NuSMV: Introduction and Examples *

Alessandra Giordani
agiordani@disi.unitn.it
http://disi.unitn.it/~agiordani

Formal Methods Lab Class, April 04, 2014

*These slides are derived from those by Stefano Tonetta, Alberto Griggio, Silvia Tomasi,
Thi Thieu Hoa Le for FM lab 2011/13

Alessandra Giordani (DISI) NuSMV: Introduction and Examples Apr 04, 2014 1/58

http://disi.unitn.it/~agiordani

© Introduction

@ Simulation

© Modeling
@ Basic Definitions

o Modules
@ Constraint style
@ Synchronous vs. Asynchronous

@ Examples
@ Synchronous

@ Asynchronous

Alessandra Giordani (DISI) NuSMV: Introduction and Examples Apr 04, 2014 2 /58

© Introduction

Alessandra Giordani (DISI) NuSMV: Introduction and Examples Apr 04, 2014

Introduction

NuSMYV is a symbolic model checker developed by FBK-IRST.

The NuSMV project aims at the development of a state-of-the-art
model checker that:

@ is robust, open and customizable;
o can be applied in technology transfer projects;
o can be used as research tool in different domains.

o NuSMV is OpenSource:

o developed by a distributed community,
o "“Free Software" license.

@ NuSMV home page:
o http://nusmv.fbk.eu/

4/58

@ Simulation

5/58

Interactive shell

®© 6 6 o o

NuSMV -int [filename] activates an interactive shell
read_model [-i filename] reads the input model.

set input_file filename sets the input model.

go reads and initializes NuSMV for verification or simulation.
pick_state [-v] [-r | -i] picks a state from the set of initial
state.

e -v prints the chosen state.

e -r picks a state from the set of the initial states randomly.

e -1 picks a state from the set of the initial states interactively.
simulate [-p | -v] [-r | -i] -k steps generates a sequence
of at most steps states starting from the current state.

o -p and -v print the generated trace:

—p prints only the changed state variables.
-v prints all the state variables.

e -r at every step picks the next state randomly.
e -i at every step picks the next state interactively.

6/58

Interactive shell

@ reset resets the whole system (in order to read in another model and
to perform verification on it).

@ help shows the list of all commands (if a command name is given as
argument, detailed information for that command will be provided).

@ quit stops the program.

Argument -h prints the command line help.

7/58

Inspecting traces

@ goto_state state_label makes state_label the current state
(it is used to navigate along traces).

o show_traces [-v] [trace_number] shows the trace identified by
trace_number or the most recently generated trace if trace number
is omitted.

e -v prints prints all the state variables.
o print_current_state [-h] [-v] prints out the current state.
e -v prints all the variables.

8/58

© Modeling
@ Basic Definitions

o Modules
@ Constraint style
@ Synchronous vs. Asynchronous

9/58

The first SMV program

MODULE main

VAR
b0 : boolean; FALSE TRUE
ASSIGN @ @
init(b0) := FALSE;
next(b0) := !b0;

An SMV program consists of:

@ Declarations of the state variables;
the state variables determine the state space of the model.

@ Assignments that define the valid initial states.

@ Assignments that define the transition relation.

10/58

Declaring state variables

The SMV language provides booleans, enumerative, bounded integers and
words as data types:
boolean:
X : boolean;
enumerative:
s : {ready, busy, waiting, stopped};
bounded integers (intervals):
n: 1..8;
words: word types are used to model arrays of bits (booleans) which allow
bitwise logical and arithmetic operations.

o unsigned word[3];
vector of 3 bits that allows unsigned operations [0,23 — 1].

o signed word[7];
vector of 7 bits that allows signed operations [-27~1, 271 — 1].

11 /58

The SMV language provides also the possibility to define arrays.

