
SPIN: Verifying LTL properties ∗

Alessandra Giordani
agiordani@disi.unitn.it

http://disi.unitn.it/~agiordani

Formal Methods Lab Class, March 26, 2014

*These slides are derived from those by Stefano Tonetta, Alberto Griggio, Silvia Tomasi,
Thi Thieu Hoa Le for FM lab 2011/13

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014 1 / 10

http://disi.unitn.it/~agiordani

Contents

1 LTL and Spin
Verifying LTL properties with Spin
Useful predefined functions and variables

2 LTL in protocol examples
Fairness
Leader Election
Mutual Exclusion
Alternating Bit Protocol

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014 2 / 10

Contents

1 LTL and Spin
Verifying LTL properties with Spin
Useful predefined functions and variables

2 LTL in protocol examples
Fairness
Leader Election
Mutual Exclusion
Alternating Bit Protocol

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014 3 / 10

LTL specifications

Pfinally

F P

Pglobally

PG

PX

Pnext P until q

P U q

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014 3 / 10

LTL syntax with Spin

Grammar:

ltl ::= opd | (ltl) | ltl binop ltl | unop ltl

Operands (opd):

true, false, and user-defined names starting with a lower-case letter

Unary Operators (unop):

[] (the temporal operator always)
<> (the temporal operator eventually)
! (the boolean operator for negation)

Binary Operators (binop):

U (the temporal operator strong until)
V (the dual of U, release): (p V q) means !(!p U !q))
&& (the boolean operator for logical and)
|| (the boolean operator for logical or)
-> (the boolean operator for logical implication)
<-> (the boolean operator for logical equivalence)

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014 3 / 10

LTL model checking: intuition

To model check if M |= φ, Spin does

build an automaton A¬φ that encodes all violations of φ,

consider the synchronous execution of M and A¬φ
=⇒ AM × A¬φ represents the paths in M that do not satisfy φ.

A¬φ (“never claim”) can be seen as a monitoring machine that accepts
some infinite executions of the system. If there exists an execution
accepted by A¬φ, that execution is a violation of φ.

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014 4 / 10

Verifying LTL properties with Spin 1/2

Suppose we want to verify that a system satisfies a property.
Example: in the system foo.pml, a boolean variable b is always true.

Write the corresponding LTL formula using some simple symbols as
atomic propositions (usually, single characters): [] p.

Write the symbol definitions:
> echo ‘‘#define p (b==true)’’ > foo.aut

Generate the never claim corresponding to the negation of the
property:
> spin -f ’!([] p)’ >> foo.aut

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014 5 / 10

Verifying LTL properties with Spin 2/2

Generate the verifier:
> spin -a -N foo.aut foo.pml

Option -N file.aut adds the never claim stored in file.aut

Compile and run the verifier:
> gcc -o pan pan.c

> ./pan -a

When a never claim is present and -a option is used, the verifier
reports the existence of an execution accepted by the never claim.
This execution corresponds to a violation of the property.

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014 6 / 10

Remote references

Typically, in order to test the local control state of active processes,
we use the remote reference procname[pid]@label.

This function return a non-zero value iff the process procname[pid]

is currently in the local control state marked by label.

Example:

[]!(mutex[0]@critical && mutex[1]@critical)

We can also refer to the current value of local variable by using
procname[pid]:var

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014 6 / 10

Predefined global variables and functions

The predefined local variable pid stores the process instantiation
number (pid) of a process.

The predefined global variable last stores the pid of the process
that performed the last execution.

The function enabled(pid) returns true if the process with identifier
pid has at least one executable statement in its current control state.

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014 6 / 10

Contents

1 LTL and Spin
Verifying LTL properties with Spin
Useful predefined functions and variables

2 LTL in protocol examples
Fairness
Leader Election
Mutual Exclusion
Alternating Bit Protocol

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014 7 / 10

Weak Fairness

An event E occurs infinitely often. Example:

Let Ri be true iff the process i is running.

Weak Fairness: every process runs infinitely often.∧
i

GFRi

In the following, we will use the following abbreviation:

FAIRRUN :=
∧
i

GFRi

It is often used as condition for other properties.

In Spin:

[]<> _last==0 && []<> _last==1 ...

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014 7 / 10

Strong Fairness

If an event E1 occurs infinitely often, then the event E2 occurs infinitely
often. Example:

Let Ei be true iff the process i can execute a statement.

