
NuSMV: Property Specification ∗

Alessandra Giordani
agiordani@disi.unitn.it

http://disi.unitn.it/~agiordani

Formal Methods Lab Class, April 15, 2014

*These slides are derived from those by Stefano Tonetta, Alberto Griggio, Silvia Tomasi,
Thi Thieu Hoa Le for FM lab 2011/13

Alessandra Giordani (DISI) NuSMV Property Specification Apr 15, 2014 1 / 30

http://disi.unitn.it/~agiordani

Contents

1 Property Specification
Invariants
CTL
Fairness
LTL

Alessandra Giordani (DISI) NuSMV Property Specification Apr 15, 2014 2 / 30

Specifications

In the SMV language:

Specifications can be added in any module of the program

Specifications, both the ones in the program, and the ones entered
through the NuSMV interactive shell, are collected into an internal
database

Each property is verified separately

The result of a property verification is either “true” or “false”. In the
latter case, a counterexample is generated

the generation of a counterexample is not possible for all CTL
properties: e.g., temporal operators corresponding to existential path
quantifiers cannot be proved false by showing a single execution path

3 / 30

Specifications

Different kinds of properties are supported:

properties on the reachable states (propositional formulas which must
hold invariantly in the model)

invariants (INVARSPEC)

properties on the computation tree (branching time temporal logics):

CTL (CTLSPEC)

properties on the computation paths (linear time temporal logics):

LTL (LTLSPEC)

4 / 30

Invariant specifications

Invariant properties are specified via the keyword INVARSPEC:

INVARSPEC <simple_expression>

Invariants are checked via the check invar command

5 / 30

An example: the modulo 4 counter with reset

MODULE main -- counter4_reset.smv

VAR b0 : boolean;

b1 : boolean;

reset : boolean;

ASSIGN

init(b0) := FALSE;

next(b0) := case reset : FALSE;

!reset : !b0;

esac;

init(b1) := FALSE;

next(b1) := case reset : FALSE;

TRUE : ((!b0 & b1) | (b0 & !b1));

esac;

DEFINE out := toint(b0) + 2*toint(b1);

INVARSPEC out < 2

6 / 30

An example: the modulo 4 counter with reset

b0
 b1

!b0
 b1

!b1
!b0 b0
!b1

0 1

2 3

2

0 1

3

7 / 30

Invariant specifications

The invariant is false

NuSMV > check_invar

-- invariant out < 2 is false

-- as demonstrated by the following execution sequence

Trace Description: AG alpha Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

b0 = FALSE

b1 = FALSE

reset = FALSE

out = 0

-> State: 1.2 <-

b0 = TRUE

out = 1

-> State: 1.3 <-

b0 = FLASE

b1 = TRUE

out = 2

NuSMV >

8 / 30

CTL specifications

CTL properties are specified via the keyword CTLSPEC:

CTLSPEC <ctl_expression>

where <ctl expression> can contain the following temporal
operators:

AX AF AG A[U]
EX EF EG E[U]

CTL properties are checked via the check ctlspec command

9 / 30

CTL specifications

Pfinally Pglobally Pnext P until q

PEF PEX P U q]E[PEG

AFP AXP P U qA[]AGP

10 / 30

CTL specifications

Examples of specifications:

It is possible to reach a state in which out = 3

CTLSPEC EF out = 3

It is inevitable that out = 3 is eventually reached

CTLSPEC AF out = 3

It is always possible to reach a state in which out = 3

CTLSPEC AG EF out = 3

Every time a state with out = 2 is reached, a state with out = 3 is
reached afterward

CTLSPEC AG (out = 2 -> AF out = 3)

The reset operation is correct

CTLSPEC AG (reset -> AX out = 0)

11 / 30

CTL specifications

Examples of specifications:

It is possible to reach a state in which out = 3

CTLSPEC EF out = 3

It is inevitable that out = 3 is eventually reached

CTLSPEC AF out = 3

It is always possible to reach a state in which out = 3

CTLSPEC AG EF out = 3

Every time a state with out = 2 is reached, a state with out = 3 is
reached afterward

CTLSPEC AG (out = 2 -> AF out = 3)

The reset operation is correct

CTLSPEC AG (reset -> AX out = 0)

11 / 30

CTL specifications

Examples of specifications:

It is possible to reach a state in which out = 3

CTLSPEC EF out = 3

It is inevitable that out = 3 is eventually reached

CTLSPEC AF out = 3

It is always possible to reach a state in which out = 3

CTLSPEC AG EF out = 3

Every time a state with out = 2 is reached, a state with out = 3 is
reached afterward