VAR

x : array 0..10 of boolean; -- array of 11 elements

y : array 2..4 of 0..10;

z : array 0..10 of array 0..5 of {red, green, orangel};
ASSIGN

init(x[5]) 1;

init(y[2]) {0,2,4,6,8,10}; -- any value in the set

init(z[3]1[2]) := {green, orangel};

Remarks:

@ Array indexes in NuSMV must be constants,

12/58

Adding a state variable

MODULE main
VAR
b0 : boolean;
bl : boolean;

ASSIGN
init(b0) := FALSE;
next (b0) := !b0;
Remarks:

@ The new state space is the cartesian product of the ranges \
of the variables.

@ Synchronous composition between the “subsystems” for b0
and bl.

‘
‘
;
" i
!
. .
. v
A s
\{‘H’

13/58

Declaring the set of initial states

@ For each variable, we constrain the values that it can assume in the
initial states.

init(<variable>) := <simple_expression> ;

o <simple_expression> must evaluate to values in the domain of
<variable>.

o If the initial value for a variable is not specified, then the variable can
initially assume any value in its domain.

14 /58

Declaring the set of initial states

MODULE main

VAR
b0 : boolean;
bl : boolean;

ASSIGN
init(b0) := FALSE;
next (b0) := !b0;
init(bl) := FALSE;

15/58

Expressions

@ Arithmetic operators:
+ - * / mod - (unary)

@ Comparison operators:

= = > < <= >=
o Logic operators:
& I xor ! (not) -> <>
o Conditional expression:
case
cl : el;
2 : e2; . . .
¢ © if c1 then el else if c2 then e2 else if ... else en
TRUE : en;
esac

o Set operators: {v1,v2,...,vn} (set expression)

o in (set inclusion) tests a value for membership in a set
e union (set union) takes the union of 2 sets

16/58

Expressions

@ Conversion operators:

toint converts boolean and word to integer.

bool converts integer and word to boolean

(the result of the conversion is FALSE if the expression resolves to 0,
TRUE otherwise).

swconst and uwconst convert integer to signed and unsigned word
respectively.

e wordl converts boolean to a single word bit.
e unsigned and signed convert signed word to unsigned word and

vice-versa.

17 /58

Expressions

@ Expressions in SMV do not necessarily evaluate to one value. In
general, they can represent a set of possible values.

init(var) := {a,b,c} union {x,y,z} ;

@ The meaning of := in assignments is that the Ihs can assume
non-deterministically a value in the set of values represented by the
rhs.

@ A constant c is considered as a syntactic abbreviation for {c} (the
singleton containing c).

18/58

Declaring transition relation

@ The transition relation is specified by constraining the values that
variables can assume in the next state (i.e. after each transition).

next(<variable>) := <next_expression> ;

o <next_expression> must evaluate to values in the domain of
<variable>.
o <next_expression> depends on “current” and “next” variables:
next(a) := { a, atl } ;
next(b) := b + (next(a) - a) ;
o If no next () assignment is specified for a variable, then the variable
can evolve non-deterministically, i.e. it is unconstrained.
Unconstrained variables can be used to model non-deterministic inputs
to the system.

19/58

Declaring the transition relation

A modulo-4 counter:

MODULE main

VAR
b0 : boolean;
bl : boolean;

ASSIGN
init(b0) := FALSE;
next(b0) := !b0;
init(bl) := FALSE;

next(bl)

(('b0 & b1) | (b0 & 'b1));

20/58

Specifying normal assignments

o Normal assignments constrain the current value of a variable to the
current values of other variables.

@ They can be used to model outputs of the system.
<variable> := <simple_expression> ;

o <simple_expression> must evaluate to values in the domain of the
<variable>.

21 /58

Specifying normal assignments

MODULE main

VAR
b0 : boolean;
bl : boolean;

out : 0..3;
ASSIGN
init(b0) := FALSE;
next(b0) := !b0;
init(bl) := FALSE;
next(b1) := (('b0 & b1) | (O & !'bl));

out := toint(b0) + 2xtoint(bl);

22 /58

Restrictions on the ASSIGN

In order for an SMV program to be implementable, assignments have the
following restrictions:

@ Double assignments rule — Each variable may be assigned only once in
the program.

o Circular dependencies rule — A variable cannot have “cycles” in its
dependency graph that are not broken by delays.