Strong Fairness: if a process is infinitely often ready to execute a
statement , then that process runs infinitely often.∧

i

(GFEi → GFRi)

In Spin:

([]<> enabled(0) -> []<> _last==0) && ...

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014 7 / 10

Exercise

Consider the following system:

int count;

bool incr;

active proctype counter() {

do

:: incr ->

count++

od

}

active proctype env() {

do

:: incr = false

:: incr = true

od

}

Verify the property count
reaches the value 10.

Verify the property above
under the fairness condition:
[]<> (incr && last==0).

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014 7 / 10

Exercise

Consider the following system:

int count;

bool incr;

active proctype counter() {

do

:: incr ->

count++

od

}

active proctype env() {

do

:: incr = false

:: incr = true

od

}

Verify the property count
reaches the value 10.

Verify the property above
under the fairness condition:
[]<> (incr && last==0).

Note: iSpin does not accept
the variable last.

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014 7 / 10

Leader Election

The system

N processes in a unidirectional ring network: each of them can send
messages to its next neighbor and receive from its prev neighbor.

Eventually, the process with the highest identifier will be elected
leader.

The variable nLeaders stores the number of leaders.

The properties:

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014 8 / 10

Leader Election

The system

N processes in a unidirectional ring network: each of them can send
messages to its next neighbor and receive from its prev neighbor.

Eventually, the process with the highest identifier will be elected
leader.

The variable nLeaders stores the number of leaders.

The properties:

Eventually, a leader will be elected

In LTL:
F(nLeaders > 0)

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014 8 / 10

Leader Election

The system

N processes in a unidirectional ring network: each of them can send
messages to its next neighbor and receive from its prev neighbor.

Eventually, the process with the highest identifier will be elected
leader.

The variable nLeaders stores the number of leaders.

The properties:

Eventually, a leader will be elected

In LTL:
F(nLeaders > 0)

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014 8 / 10

Leader Election

The system

N processes in a unidirectional ring network: each of them can send
messages to its next neighbor and receive from its prev neighbor.

Eventually, the process with the highest identifier will be elected
leader.

The variable nLeaders stores the number of leaders.

The properties:

There is never more than one leader

In LTL:
G!(nLeaders > 1)

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014 8 / 10

Leader Election

The system

N processes in a unidirectional ring network: each of them can send
messages to its next neighbor and receive from its prev neighbor.

Eventually, the process with the highest identifier will be elected
leader.

The variable nLeaders stores the number of leaders.

The properties:

There is never more than one leader

In LTL:
G!(nLeaders > 1)

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014 8 / 10

Leader Election

The system

N processes in a unidirectional ring network: each of them can send
messages to its next neighbor and receive from its prev neighbor.

Eventually, the process with the highest identifier will be elected
leader.

The variable nLeaders stores the number of leaders.

The properties:

When a process is elected, it will remain leader forever

In LTL:
G(elected → GoneLeader)

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014 8 / 10

Leader Election

The system

N processes in a unidirectional ring network: each of them can send
messages to its next neighbor and receive from its prev neighbor.

Eventually, the process with the highest identifier will be elected
leader.

The variable nLeaders stores the number of leaders.

The properties:

When a process is elected, it will remain leader forever

In LTL:
G(elected → GoneLeader)

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014 8 / 10

Mutual Exclusion

The system

N processes are trying to access a critical session.

Let Ti be true iff the process i is resp. in the trying session and Ci be
true iff it is in the critical session.

The properties:

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014 9 / 10

Mutual Exclusion

The system

N processes are trying to access a critical session.

Let Ti be true iff the process i is resp. in the trying session and Ci be
true iff it is in the critical session.

The properties:

Mutual exclusion: there is no reachable state in which more processes
are in the critical session.

In LTL:
G!(

∨
i 6=j

(Ci ∧ Cj))

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014 9 / 10

Mutual Exclusion

The system

N processes are trying to access a critical session.

Let Ti be true iff the process i is resp. in the trying session and Ci be
true iff it is in the critical session.

The properties:

Mutual exclusion: there is no reachable state in which more processes
are in the critical session.

In LTL:
G!(

∨
i 6=j

(Ci ∧ Cj))

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014 9 / 10

Mutual Exclusion

The system

N processes are trying to access a critical session.

Let Ti be true iff the process i is resp. in the trying session and Ci be
true iff it is in the critical session.

The properties:

Progress: if one process is in T, then eventually some process will
enter C.

