SPIN: Verifying LTL properties *

Alessandra Giordani
agiordani@disi.unitn.it
http://disi.unitn.it/~agiordani

Formal Methods Lab Class, March 26, 2014

*These slides are derived from those by Stefano Tonetta, Alberto Griggio, Silvia Tomasi,
Thi Thieu Hoa Le for FM lab 2011/13

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014 1/10

http://disi.unitn.it/~agiordani

© LTL and Spin
@ Verifying LTL properties with SPIN
o Useful predefined functions and variables

© LTL in protocol examples
o Fairness
@ Leader Election
@ Mutual Exclusion
@ Alternating Bit Protocol

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014 2 /10

© LTL and Spin
@ Verifying LTL properties with SPIN
o Useful predefined functions and variables

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014 3 /10

LTL specifications

finally p globally p

SPIN: Verifying LTL properties Mar 26, 2014 3 /10

LTL syntax with SPIN

e Grammar:

@ 1tl ::= opd | (1tl) | 1tl binop 1tl | unop 1ltl
@ Operands (opd):

e true, false, and user-defined names starting with a lower-case letter
e Unary Operators (unop):

o [1 (the temporal operator always)
o <> (the temporal operator eventually)
o ! (the boolean operator for negation)
@ Binary Operators (binop):
U (the temporal operator strong until)
V (the dual of U, release): (p V q) means !(!p U !q))
&& (the boolean operator for logical and)
| | (the boolean operator for logical or)
-> (the boolean operator for logical implication)
<-> (the boolean operator for logical equivalence)

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014

LTL model checking: intuition

To model check if M |= ¢, SPIN does
@ build an automaton A-; that encodes all violations of ¢,

@ consider the synchronous execution of M and A,
= Am X A_4 represents the paths in M that do not satisfy ¢.

A ("never claim”) can be seen as a monitoring machine that accepts
some infinite executions of the system. If there exists an execution
accepted by A4, that execution is a violation of ¢.

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014 4 /10

Verifying LTL properties with SPIN 1/2

@ Suppose we want to verify that a system satisfies a property.
Example: in the system foo.pml, a boolean variable b is always true.

@ Write the corresponding LTL formula using some simple symbols as
atomic propositions (usually, single characters): [] p.

@ Write the symbol definitions:
> echo ‘‘#define p (b==true)’’ > foo.aut

@ Generate the never claim corresponding to the negation of the
property:
> spin -f ’!([] p)’ >> foo.aut

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014

Verifying LTL properties with SPIN 2/2

o Generate the verifier:
> spin -a -N foo.aut foo.pml

@ Option -N file.aut adds the never claim stored in file.aut
@ Compile and run the verifier:

> gcc -0 pan pan.c

> ./pan -a
@ When a never claim is present and -a option is used, the verifier

reports the existence of an execution accepted by the never claim.
This execution corresponds to a violation of the property.

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014 6 /10

Remote references

@ Typically, in order to test the local control state of active processes,
we use the remote reference procname [pid]@label.

o This function return a non-zero value iff the process procname [pid]
is currently in the local control state marked by label.

o Example:
[1'(mutex[0]@critical && mutex[1]@critical)

@ We can also refer to the current value of local variable by using
procname [pid] :var

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014 6 /10

Predefined global variables and functions

@ The predefined local variable _pid stores the process instantiation
number (pid) of a process.

@ The predefined global variable _1ast stores the pid of the process
that performed the last execution.

@ The function enabled(pid) returns true if the process with identifier
pid has at least one executable statement in its current control state.

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014 6 /10

© LTL in protocol examples
o Fairness
@ Leader Election
@ Mutual Exclusion
@ Alternating Bit Protocol

Alessandra Giordani (DISI) SPIN: Verifying LTL properties

Mar 26, 2014

7/ 10

An event E occurs infinitely often. Example:
o Let R; be true iff the process i is running.

o Weak Fairness: every process runs infinitely often.

/\GFR,-

@ In the following, we will use the following abbreviation:

FAIRRUN := /\ GFR;
i

@ It is often used as condition for other properties.
@ In SPIN:
[1<> _last==0 && []<> _last==

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014

Strong Fairness

If an event E1 occurs infinitely often, then the event E2 occurs infinitely
often. Example:

o Let E; be true iff the process / can execute a statement.

o Strong Fairness: if a process is infinitely often ready to execute a
statement , then that process runs infinitely often.