If an SMV program does not respect these restrictions, an error is reported
by NuSMV.

23/58

Double assignments rule

Each variable may be assigned only once in the program.
init(status) := ready;

init(status) := busy; ILLEGAL!
e (statun) = xendys gy
sratus o2 ready
next(status) = ready; ILLEGAL!

status := busy;

24 /58

Circular dependencies rule

A variable cannot have “cycles” in its dependency graph that are
not broken by delays.
x := (x + 1) mod 2;

x := (y + 1)
y = (x + 1)
next(x) := x
next(x) := x
next(y) :=y
next(x) := x

next(y) :=y

mod 2;
mod 2;

&

&
&

next (x) ;

next(y);
next (x) ;

next (y);
X;

ILLEGAL!

ILLEGAL!

ILLEGAL!

ILLEGAL!

LEGAL

25 /58

The DEFINE declaration

DEFINE declarations can be used to define abbreviations.

An alternative to normal assignments.

Syntax:

DEFINE <id> := <simple_expression> ;

They are similar to macro definitions.

@ No new state variable is created for defined symbols
(hence, no added complexity to model checking).

@ Each occurrence of a defined symbol is replaced with the body of the
definition.

26 /58

The DEFINE declaration

MODULE main

VAR
b0 : boolean;
bl : boolean;

ASSIGN

init(b0) := FALSE;

next(b0) := 'b0;

init(bl) := FALSE;

next(bl) := ((!'b0 & b1l) | (O & !'b1));
DEFINE

out := toint(b0) + 2*toint(bl);

27 /58

Example: A modulo 4 counter with reset

The counter can be reset by an external “uncontrollable” signal.

MODULE main
VAR
b0 : boolean; bl : boolean; reset : boolean;
ASSIGN
init(b0) := FALSE; '
init(b1) := FALSE; 6.0
next(b0) := case
reset TRUE : FALSE;
reset FALSE : 'b0;

esac;
next(bl) := case
reset : FALSE;

TRUE : (('b0 & b1) | (b0 & 'bl));
esac;

DEFINE
out := toint(b0) + 2*toint(bl);

28 /58

Exercise

Simulate the system using NuSMV and draw the FSM.

MODULE main

VAR
request : boolean;
state : { ready, busy };
ASSIGN
init(state) := ready;
next(state) := case
state = ready & request = TRUE :
TRUE
esac;

busy;

: { ready, busy };

29 /58

Exercise

Simulate the system using NuSMV and draw the FSM.

MODULE main

VAR
request : boolean;
state : { ready, busy };
ASSIGN
init(state) := ready;
next(state) := case
state = ready & request = TRUE :
TRUE
esac;

busy;

: { ready, busy };

29 /58

An SMV program can consist of one or more module declarations.

MODULE mod
VAR out: 0..9; main
ASSIGN next(out) :=

(out + 1) mod 10;

MODULE main m1l m2

VAR ml : mod; m2 : mod;
sum: 0..18;
ASSIGN sum := ml.out + m2.out;

@ Modules are instantiated in other modules. The instantiation is
performed inside the VAR declaration of the parent module.

@ In each SMV specification there must be a module main.

@ All the variables declared in a module instance are referred to via the
dot notation (e.g., m1.out, m2.out).

30/58

Module parameters

Module declarations may be parametric.

MODULE mod (in) main

VAR out: 0..9; .
out in

ml m2

MODULE main

VAR ml1 : mod(m2.out); .
’ in out

m2 : mod(ml.out);

e Formal parameters (in) are substituted with the actual parameters
(m2.out, m1.out) when the module is instantiated.

@ Actual parameters can be any legal expression.

@ Actual parameters are passed by reference.

31/58

Example: The modulo 4 counter revisited

MODULE counter_cell (tick)
VAR

value : 0..1;

done : boolean;

ASSIGN
init(value) 0;
next(value) := case
tick FALSE : value;
tick = TRUE : (value + 1) mod 2;
esac;
done := tick & (((value + 1) mod 2) = 0);

Remarks: tick is the formal parameter of module counter_cell.