CTLSPEC AG (out = 2 -> AF out = 3)

The reset operation is correct

CTLSPEC AG (reset -> AX out = 0)

11 / 30

CTL specifications

Examples of specifications:

It is possible to reach a state in which out = 3

CTLSPEC EF out = 3

It is inevitable that out = 3 is eventually reached

CTLSPEC AF out = 3

It is always possible to reach a state in which out = 3

CTLSPEC AG EF out = 3

Every time a state with out = 2 is reached, a state with out = 3 is
reached afterward

CTLSPEC AG (out = 2 -> AF out = 3)

The reset operation is correct

CTLSPEC AG (reset -> AX out = 0)

11 / 30

CTL specifications

Examples of specifications:

It is possible to reach a state in which out = 3

CTLSPEC EF out = 3

It is inevitable that out = 3 is eventually reached

CTLSPEC AF out = 3

It is always possible to reach a state in which out = 3

CTLSPEC AG EF out = 3

Every time a state with out = 2 is reached, a state with out = 3 is
reached afterward

CTLSPEC AG (out = 2 -> AF out = 3)

The reset operation is correct

CTLSPEC AG (reset -> AX out = 0)

11 / 30

CTL specifications

Examples of specifications:

It is possible to reach a state in which out = 3

CTLSPEC EF out = 3

It is inevitable that out = 3 is eventually reached

CTLSPEC AF out = 3

It is always possible to reach a state in which out = 3

CTLSPEC AG EF out = 3

Every time a state with out = 2 is reached, a state with out = 3 is
reached afterward

CTLSPEC AG (out = 2 -> AF out = 3)

The reset operation is correct

CTLSPEC AG (reset -> AX out = 0)

11 / 30

CTL specifications

Examples of specifications:

It is possible to reach a state in which out = 3

CTLSPEC EF out = 3

It is inevitable that out = 3 is eventually reached

CTLSPEC AF out = 3

It is always possible to reach a state in which out = 3

CTLSPEC AG EF out = 3

Every time a state with out = 2 is reached, a state with out = 3 is
reached afterward

CTLSPEC AG (out = 2 -> AF out = 3)

The reset operation is correct

CTLSPEC AG (reset -> AX out = 0)

11 / 30

CTL specifications

Examples of specifications:

It is possible to reach a state in which out = 3

CTLSPEC EF out = 3

It is inevitable that out = 3 is eventually reached

CTLSPEC AF out = 3

It is always possible to reach a state in which out = 3

CTLSPEC AG EF out = 3

Every time a state with out = 2 is reached, a state with out = 3 is
reached afterward

CTLSPEC AG (out = 2 -> AF out = 3)

The reset operation is correct

CTLSPEC AG (reset -> AX out = 0)

11 / 30

CTL specifications

Examples of specifications:

It is possible to reach a state in which out = 3

CTLSPEC EF out = 3

It is inevitable that out = 3 is eventually reached

CTLSPEC AF out = 3

It is always possible to reach a state in which out = 3

CTLSPEC AG EF out = 3

Every time a state with out = 2 is reached, a state with out = 3 is
reached afterward

CTLSPEC AG (out = 2 -> AF out = 3)

The reset operation is correct

CTLSPEC AG (reset -> AX out = 0)

11 / 30

CTL specifications

Examples of specifications:

It is possible to reach a state in which out = 3

CTLSPEC EF out = 3

It is inevitable that out = 3 is eventually reached

CTLSPEC AF out = 3

It is always possible to reach a state in which out = 3

CTLSPEC AG EF out = 3

Every time a state with out = 2 is reached, a state with out = 3 is
reached afterward

CTLSPEC AG (out = 2 -> AF out = 3)

The reset operation is correct

CTLSPEC AG (reset -> AX out = 0)

11 / 30

CTL specifications

Examples of specifications:

It is possible to reach a state in which out = 3

CTLSPEC EF out = 3

It is inevitable that out = 3 is eventually reached

CTLSPEC AF out = 3

It is always possible to reach a state in which out = 3

CTLSPEC AG EF out = 3

Every time a state with out = 2 is reached, a state with out = 3 is
reached afterward

CTLSPEC AG (out = 2 -> AF out = 3)

The reset operation is correct

CTLSPEC AG (reset -> AX out = 0)

11 / 30

The need for Fairness Constraints

Let us consider again the counter with reset

The specification AF out = 1 is not verified

On the path where reset is always 1, the system loops on a state
where out = 0, since the counter is always reset:

reset = TRUE,TRUE,TRUE,TRUE,TRUE,...

out = 0,0,0,0,0,0...