/\(GFE; — GFR;)

i

o In SPIN:
([1<> enabled(0) -> [I1<> _last==0) && ...

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014 7 /10

Exercise

Consider the following system:

int count;

bool incr;
o Verify the property count

active proctype counter() { reaches the value 10.

do
incr ->
count++
od
}
active proctype env() {
do
incr = false
incr = true
od
}

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014 7 /10

Exercise

Consider the following system:

int count;

bool incr; @ Verify the property count

reaches the value 10.

active proctype counter() { o Verify the property above
do under the fairness condition:
incr -> [1<> (incr && _last==0).
count++
od
}
active proctype env() {
do incr = false Note: iSpin does not accept
iner = true the variable _last.
od

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014 7 /10

Leader Election

The system

@ NN processes in a unidirectional ring network: each of them can send
messages to its next neighbor and receive from its prev neighbor.

o Eventually, the process with the highest identifier will be elected
leader.

@ The variable nleaders stores the number of leaders.

The properties:

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014 8 /10

Leader Election

The system

@ NN processes in a unidirectional ring network: each of them can send
messages to its next neighbor and receive from its prev neighbor.

o Eventually, the process with the highest identifier will be elected
leader.

@ The variable nlLeaders stores the number of leaders.
The properties:
@ Eventually, a leader will be elected

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014

Leader Election

The system

@ NN processes in a unidirectional ring network: each of them can send
messages to its next neighbor and receive from its prev neighbor.

o Eventually, the process with the highest identifier will be elected
leader.

@ The variable nlLeaders stores the number of leaders.
The properties:
@ Eventually, a leader will be elected

o In LTL:
F(nLeaders > 0)

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014

Leader Election

The system

@ NN processes in a unidirectional ring network: each of them can send
messages to its next neighbor and receive from its prev neighbor.

o Eventually, the process with the highest identifier will be elected
leader.

@ The variable nlLeaders stores the number of leaders.
The properties:
@ There is never more than one leader

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014

Leader Election

The system

@ NN processes in a unidirectional ring network: each of them can send
messages to its next neighbor and receive from its prev neighbor.

o Eventually, the process with the highest identifier will be elected
leader.

@ The variable nlLeaders stores the number of leaders.
The properties:
@ There is never more than one leader

o In LTL:
G!(nLeaders > 1)

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014

Leader Election

The system

@ NN processes in a unidirectional ring network: each of them can send
messages to its next neighbor and receive from its prev neighbor.

o Eventually, the process with the highest identifier will be elected
leader.

@ The variable nlLeaders stores the number of leaders.
The properties:
@ When a process is elected, it will remain leader forever

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014

Leader Election

The system

@ NN processes in a unidirectional ring network: each of them can send
messages to its next neighbor and receive from its prev neighbor.

o Eventually, the process with the highest identifier will be elected
leader.

@ The variable nlLeaders stores the number of leaders.
The properties:
@ When a process is elected, it will remain leader forever

o In LTL:
G(elected — Goneleader)

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014

Mutual Exclusion

The system
@ NN processes are trying to access a critical session.

o Let T; be true iff the process i is resp. in the trying session and C; be
true iff it is in the critical session.

The properties:

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014 9 /10

Mutual Exclusion

The system
@ NN processes are trying to access a critical session.
o Let T; be true iff the process i is resp. in the trying session and C; be
true iff it is in the critical session.
The properties:
@ Mutual exclusion: there is no reachable state in which more processes
are in the critical session.

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014 9 /10

Mutual Exclusion

The system
@ NN processes are trying to access a critical session.

o Let T; be true iff the process i is resp. in the trying session and C; be
true iff it is in the critical session.

The properties:
@ Mutual exclusion: there is no reachable state in which more processes
are in the critical session.
o In LTL:

Gl(\/(GA G)
i#j

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014 9 /10

Mutual Exclusion

The system
@ N processes are trying to access a critical session.
o Let T; be true iff the process i is resp. in the trying session and C; be
true iff it is in the critical session.
The properties:

@ Progress: if one process is in T, then eventually some process will
enter C.