32/58

Example: The modulo 4 counter revisited

MODULE main
VAR
bit0 : counter_cell(TRUE);
bitl : counter_cell(bit0O.done);

out : 0..3;
ASSIGN

out := bitO.value + 2+*bitl.value;
Remarks:

@ Module counter_cell is instantiated two times.

@ In the instance bitO0, the formal parameter tick is replaced with the
actual parameter TRUE.

@ When a module is instantiated, all variables/symbols defined in it are
preceded by the module instance name, so that they are unique to the
instance.

33/58

Module hierarchies

MODULE
VAR

bit0 :

bitl

out
ASSIGN
DEFINE

MODULE
VAR
b0 :
bl
b2 :
out
ASSIGN

counter_4(tick)

counter_cell(tick);
: counter_cell(bit0O.done);

: 0..3; done : boolean;

out:= bitO.value + 2xbitl.value;
done := bitl.done;

counter_64(tick) -- A counter modulo 64

counter_4(tick);

: counter_4(b0.done);

counter_4(bl.done);

: 0..63;

out := bO0.out + 4xbl.out + 16*b2.out;

34/58

The modulo 4 counter with reset revisited

MODULE counter_cell(tick, reset)

VAR
value : 0..1;
ASSIGN
init(value) := 0;
next(value) :=
case
reset = TRUE : O;
TRUE : case
tick = FALSE : value;
tick = TRUE : (value + 1) mod 2;
esac;
esac;
DEFINE

done := tick & (((value + 1) mod 2) = 0);

35/58

The modulo 4 counter with reset revisited

MODULE counter_4(tick, reset)
VAR
bit0 : counter_cell(tick, reset);
bitl : counter_cell(bitO.done, reset);

DEFINE
out = bit0.value + 2*bitl.value;
done := bitl.done;

MODULE main
VAR

reset : boolean;

c : counter_4(TRUE, reset);
DEFINE

out := c.out;

36 /58

Records can be defined as modules without parameters and assignments.

MODULE point
VAR x: -10..10;

y: -10..10;
MODULE circle
VAR center: point;

radius: 0..10;

MODULE main
VAR c: circle;
ASSIGN

init(c.center.x) := 0;
init(c.center.y) := 0;
init(c.radius) = 5;

37/58

The constraint style of model specification

MODULE main

VAR
request : boolean; state : {ready,busyl};
ASSIGN
init(state) := ready;
next(state) := case
state = ready & request : busy;
TRUE : {ready,busy};
esac;

Every program can be alternatively defined in a constraint style:

MODULE main
VAR request : boolean;
state : {ready,busy};
INIT state = ready
TRANS (state = ready & request) -> next(state) = busy

38/58

The constraint style of model specification

@ The SMV language allows for specifying the model by defining
constraints on:

o the states:
INVAR <simple_expression>

o the initial states:
INIT <simple_expression>

o the transitions:
TRANS <next_expression>

@ There can be zero, one, or more constraints in each module, and
constraints can be mixed with assignments.

@ Any propositional formula is allowed in constraints.

@ INVAR p is equivalent to INIT p and TRANS next(p), but is more
efficient.

o Risk of defining inconsistent models (INIT p & !p).

39/58

Assignments versus constraints

@ Any ASSIGN-based specification can be easily rewritten as an
equivalent constraint-based specification:

ASSIGN
init(state) :={ready,busy}; INIT state in {ready,busy}
next(state) :=ready; TRANS next(state)=ready
out :=b0+2x*b1; INVAR out=b0+2*b1l

@ The converse is not true: the following constraint
TRANS

next (b0) + 2*next(bl) + 4*xnext(b2) =
(b0 + 2%bl + 4%b2 + tick) mod 8

cannot be easily rewritten in terms of ASSIGNSs.

