani (DISI) NuSMV Property Specification Apr 15, 2014 1/30

http://disi.unitn.it/~agiordani

0 Property Specification
@ Invariants
o CTL
o Fairness
o LTL

Alessandra Giordani (DISI) NuSMV Property Specification Apr 15, 2014 2 /30

/

In the SMV language:
@ Specifications can be added in any module of the program

@ Specifications, both the ones in the program, and the ones entered
through the NuSMV interactive shell, are collected into an internal
database

o Each property is verified separately

@ The result of a property verification is either “true” or “false”. In the
latter case, a counterexample is generated
o the generation of a counterexample is not possible for all CTL
properties: e.g., temporal operators corresponding to existential path
quantifiers cannot be proved false by showing a single execution path

3/30

o Different kinds of properties are supported:

o properties on the reachable states (propositional formulas which must
hold invariantly in the model)

o invariants (INVARSPEC)

o properties on the computation tree (branching time temporal logics):
o CTL (CTLSPEC)

o properties on the computation paths (/inear time temporal logics):

o LTL (LTLSPEC)

4/30

Invariant specifications

@ Invariant properties are specified via the keyword INVARSPEC:
INVARSPEC <simple_expression>

@ Invariants are checked via the check_invar command

5/30

An example: the modulo 4 counter with reset

MODULE main -— counter4_reset.smv
VAR b0 : boolean;

bl : boolean;

reset : boolean;
ASSIGN

init(b0) := FALSE;
next(b0) := case reset : FALSE;
lreset : !b0;
esac;
init(bl) := FALSE;
next(bl) := case reset : FALSE;
TRUE : ((!'b0 & b1) | (PO & !'bl1));
esac;

DEFINE out := toint(b0) + 2*toint(bl);

INVARSPEC out < 2

6/30

An example: the modulo 4 counter with reset

7/30

Invariant specifications

The invariant is false

NuSMV > check_invar
-- invariant out < 2 is false
-- as demonstrated by the following execution sequence
Trace Description: AG alpha Counterexample
Trace Type: Counterexample
-> State: 1.1 <-
b0 = FALSE
bl = FALSE
reset = FALSE
out = 0
-> State: 1.2 <-
b0 = TRUE
out = 1
-> State: 1.3 <-
b0 = FLASE
bl = TRUE
out = 2
NuSMV >

8/30

CTL specifications

o CTL properties are specified via the keyword CTLSPEC:
CTLSPEC <ctl_expression>

where <ctl_expression> can contain the following temporal
operators:

AX . AF _ AG _ A[_U]
EX . EF _ EG_ E[U]

o CTL properties are checked via the check_ctlspec command

9/30

CTL specifications

finally p globally p next p p until g
Al pUQ]

/é%wﬁw?}w%

E[pUQq]

10/30

CTL specifications

Examples of specifications:

11/30

CTL specifications

Examples of specifications:

o It is possible to reach a state in which out = 3

11/30

CTL specifications

Examples of specifications:
o It is possible to reach a state in which out = 3

CTLSPEC EF out = 3

11/30

CTL specifications

Examples of specifications:
o It is possible to reach a state in which out = 3
CTLSPEC EF out = 3

o It is inevitable that out = 3 is eventually reached

11/30

CTL specifications

Examples of specifications:
o It is possible to reach a state in which out = 3
CTLSPEC EF out = 3
o It is inevitable that out = 3 is eventually reached

CTLSPEC AF out = 3

11/30

CTL specifications

Examples of specifications:
o It is possible to reach a state in which out = 3
CTLSPEC EF out = 3
o It is inevitable that out = 3 is eventually reached
CTLSPEC AF out = 3

o It is always possible to reach a state in which out = 3

11 /30

CTL specifications

Examples of specifications:
o It is possible to reach a state in which out = 3
CTLSPEC EF out = 3
o It is inevitable that out = 3 is eventually reached
CTLSPEC AF out = 3
o It is always possible to reach a state in which out = 3