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014 9 /10

Mutual Exclusion

The system
@ N processes are trying to access a critical session.

o Let T; be true iff the process i is resp. in the trying session and C; be
true iff it is in the critical session.

The properties:

@ Progress: if one process is in T, then eventually some process will
enter C.

o In LTL:

G(\/Ti=F\/ Q)

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014 9 /10

Mutual Exclusion

The system
@ N processes are trying to access a critical session.

o Let T; be true iff the process i is resp. in the trying session and C; be
true iff it is in the critical session.

The properties:

o Lockout-freedom: in a fair path, if a process is in T, eventually it
enters C.

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014 9 /10

Mutual Exclusion

The system
@ N processes are trying to access a critical session.
o Let T; be true iff the process i is resp. in the trying session and C; be
true iff it is in the critical session.
The properties:
o Lockout-freedom: in a fair path, if a process is in T, eventually it
enters C.

e In LTL:
FAIRRUN — G(\(T; — F())

i

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014 9 /10

Alternating Bit Protocol

The system

@ A process Pj is trying to send messages to the process P> by means
of a non-reliable channel, which can lose or duplicate the messages.

o Let sentA be true iff P; has just sent the message A and recA be true
iff P> has just received the message A. Similarly for sendB and recB.

o Let Joss be true iff the channel lost last message.

The properties:

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014 10 / 10

Alternating Bit Protocol

The system
@ A process P is trying to send messages to the process P, by means
of a non-reliable channel, which can lose or duplicate the messages.

o Let sentA be true iff P; has just sent the message A and recA be true
iff Py has just received the message A. Similarly for sendB and recB.

o Let loss be true iff the channel lost last message.
The properties:

@ Response to Impulse: in a fair path, if a message is sent, then it is
eventually received.

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014 10 / 10

Alternating Bit Protocol

The system

@ A process P is trying to send messages to the process P, by means
of a non-reliable channel, which can lose or duplicate the messages.

o Let sentA be true iff P; has just sent the message A and recA be true
iff Py has just received the message A. Similarly for sendB and recB.

o Let loss be true iff the channel lost last message.
The properties:

@ Response to Impulse: in a fair path, if a message is sent, then it is
eventually received.

e In LTL:

(FAIRRUN A GF!lloss) — (G(sendA — FrecA))

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014 10 / 10

Alternating Bit Protocol

The system

@ A process Pj is trying to send messages to the process P, by means
of a non-reliable channel, which can lose or duplicate the messages.

o Let sentA be true iff P; has just sent the message A and recA be true
iff Py has just received the message A. Similarly for sendB and recB.

o Let Joss be true iff the channel lost last message.
The properties:

@ Absence of Unsolicited Response: if a message is received, then it has
been previously sent.

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014 10 / 10

Alternating Bit Protocol

The system

@ A process Pj is trying to send messages to the process P, by means
of a non-reliable channel, which can lose or duplicate the messages.

o Let sentA be true iff P; has just sent the message A and recA be true
iff Py has just received the message A. Similarly for sendB and recB.

o Let Joss be true iff the channel lost last message.
The properties:

@ Absence of Unsolicited Response: if a message is received, then it has
been previously sent.

o In LTL:
FrecA — ((—recA)UsentA)

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014 10 / 10

Alternating Bit Protocol

The system

@ A process Pj is trying to send messages to the process P, by means
of a non-reliable channel, which can lose or duplicate the messages.

o Let sentA be true iff P; has just sent the message A and recA be true
iff Py has just received the message A. Similarly for sendB and recB.

o Let Joss be true iff the channel lost last message.
The properties:

@ Absence of Unsolicited Response: if a message is received, then it has
been previously sent.

o In LTL:
FrecA — ((—recA)UsentA)

o Alternative:
—((—sentA)UrecA)

Alessandra Giordani (DISI) SPIN: Verifying LTL properties Mar 26, 2014 10 / 10

	LTL and Spin
	Verifying LTL properties with Spin
	Useful predefined functions and variables

	LTL in protocol examples
	Fairness
	Leader Election
	Mutual Exclusion
	Alternating Bit Protocol