40/58

Assignments versus constraints

@ Models written in assignment style:
o by construction, there is always at least one initial state;,
o by construction, all states have at least one next state;
o non-determinism is apparent (unassigned variables, set assignments...).
o Models written in constraint style:
o INIT constraints can be inconsistent:
@ inconsistent model: no initial state
o any specification (also SPEC 0) is vacuously true.
o TRANS constraints can be inconsistent:
@ the transition relation is not total (there are deadlock states),
o NuSMV can detect and report this case (check_fsm).
o Example:
MODULE main
VAR b : boolean;
TRANS b = TRUE -> FALSE;
e non-determinism is hidden in the constraints

TRANS (state = ready & request) -> next(state) = busy

41/58

The modulo 4 counter with reset, using constraints

MODULE counter_cell(tick, reset)

VAR
value : 0..1;
done : boolean;
INIT
value = 0;
TRANS
reset = TRUE -> next(value) = 0
TRANS
reset = FALSe —> ((!tick -> next(value) = value) &
(tick -> next(value) = (value+1) mod 2))
INVAR

done = (tick & (((value + 1) mod 2) = 0));

42 /58

Synchronous composition

By default, composition of modules is synchronous:
all modules move at each step.

MODULE cell (input)

VAR
val : {red, green, blue};
ASSIGN
next(val) := input; nput} - ¢c1 (vl
MODULE main val input
VAR input val
cl : cell(c3.val); c3 c2
c2 : cell(cl.val);

c3 : cell(c2.val);

4358

Synchronous composition

A possible execution:

step | cl.val | c2.val | c3.val
0 red green | blue
1 blue red green
2 green | blue red
3 red green | blue
4

44 /58

Asynchronous composition

Asynchronous composition can be obtained using keyword process:
one process moves at each step.

MODULE cell (input)

VAR val : {red, green, blue};

ASSIGN next(val) := input;

FATIRNESS running

MODULE main

VAR
cl : process cell(c3.val);
c2 : process cell(cl.val);
c3 : process cell(c2.val);

Boolean variable running is defined in each process:
@ it is true when that process is selected;
@ it can be used to guarantee a fair scheduling of processes.

45 /58

Asynchronous composition

Asynchronous composition can be obtained using keyword process:
one process moves at each step.

MODULE cell (input)

VAR val : {red, green, blue};

ASSIGN next(val) := input;

FATIRNESS running

MODULE main

VAR
cl : process cell(c3.val);
c2 : process cell(cl.val);
c3 : process cell(c2.val);

Boolean variable running is defined in each process:

@ it is true when that process is selected;

@ it can be used to guarantee a fair scheduling of processes.
In NUSMV 2.5 processes are deprecated!

45 /58

Asynchronous composition

A possible execution:

step | running | cl.val | c2.val | c3.val

0 - red | green | blue
1 c2 red red blue
2 cl blue red blue
3 cl blue red blue
4 c2 blue red blue
5 c3 blue red red

6 c2 blue blue red

7 c3 blue blue blue

46 /58

@ Examples
@ Synchronous

@ Asynchronous

47/58

1bit-Adder

MODULE bit-adder(inl, in2, cin)
VAR
sum : boolean;
cout : boolean;
ASSIGN
next(sum) := (inl xor in2) xor cin;
next(cout) := (inl & in2) | ((inl | in2) & cin);

48 /58

4bit-Adder

MODULE adder(inl, in2)
VAR
bit[0] : bit-adder(ini[0], in2[0], 0);
bit[1] : bit-adder(ini[1], in2[1], bit[0].cout);
bit[2] : bit-adder(ini[2], in2[2], bit[1].cout);
bit[3] : bit-adder(ini[3], in2[3], bit[2].cout);
DEFINE

sum[0] := bit[0].sum;
sum[1] := bit[1].sum;
sum[2] := bit[2].sum;
sum[3] := bit[3].sum;

overflow := bit[3].cout;