CTLSPEC AG EF out = 3

11 /30

CTL specifications

Examples of specifications:
o It is possible to reach a state in which out = 3
CTLSPEC EF out = 3
o It is inevitable that out = 3 is eventually reached
CTLSPEC AF out = 3
o It is always possible to reach a state in which out = 3
CTLSPEC AG EF out = 3

@ Every time a state with out = 2 is reached, a state with out = 3 is
reached afterward

11 /30

CTL specifications

Examples of specifications:
o It is possible to reach a state in which out = 3
CTLSPEC EF out = 3
o It is inevitable that out = 3 is eventually reached
CTLSPEC AF out = 3
o It is always possible to reach a state in which out = 3
CTLSPEC AG EF out = 3

@ Every time a state with out = 2 is reached, a state with out = 3 is
reached afterward

CTLSPEC AG (out = 2 -> AF out = 3)

11 /30

CTL specifications

Examples of specifications:

It is possible to reach a state in which out = 3
CTLSPEC EF out = 3

It is inevitable that out = 3 is eventually reached
CTLSPEC AF out = 3

It is always possible to reach a state in which out = 3
CTLSPEC AG EF out = 3

Every time a state with out = 2 is reached, a state with out = 3 is
reached afterward

CTLSPEC AG (out = 2 -> AF out = 3)

The reset operation is correct

11 /30

CTL specifications

Examples of specifications:

It is possible to reach a state in which out = 3
CTLSPEC EF out = 3

It is inevitable that out = 3 is eventually reached
CTLSPEC AF out = 3

It is always possible to reach a state in which out = 3
CTLSPEC AG EF out = 3

Every time a state with out = 2 is reached, a state with out = 3 is
reached afterward

CTLSPEC AG (out = 2 -> AF out = 3)
The reset operation is correct

CTLSPEC AG (reset -> AX out = 0)

11 /30

The need for Fairness Constraints

Let us consider again the counter with reset

@ The specification AF out = 1 is not verified

@ On the path where reset is always 1, the system loops on a state
where out = 0, since the counter is always reset:

reset = TRUE,TRUE,TRUE,TRUE,TRUE,...
out = 0,0,0,0,0,0...

@ Similar considerations hold for the property AF out = 2. For
instance, the sequence

reset = FALSE,TRUE,FALSE,TRUE,FALSE, ...
generates the loop
out = 0,1,0,1,0,1...

which is a counterexample to the given formula

12/30

Fairness Constraints

@ It is desirable that certain conditions hold infinitely often
o AGAF p is a fairness property
@ Fairness conditions are used to eliminate behaviours in which a
certain condition p never holds (i.e. = EFEG —p)
@ NuSMV supports both justice and compassion fairness constraints

o JUSTICE/FAIRNESS p
consider only the executions that satisfy infinitely often the condition

e COMPASSION (p,q)
consider only the executions that either satisfy p finitely often or satisfy
q infinitely often (i.e. p true infinitely often = g true infinitely often)

Remark:

o Currently, compassion constraints have some limitations (are
supported only for BDD-based LTL model checking).

13/30

Fairness Constraints

Let us consider again the counter with reset. Let us add the following
fairness constraint:

JUSTICE out = 3

(we restrict to paths in which the counter reaches the value 3 infinitely

often)
The following properties are now verified:

NuSMV > check_ctlspec

-- specification EF out = 3 is true

-- specification AF out = 3 is true

-- specification AG EF out = 3 is true

-- specification AG (out = 2 -> AF out = 3) is true

14 /30

The 4-bit adder example

We want to add a request operation to our adder, with the following
semantics: every time a request is issued, the adder starts computing the
sum of its operands. When finished, it stores the result in sum, setting
done to true.