Similar considerations hold for the property AF out = 2. For
instance, the sequence

reset = FALSE,TRUE,FALSE,TRUE,FALSE,...

generates the loop

out = 0,1,0,1,0,1...

which is a counterexample to the given formula

12 / 30

Fairness Constraints

It is desirable that certain conditions hold infinitely often

AGAF p is a fairness property

Fairness conditions are used to eliminate behaviours in which a
certain condition p never holds (i.e. ¬ EFEG ¬p)

NuSMV supports both justice and compassion fairness constraints

JUSTICE/FAIRNESS p

consider only the executions that satisfy infinitely often the condition
COMPASSION (p,q)

consider only the executions that either satisfy p finitely often or satisfy
q infinitely often (i.e. p true infinitely often ⇒ q true infinitely often)

Remark:

Currently, compassion constraints have some limitations (are
supported only for BDD-based LTL model checking).

13 / 30

Fairness Constraints

Let us consider again the counter with reset. Let us add the following
fairness constraint:

JUSTICE out = 3

(we restrict to paths in which the counter reaches the value 3 infinitely
often)
The following properties are now verified:

NuSMV > check_ctlspec

-- specification EF out = 3 is true

-- specification AF out = 3 is true

-- specification AG EF out = 3 is true

-- specification AG (out = 2 -> AF out = 3) is true

14 / 30

The 4-bit adder example

We want to add a request operation to our adder, with the following
semantics: every time a request is issued, the adder starts computing the
sum of its operands. When finished, it stores the result in sum, setting
done to true.

MODULE bit-adder(req, in1, in2, cin)

VAR

sum: boolean; cout: boolean; ack: boolean;

ASSIGN

init(ack) := FALSE;

next(sum) := (in1 xor in2) xor cin;

next(cout) := (in1 & in2) | ((in1 | in2) & cin);

next(ack) := case

req: TRUE;

!req: FALSE;

esac;

15 / 30

The 4-bit adder example

MODULE adder(req, in1, in2)

VAR

bit[0]: bit-adder(

req, in1[0], in2[0], FALSE);

bit[1]: bit-adder(

bit[0].ack, in1[1], in2[1],

bit[0].cout);

bit[2]: bit-adder(...);

bit[3]: bit-adder(...);

DEFINE

sum[0] := bit[0].sum;

sum[1] := bit[1].sum;

sum[2] := bit[2].sum;

sum[3] := bit[3].sum;

overflow := bit[3].cout;

ack := bit[3].ack;

MODULE main

VAR

req: boolean;

a: adder(req, in1, in2);

ASSIGN

init(req) := FALSE;

next(req) :=

case

!req : {FALSE, TRUE};

req :

case

a.ack : FALSE;

TRUE: req;

esac;

esac;

16 / 30

The 4-bit adder example

Every time a request is issued, the adder will compute the sum of its
operands

CTLSPEC AG (req -> AF sum = op1 + op2);

CTLSPEC AG (req -> AF (done & sum = op1 + op2));

Every time a request is issued, the request holds untill the adder
will compute the sum of its operands and set done to true

CTLSPEC AG (req -> A[req U (done & (sum = op1 + op2))]);

17 / 30

The 4-bit adder example

Every time a request is issued, the adder will compute the sum of its
operands

CTLSPEC AG (req -> AF sum = op1 + op2);

CTLSPEC AG (req -> AF (done & sum = op1 + op2));

Every time a request is issued, the request holds untill the adder
will compute the sum of its operands and set done to true

CTLSPEC AG (req -> A[req U (done & (sum = op1 + op2))]);

17 / 30

The 4-bit adder example

Every time a request is issued, the adder will compute the sum of its
operands

CTLSPEC AG (req -> AF sum = op1 + op2);

CTLSPEC AG (req -> AF (done & sum = op1 + op2));

Every time a request is issued, the request holds untill the adder
will compute the sum of its operands and set done to true

CTLSPEC AG (req -> A[req U (done & (sum = op1 + op2))]);

17 / 30

The 4-bit adder example

Every time a request is issued, the adder will compute the sum of its
operands

CTLSPEC AG (req -> AF sum = op1 + op2);

CTLSPEC AG (req -> AF (done & sum = op1 + op2));

Every time a request is issued, the request holds untill the adder
will compute the sum of its operands and set done to true