In LTL:
G(

∨
i

Ti → F
∨
i

Ci)

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014 9 / 10

Mutual Exclusion

The system

N processes are trying to access a critical session.

Let Ti be true iff the process i is resp. in the trying session and Ci be
true iff it is in the critical session.

The properties:

Progress: if one process is in T, then eventually some process will
enter C.

In LTL:
G(

∨
i

Ti → F
∨
i

Ci)

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014 9 / 10

Mutual Exclusion

The system

N processes are trying to access a critical session.

Let Ti be true iff the process i is resp. in the trying session and Ci be
true iff it is in the critical session.

The properties:

Lockout-freedom: in a fair path, if a process is in T, eventually it
enters C.

In LTL:
FAIRRUN → G(

∧
i

(Ti → FCi))

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014 9 / 10

Mutual Exclusion

The system

N processes are trying to access a critical session.

Let Ti be true iff the process i is resp. in the trying session and Ci be
true iff it is in the critical session.

The properties:

Lockout-freedom: in a fair path, if a process is in T, eventually it
enters C.

In LTL:
FAIRRUN → G(

∧
i

(Ti → FCi))

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014 9 / 10

Alternating Bit Protocol

The system

A process P1 is trying to send messages to the process P2 by means
of a non-reliable channel, which can lose or duplicate the messages.

Let sentA be true iff P1 has just sent the message A and recA be true
iff P2 has just received the message A. Similarly for sendB and recB.

Let loss be true iff the channel lost last message.

The properties:

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014 10 / 10

Alternating Bit Protocol

The system

A process P1 is trying to send messages to the process P2 by means
of a non-reliable channel, which can lose or duplicate the messages.

Let sentA be true iff P1 has just sent the message A and recA be true
iff P2 has just received the message A. Similarly for sendB and recB.

Let loss be true iff the channel lost last message.

The properties:

Response to Impulse: in a fair path, if a message is sent, then it is
eventually received.

In LTL:

(FAIRRUN ∧ GF!loss)→ (G(sendA→ FrecA))

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014 10 / 10

Alternating Bit Protocol

The system

A process P1 is trying to send messages to the process P2 by means
of a non-reliable channel, which can lose or duplicate the messages.

Let sentA be true iff P1 has just sent the message A and recA be true
iff P2 has just received the message A. Similarly for sendB and recB.

Let loss be true iff the channel lost last message.

The properties:

Response to Impulse: in a fair path, if a message is sent, then it is
eventually received.

In LTL:

(FAIRRUN ∧ GF!loss)→ (G(sendA→ FrecA))

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014 10 / 10

Alternating Bit Protocol

The system

A process P1 is trying to send messages to the process P2 by means
of a non-reliable channel, which can lose or duplicate the messages.

Let sentA be true iff P1 has just sent the message A and recA be true
iff P2 has just received the message A. Similarly for sendB and recB.

Let loss be true iff the channel lost last message.

The properties:

Absence of Unsolicited Response: if a message is received, then it has
been previously sent.

In LTL:
FrecA→ ((¬recA)UsentA)

Alternative:
¬((¬sentA)UrecA)

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014 10 / 10

Alternating Bit Protocol

The system

A process P1 is trying to send messages to the process P2 by means
of a non-reliable channel, which can lose or duplicate the messages.

Let sentA be true iff P1 has just sent the message A and recA be true
iff P2 has just received the message A. Similarly for sendB and recB.

Let loss be true iff the channel lost last message.

The properties:

Absence of Unsolicited Response: if a message is received, then it has
been previously sent.

In LTL:
FrecA→ ((¬recA)UsentA)

Alternative:
¬((¬sentA)UrecA)

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014 10 / 10

Alternating Bit Protocol

The system

A process P1 is trying to send messages to the process P2 by means
of a non-reliable channel, which can lose or duplicate the messages.

Let sentA be true iff P1 has just sent the message A and recA be true
iff P2 has just received the message A. Similarly for sendB and recB.

Let loss be true iff the channel lost last message.

The properties:

Absence of Unsolicited Response: if a message is received, then it has
been previously sent.

In LTL:
FrecA→ ((¬recA)UsentA)

Alternative:
¬((¬sentA)UrecA)

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014 10 / 10

	LTL and Spin
	Verifying LTL properties with Spin
	Useful predefined functions and variables

	LTL in protocol examples
	Fairness
	Leader Election
	Mutual Exclusion
	Alternating Bit Protocol