MODULE bit-adder(req, inl, in2, cin)

VAR
sum: boolean; cout: boolean; ack: boolean;
ASSIGN
init(ack) := FALSE;
next(sum) := (inl xor in2) xor cin;
next(cout) := (inl & in2) | ((inl | in2) & cin);
next (ack) := case
req: TRUE;
'req: FALSE;
esac;

15/30

The 4-bit adder example

MODULE adder(req, inl, in2)

VAR

bit[0] : bit-adder(

req, in1[0], in2[0], FALSE);

bit[1]: bit-adder(

bit[0] .ack, ini1[1], in2[1],
bit [0].cout);

bit[2]: bit-adder(...);
bit[3]: bit-adder(...);
DEFINE

sum[0] := bit[0].sum;
sum[1] := bit[1].sum;
sum[2] := bit[2].sum;
sum[3] := bit[3].sum;
overflow := bit[3].cout;
ack := bit[3].ack;

MODULE main
VAR
req: boolean;
a: adder(req, inl, in2);
ASSIGN
init(req)
next(req)
case
'req :
req :
case
a.ack : FALSE;
TRUE: req;
esac;
esac;

FALSE;

{FALSE, TRUE};

16 /30

The 4-bit adder example

o Every time a request is issued, the adder will compute the sum of its
operands

17/30

The 4-bit adder example

o Every time a request is issued, the adder will compute the sum of its
operands

CTLSPEC AG (req -> AF sum = opl + op2);

17/30

The 4-bit adder example

o Every time a request is issued, the adder will compute the sum of its
operands

CTLSPEC AG (req -> AF sum = opl + op2);
CTLSPEC AG (req -> AF (done & sum = opl + op2));

17/30

The 4-bit adder example

o Every time a request is issued, the adder will compute the sum of its
operands

CTLSPEC AG (req -> AF sum = opl + op2);
CTLSPEC AG (req -> AF (done & sum = opl + op2));

o Every time a request is issued, the request holds untill the adder
will compute the sum of its operands and set done to true

17 /30

The 4-bit adder example

o Every time a request is issued, the adder will compute the sum of its
operands

CTLSPEC AG (req -> AF sum = opl + op2);
CTLSPEC AG (req -> AF (done & sum = opl + op2));

o Every time a request is issued, the request holds untill the adder
will compute the sum of its operands and set done to true

CTLSPEC AG (req -> A[req U (done & (sum = opl + op2))]1);

17 /30

The 4-bit adder example

NuSMV > check_ctlspec -p "AG (req -> AF sum = opl + op2)"
-- specification AG (req -> AF sum = opl + op2) is false
-- as demonstrated by the following execution sequence

[...]

18/30

The 4-bit adder example

NuSMV > check_ctlspec -p "AG (req -> AF sum = opl + op2)"
-- specification AG (req -> AF sum = opl + op2) is false
-- as demonstrated by the following execution sequence

[...]

o Fixed:
ASSIGN
next(req) := req:
case case
'req: a.ack : FALSE;
case TRUE: req;
la.ack: {FALSE, TRUE}; esac;
TRUE: req; esac;
esac;

18/30

The simple mutex example

MODULE user (semaphore)

VAR
state : { idle, entering, critical, exiting };
ASSIGN
init(state) := idle;
next(state) :=
case
state = idle : { idle, entering };
state = entering & !semaphore : critical;
state = critical : { critical, exiting };
state = exiting : idle;
TRUE : state;
esac;
next (semaphore) :=
case
state = entering : TRUE;
state = exiting : FALSE;
TRUE : semaphore;
esac;
FAIRNESS
running

19/30

The simple mutex example

MODULE main

VAR
semaphore : boolean;
procl : process user (semaphore);
proc2 : process user (semaphore);
ASSIGN

init(semaphore) := FALSE;

@ two processes are never in the critical section at the same time

20/30

The simple mutex example

MODULE main

VAR
semaphore : boolean;
procl : process user (semaphore);
proc2 : process user (semaphore);
ASSIGN

init(semaphore) := FALSE;