CTLSPEC AG (req -> A[req U (done & (sum = op1 + op2))]);

17 / 30

The 4-bit adder example

Every time a request is issued, the adder will compute the sum of its
operands

CTLSPEC AG (req -> AF sum = op1 + op2);

CTLSPEC AG (req -> AF (done & sum = op1 + op2));

Every time a request is issued, the request holds untill the adder
will compute the sum of its operands and set done to true

CTLSPEC AG (req -> A[req U (done & (sum = op1 + op2))]);

17 / 30

The 4-bit adder example

NuSMV > check_ctlspec -p "AG (req -> AF sum = op1 + op2)"

-- specification AG (req -> AF sum = op1 + op2) is false

-- as demonstrated by the following execution sequence

[...]

Fixed:
ASSIGN

next(req) :=

case

!req:

case

!a.ack: {FALSE, TRUE};

TRUE: req;

esac;

req:

case

a.ack : FALSE;

TRUE: req;

esac;

esac;

18 / 30

The 4-bit adder example

NuSMV > check_ctlspec -p "AG (req -> AF sum = op1 + op2)"

-- specification AG (req -> AF sum = op1 + op2) is false

-- as demonstrated by the following execution sequence

[...]

Fixed:
ASSIGN

next(req) :=

case

!req:

case

!a.ack: {FALSE, TRUE};

TRUE: req;

esac;

req:

case

a.ack : FALSE;

TRUE: req;

esac;

esac;

18 / 30

The simple mutex example

MODULE user(semaphore)

VAR

state : { idle, entering, critical, exiting };

ASSIGN

init(state) := idle;

next(state) :=

case

state = idle : { idle, entering };

state = entering & !semaphore : critical;

state = critical : { critical, exiting };

state = exiting : idle;

TRUE : state;

esac;

next(semaphore) :=

case

state = entering : TRUE;

state = exiting : FALSE;

TRUE : semaphore;

esac;

FAIRNESS

running

19 / 30

The simple mutex example

MODULE main

VAR

semaphore : boolean;

proc1 : process user(semaphore);

proc2 : process user(semaphore);

ASSIGN

init(semaphore) := FALSE;

two processes are never in the critical section at the same time

CTLSPEC AG !(proc1.state = critical & proc2.state = critical); -- safety

whenever a process is entering the critical section then sooner or later it will be in the
critical section
CTLSPEC AG (proc1.state = entering -> AF proc1.state = critical); -- liveness

NuSMV > check_ctlspec -n 0

-- specification AG !(proc1.state = critical & proc2.state = critical) is true

NuSMV > check_ctlspec -n 1

-- specification AG (proc1.state = entering -> AF proc1.state = critical) is false

-- as demonstrated by the following execution sequence

[...]

20 / 30

The simple mutex example

MODULE main

VAR

semaphore : boolean;

proc1 : process user(semaphore);

proc2 : process user(semaphore);

ASSIGN

init(semaphore) := FALSE;

two processes are never in the critical section at the same time
CTLSPEC AG !(proc1.state = critical & proc2.state = critical); -- safety

whenever a process is entering the critical section then sooner or later it will be in the
critical section
CTLSPEC AG (proc1.state = entering -> AF proc1.state = critical); -- liveness

NuSMV > check_ctlspec -n 0

-- specification AG !(proc1.state = critical & proc2.state = critical) is true

NuSMV > check_ctlspec -n 1

-- specification AG (proc1.state = entering -> AF proc1.state = critical) is false

-- as demonstrated by the following execution sequence

[...]

20 / 30

The simple mutex example

MODULE main

VAR

semaphore : boolean;

proc1 : process user(semaphore);

proc2 : process user(semaphore);

ASSIGN

init(semaphore) := FALSE;

two processes are never in the critical section at the same time
CTLSPEC AG !(proc1.state = critical & proc2.state = critical); -- safety

whenever a process is entering the critical section then sooner or later it will be in the
critical section

CTLSPEC AG (proc1.state = entering -> AF proc1.state = critical); -- liveness

NuSMV > check_ctlspec -n 0

-- specification AG !(proc1.state = critical & proc2.state = critical) is true

NuSMV > check_ctlspec -n 1

-- specification AG (proc1.state = entering -> AF proc1.state = critical) is false

-- as demonstrated by the following execution sequence

[...]