49 /58

MODULE main
VAR
inl : array 0..3 of boolean;
in2 : array 0..3 of boolean;
a : adder(inil, in2);
ASSIGN
next(in1[0]) := in1[0]; next(ini[1]) := ini1[1];
next(ini1[2]) := ini[2]; next(ini1[3]) := ini1[3];
next(in2[0]) := in2[0]; next(in2[1]) := in2[1];
next (in2[2]) := in2[2]; next(in2[3]) := in2[3];
DEFINE
opl := toint(inl1[0]) + 2*toint(inl[1]) + 4xtoint(inl[2]) +
8*toint (inl1[3]);
op2 := toint(in2[0]) + 2*toint(in2[1]) + 4xtoint(in2[2]) +
8*toint (in2[3]);
sum := toint(a.sum[0]) + 2*toint(a.sum[1]) + 4*toint(a.sum[2]) +
8*xtoint(a.sum[3]) + 16*toint(a.overflow);

50 /58

Adder - simulation

Simulate randomly the system.
o All the variables change their value at every step.

@ The initial value of inl1 and in2 are set randomly and they keep their
value throughout the simulation.

o After some (how many?) simulation steps, sum stores the sum of the
two operands.

o After that, no more changes are allowed.
Exercise:

@ Add a reset control which changes the values of the operands and
restarts the computation of the sum.

51/58

Greatest Common Divisor

Consider the following program:

void main() {
... // initialization of a and b
while (a!=b) {
if (a>b)
a=a-b;
else
b=b-a;
}
... // GCD=a=b
}

Remark: Euclid's algorithm for GCD (GCD(a, b) = GCD(b, a mod b))

52 /58

Greatest Common Divisor - labeled

Let's label the entry point and the exit point of every statement:

void main() {
... // initialization of a and b
11: while (a'=b) {
12: if (a>b)
13: a=a-b;
else
14: b=b-a;
}
15: ... // GCD=a=b

53 /58

Greatest Common Divisor - SMV

Here is the SMV translation:

MODULE main() next(a):=
VAR a: 0..100; b: 0..100; case
pc: {11,12,13,14,15}; pc=13: a-b;
ASSIGN TRUE: a;
init(pc):=11; esac;
next (pc) := next(b) :=
case case
pc=11 & a'=b: 12; pc=14: b-a;
pc=11 & a=b: 15; TRUE: b;
pc=12 & a>b: 13; esac;
pc=12 &a<=b: 14;
pc=13 | pc=14: 11;
pc=15: 15;
esac;

54 /58

Greatest Common Divisor - SMV - constraint style

In the constraint style the SMV model looks more like the original:

MODULE main

VAR

a: 0..100; b : 0..100; pc : {11, 12, 13, 14, 15};
INIT pc = 11
TRANS

pc = 11 > (((a !'= b & next(pc) = 12) | (a = b & next(pc) = 15))
& next(a) = a & next(b) = b)

pc = 12 -> (((a > b & next(pc) = 13) | (a < b & next(pc) = 14))
& next(a) = a & next(b) = b)

TRANS

pc = 13 -> (next(pc) = 11 & next(a) = (a - b) & next(b) = b)
TRANS

pc = 14 -> (next(pc) = 11 & next(b) = (b - a) & next(a) = a)
TRANS

pc = 15 —> (next(pc) = 15 & next(a) = a & next(b) = b)

55 /58

Simple mutual exclusion

MODULE user (semaphore)

VAR
state : {idle, entering, critical, exiting};
ASSIGN
init(state) := idle;
next(state) :=
case
state = idle : {idle, entering};
state = entering & !semaphore : critical;
state = critical : {critical, exiting};
state = exiting : idle;
TRUE : state;
esac;
next (semaphore) :=
case

state = entering : TRUE;
state = exiting : FALSE;
TRUE : semaphore;
esac;
FAIRNESS running;

56 /58

Simple mutual exclusion

MODULE main
VAR

semaphore : boolean;

procl : process user (semaphore);

proc2 : process user (semaphore);
ASSIGN

init (semaphore) := FALSE;

57 /58

Simple mutual exclusion - simulate

Simulate randomly the system:
@ At every step, only one process executes.

@ The simulation depends on the value of _process_selector..

58 /58

	Introduction
	Simulation
	Modeling
	Basic Definitions
	Modules
	Constraint style
	Synchronous vs. Asynchronous

	Examples
	Synchronous
	Asynchronous