@ two processes are never in the critical section at the same time
CTLSPEC AG !(procl.state =

= critical & proc2.state = critical); -- safety

20/30

The simple mutex example

MODULE main
VAR
semaphore : boolean;
procl : process user (semaphore);

proc2 : process user (semaphore);
ASSIGN

init(semaphore) := FALSE;
@ two processes are never in the critical section at the same time

CTLSPEC AG !(procl.state = critical & proc2.state = critical); -- safety

@ whenever a process is entering the critical section then sooner or later it will be in the
critical section

20/30

The simple mutex example

MODULE main
VAR
semaphore : boolean;
procl : process user (semaphore);
proc2 : process user (semaphore);
ASSIGN
init(semaphore) := FALSE;

@ two processes are never in the critical section at the same time

CTLSPEC AG !(procl.state = critical & proc2.state = critical); -- safety
@ whenever a process is entering the critical section then sooner or later it will be in the
critical section

CTLSPEC AG (procl.state = entering -> AF procl.state = critical); -- liveness

20/30

The simple mutex example

MODULE main
VAR
semaphore : boolean;
procl : process user (semaphore);
proc2 : process user (semaphore);
ASSIGN
init(semaphore) := FALSE;
@ two processes are never in the critical section at the same time

CTLSPEC AG !(procl.state = critical & proc2.state = critical); -- safety

@ whenever a process is entering the critical section then sooner or later it will be in the
critical section

CTLSPEC AG (procl.state = entering -> AF procl.state = critical); -- liveness

NuSMV > check_ctlspec -n 0
-- specification AG !(procl.state = critical & proc2.state = critical) is true

20/30

The simple mutex example

MODULE main
VAR
semaphore : boolean;
procl : process user (semaphore);

proc2 : process user (semaphore);
ASSIGN

init(semaphore) := FALSE;

@ two processes are never in the critical section at the same time
CTLSPEC AG !(procl.state = critical & proc2.state = critical); -- safety

@ whenever a process is entering the critical section then sooner or later it will be in the
critical section

CTLSPEC AG (procl.state = entering -> AF procl.state = critical); -- liveness

NuSMV > check_ctlspec -n 0
-- specification AG !(procl.state = critical & proc2.state = critical) is true

NuSMV > check_ctlspec -n 1

-- specification AG (procl.state = entering -> AF procl.state = critical) is false
-- as demonstrated by the following execution sequence
[...1

20/30

Another mutex example

MODULE mutex(turn, other_non_idle, id)
VAR

state: {idle, waiting, critical};

ASSIGN
init(state) := idle;
next(state) :=
case
state=idle: {idle, waiting};
state=waiting & (!other_non_idlelturn=id)
state=waiting: waiting;
state=critical: idle;
esac;
next (turn) :=
case
next(state) = idle : !id;
next(state) = critical : id;
TRUE : turn;
esac;
DEFINE
non_idle := state in {waiting, critical};
FAIRNESS
running

: critical;

21/30

Another mutex example

MODULE main

VAR
turn: boolean;
pO: process mutex(turn,pl.non_idle,FALSE);
pl: process mutex(turn,pO.non_idle,TRUE);

NuSMV> NuSMV mutex.smv
-- specification AG (!(p0O.state = critical &
pl.state = critical)) is true
-- specification AG (pO.state = waiting ->
AF pO.state = critical) is true

22/30

Another mutex example

If we change the line

state=critical: idle;
with

state=critical: {critical, idle};
the second property becomes false:

NuSMV> NuSMV mutex.smv
-- specification AG (!(pO.state = critical & pl.state = critical)) is true
-- specification AG (pO.state = waiting -> AF pO.state = critical) is false

23/30

Another mutex example

To avoid the process staying in the critical session forever, we can add the
fairness constraint:

FAIRNESS
state=idle

Is this restriction too strong?