20 / 30

The simple mutex example

MODULE main

VAR

semaphore : boolean;

proc1 : process user(semaphore);

proc2 : process user(semaphore);

ASSIGN

init(semaphore) := FALSE;

two processes are never in the critical section at the same time
CTLSPEC AG !(proc1.state = critical & proc2.state = critical); -- safety

whenever a process is entering the critical section then sooner or later it will be in the
critical section
CTLSPEC AG (proc1.state = entering -> AF proc1.state = critical); -- liveness

NuSMV > check_ctlspec -n 0

-- specification AG !(proc1.state = critical & proc2.state = critical) is true

NuSMV > check_ctlspec -n 1

-- specification AG (proc1.state = entering -> AF proc1.state = critical) is false

-- as demonstrated by the following execution sequence

[...]

20 / 30

The simple mutex example

MODULE main

VAR

semaphore : boolean;

proc1 : process user(semaphore);

proc2 : process user(semaphore);

ASSIGN

init(semaphore) := FALSE;

two processes are never in the critical section at the same time
CTLSPEC AG !(proc1.state = critical & proc2.state = critical); -- safety

whenever a process is entering the critical section then sooner or later it will be in the
critical section
CTLSPEC AG (proc1.state = entering -> AF proc1.state = critical); -- liveness

NuSMV > check_ctlspec -n 0

-- specification AG !(proc1.state = critical & proc2.state = critical) is true

NuSMV > check_ctlspec -n 1

-- specification AG (proc1.state = entering -> AF proc1.state = critical) is false

-- as demonstrated by the following execution sequence

[...]

20 / 30

The simple mutex example

MODULE main

VAR

semaphore : boolean;

proc1 : process user(semaphore);

proc2 : process user(semaphore);

ASSIGN

init(semaphore) := FALSE;

two processes are never in the critical section at the same time
CTLSPEC AG !(proc1.state = critical & proc2.state = critical); -- safety

whenever a process is entering the critical section then sooner or later it will be in the
critical section
CTLSPEC AG (proc1.state = entering -> AF proc1.state = critical); -- liveness

NuSMV > check_ctlspec -n 0

-- specification AG !(proc1.state = critical & proc2.state = critical) is true

NuSMV > check_ctlspec -n 1

-- specification AG (proc1.state = entering -> AF proc1.state = critical) is false

-- as demonstrated by the following execution sequence

[...]
20 / 30

Another mutex example

MODULE mutex(turn, other_non_idle, id)

VAR

state: {idle, waiting, critical};

ASSIGN

init(state) := idle;

next(state) :=

case

state=idle: {idle, waiting};

state=waiting & (!other_non_idle|turn=id): critical;

state=waiting: waiting;

state=critical: idle;

esac;

next(turn) :=

case

next(state) = idle : !id;

next(state) = critical : id;

TRUE : turn;

esac;

DEFINE

non_idle := state in {waiting, critical};

FAIRNESS

running

21 / 30

Another mutex example

MODULE main

VAR

turn: boolean;

p0: process mutex(turn,p1.non_idle,FALSE);

p1: process mutex(turn,p0.non_idle,TRUE);

NuSMV> NuSMV mutex.smv

-- specification AG (!(p0.state = critical &

p1.state = critical)) is true

-- specification AG (p0.state = waiting ->

AF p0.state = critical) is true

22 / 30

Another mutex example

If we change the line

state=critical: idle;

with

state=critical: {critical, idle};

the second property becomes false:

NuSMV> NuSMV mutex.smv

-- specification AG (!(p0.state = critical & p1.state = critical)) is true

-- specification AG (p0.state = waiting -> AF p0.state = critical) is false

23 / 30

Another mutex example

To avoid the process staying in the critical session forever, we can add the
fairness constraint:

FAIRNESS

state=idle

Is this restriction too strong?

24 / 30

Another mutex example

By keeping this constraint and changing the line

state=waiting & (!other_non_idle|turn=id): critical;

with

state=waiting & (!other_non_idle): critical;

we get

NuSMV> NuSMV mutex_flaw.smv

-- specification AG (!(p0.state = critical & p1.state = critical)) is true

-- specification AG (p0.state = waiting -> AF p0.state = critical) is true

-- specification EF (p0.state = waiting & p1.state = waiting) is false

What happens? If both processes reach the waiting state, they reach a
deadlock. This prevents the fulfillment of the fairness condition. Thus, in
a fair path, the state p0.state = waiting & p1.state = waiting is
forbidden.

25 / 30

Another mutex example

By keeping this constraint and changing the line

state=waiting & (!other_non_idle|turn=id): critical;

with

state=waiting & (!other_non_idle): critical;

we get

NuSMV> NuSMV mutex_flaw.smv

-- specification AG (!(p0.state = critical & p1.state = critical)) is true

-- specification AG (p0.state = waiting -> AF p0.state = critical) is true

-- specification EF (p0.state = waiting & p1.state = waiting) is false

What happens? If both processes reach the waiting state, they reach a
deadlock. This prevents the fulfillment of the fairness condition. Thus, in
a fair path, the state p0.state = waiting & p1.state = waiting is
forbidden.

25 / 30

LTL specifications

LTL properties are specified via the keyword LTLSPEC:

LTLSPEC <ltl_expression>

where <ltl expression> can contain the following temporal
operators:

X F G U

LTL properties are checked via the check ltlspec command

26 / 30

LTL specifications

Pfinally

F P

Pglobally

PG

PX

Pnext P until q

P U q

27 / 30

LTL specifications

Examples of specifications:

A state in which out = 3 is eventually reached

LTLSPEC F out = 3

Condition out = 0 holds until reset becomes false

LTLSPEC (out = 0) U (!reset)

Every time a state with out = 2 is reached, a state with out = 3 is
reached afterward

LTLSPEC G (out = 2 -> F out = 3)

28 / 30

LTL specifications

Examples of specifications:

A state in which out = 3 is eventually reached

LTLSPEC F out = 3

Condition out = 0 holds until reset becomes false

LTLSPEC (out = 0) U (!reset)

Every time a state with out = 2 is reached, a state with out = 3 is
reached afterward

LTLSPEC G (out = 2 -> F out = 3)

28 / 30

LTL specifications

Examples of specifications:

A state in which out = 3 is eventually reached

LTLSPEC F out = 3

Condition out = 0 holds until reset becomes false

LTLSPEC (out = 0) U (!reset)

Every time a state with out = 2 is reached, a state with out = 3 is
reached afterward

LTLSPEC G (out = 2 -> F out = 3)

28 / 30

LTL specifications

Examples of specifications:

A state in which out = 3 is eventually reached

LTLSPEC F out = 3

Condition out = 0 holds until reset becomes false

LTLSPEC (out = 0) U (!reset)

Every time a state with out = 2 is reached, a state with out = 3 is
reached afterward

LTLSPEC G (out = 2 -> F out = 3)

28 / 30

LTL specifications

Examples of specifications:

A state in which out = 3 is eventually reached

LTLSPEC F out = 3

Condition out = 0 holds until reset becomes false

LTLSPEC (out = 0) U (!reset)

Every time a state with out = 2 is reached, a state with out = 3 is
reached afterward

LTLSPEC G (out = 2 -> F out = 3)

28 / 30

LTL specifications

Examples of specifications:

A state in which out = 3 is eventually reached

LTLSPEC F out = 3

Condition out = 0 holds until reset becomes false

LTLSPEC (out = 0) U (!reset)

Every time a state with out = 2 is reached, a state with out = 3 is
reached afterward

LTLSPEC G (out = 2 -> F out = 3)

28 / 30

LTL specifications

Examples of specifications:

A state in which out = 3 is eventually reached

LTLSPEC F out = 3

Condition out = 0 holds until reset becomes false

LTLSPEC (out = 0) U (!reset)

Every time a state with out = 2 is reached, a state with out = 3 is
reached afterward

LTLSPEC G (out = 2 -> F out = 3)

28 / 30

LTL specifications

All the previous specifications are false:

NuSMV > check_ltlspec

-- specification F out = 3 is false ...

-- loop starts here --

-> State 1.1 <-

b0 = FALSE

b1 = FALSE

reset = TRUE

out = 0

-> State 1.2 <-

-- specification (out = 0 U (!reset)) is false ...

-- loop starts here --

-> State 2.1 <-

b0 = FALSE

b1 = FALSE

reset = TRUE

out = 0

-> State 2.2 <-

-- specification G (out = 2 -> F out = 3) is false ...

29 / 30

The property database

All properties are collected into an internal database, which can be
visualized via the show property command:

NuSMV > show_property

**** PROPERTY LIST [Type, Status, Counter-example Number, Name] ****

-------------------------- PROPERTY LIST -------------------------

000 : EF out = 3

[CTL True N/A]

...

011 : G (out = 2 -> F out = 3)

[LTL Unchecked N/A]

Every property can be accessed through its database index

30 / 30

	Property Specification
	Invariants
	CTL
	Fairness
	LTL