24/30

Another mutex example

By keeping this constraint and changing the line
state=waiting & (!other_non_idle|turn=id): critical;
with

state=waiting & (!other_non_idle): critical;

we get

NuSMV> NuSMV mutex_flaw.smv

-- specification AG (!(pO.state = critical & pl.state = critical)) is true
-- specification AG (pO.state = waiting -> AF pO.state = critical) is true
-- specification EF (pO.state = waiting & pl.state = waiting) is false

25 /30

Another mutex example

By keeping this constraint and changing the line

state=waiting & (!other_non_idle|turn=id): critical;
with

state=waiting & (!other_non_idle): critical;

we get

NuSMV> NuSMV mutex_flaw.smv

-- specification AG (!(pO.state = critical & pl.state = critical)) is true

-- specification AG (pO.state = waiting -> AF pO.state = critical) is true
-- specification EF (pO.state = waiting & pl.state = waiting) is false

What happens? If both processes reach the waiting state, they reach a
deadlock. This prevents the fulfillment of the fairness condition. Thus, in
a fair path, the state p0.state = waiting & pl.state = waiting is
forbidden.

25 /30

LTL specifications

@ LTL properties are specified via the keyword LTLSPEC:
LTLSPEC <1tl_expression>

where <1t1_expression> can contain the following temporal

operators:
X_. F_ G_. _U_

@ LTL properties are checked via the check_1tlspec command

26 /30

LTL specifications

finally p globally p

27/30

LTL specifications

Examples of specifications:

28/30

LTL specifications

Examples of specifications:

@ A state in which out = 3 is eventually reached

28/30

LTL specifications

Examples of specifications:

@ A state in which out = 3 is eventually reached

LTLSPEC F out = 3

28/30

LTL specifications

Examples of specifications:

@ A state in which out = 3 is eventually reached
LTLSPEC F out = 3

@ Condition out = 0 holds until reset becomes false

28/30

LTL specifications

Examples of specifications:

@ A state in which out = 3 is eventually reached
LTLSPEC F out = 3
o Condition out = 0 holds until reset becomes false

LTLSPEC (out = 0) U (!reset)

28/30

LTL specifications

Examples of specifications:

@ A state in which out = 3 is eventually reached
LTLSPEC F out = 3

o Condition out = 0 holds until reset becomes false
LTLSPEC (out = 0) U (!reset)

@ Every time a state with out = 2 is reached, a state with out = 3 is
reached afterward

28/30

LTL specifications

Examples of specifications:

@ A state in which out = 3 is eventually reached
LTLSPEC F out = 3

o Condition out = 0 holds until reset becomes false
LTLSPEC (out = 0) U (!reset)

@ Every time a state with out = 2 is reached, a state with out = 3 is
reached afterward

LTLSPEC G (out = 2 -> F out = 3)

28/30

LTL specifications

All the previous specifications are false:

NuSMV > check_ltlspec
-- specification F out = 3 is false ...
-- loop starts here --
-> State 1.1 <-
b0 = FALSE
bl = FALSE
reset = TRUE
out = 0
-> State 1.2 <-
-- specification (out = 0 U (!reset)) is false ...
-- loop starts here --
-> State 2.1 <-
b0 = FALSE
bl = FALSE
reset = TRUE
out = 0
-> State 2.2 <-
-- specification G (out = 2 -> F out = 3) is false ...

29/30

The property database

o All properties are collected into an internal database, which can be
visualized via the show_property command:

NuSMV > show_property
*x*x*x PROPERTY LIST [Type, Status, Counter-example Number, Name] ***x*
PROPERTY LIST

000 : EF out = 3

[CTL True N/A]
011 : G (out = 2 -> F out = 3)
[LTL Unchecked N/A]

o Every property can be accessed through its database index

30/30

	Property Specification
	Invariants
	CTL
	Fairness
	LTL

