
Contents

1 Promela overview
Processes
Data objects
Message Channels
Executability

2 Exercises

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 11 / 14



Message Channels

Channels are used to transfer messages between active processes.

They store messages in first-in first-out order.

Two types:

buffered channels,
rendezvous ports, also called synchronous channels.

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 12 / 14



Buffered Channels

Declaration:

chan qname = [16] of { short, byte, bool }

This channel can store up to 16 messages, each consisting of 3 fields
of the types listed.

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 12 / 14



Buffered Channels

Declaration:

chan qname = [16] of { short, byte, bool }

This channel can store up to 16 messages, each consisting of 3 fields
of the types listed.

A field can be of a pre-defined or user-defined type, but not an array
(but a typedef can contain an array!).

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 12 / 14



Buffered Channels

Declaration:

chan qname = [16] of { short, byte, bool }

This channel can store up to 16 messages, each consisting of 3 fields
of the types listed.

A field can be of a pre-defined or user-defined type, but not an array
(but a typedef can contain an array!).

Sending a message:

qname!expr1,expr2,expr3

The process blocks if the channel is full.

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 12 / 14



Buffered Channels

Declaration:

chan qname = [16] of { short, byte, bool }

This channel can store up to 16 messages, each consisting of 3 fields
of the types listed.

A field can be of a pre-defined or user-defined type, but not an array
(but a typedef can contain an array!).

Sending a message:

qname!expr1,expr2,expr3

The process blocks if the channel is full.

Receiving a message:

qname?var1,var2,var3

The process blocks if the channel is empty.

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 12 / 14



Buffered Channels

Declaration:

chan qname = [16] of { short, byte, bool }

This channel can store up to 16 messages, each consisting of 3 fields
of the types listed.

A field can be of a pre-defined or user-defined type, but not an array
(but a typedef can contain an array!).

Sending a message:

qname!expr1,expr2,expr3

The process blocks if the channel is full.

Receiving a message:

qname?var1,var2,var3

The process blocks if the channel is empty.

Useful pre-defined functions len, empty, nempty, full, nfull:

len(qname)

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 12 / 14



Alternative

The first message field is a message type indication:

qname!expr1(expr2,expr3)

qname?var1(var2,var3)

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 12 / 14



Alternative

The first message field is a message type indication:

qname!expr1(expr2,expr3)

qname?var1(var2,var3)

Some parameters can be given as constants:

qname?cons1,var2,cons2

The process blocks if the channel is empty or if the sent values do not
match the constants.

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 12 / 14



Rendezvous Ports

Declaration of a rendezvous port (it pass single byte messages)

chan port = [0] of { byte }

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 12 / 14



Rendezvous Ports

Declaration of a rendezvous port (it pass single byte messages)

chan port = [0] of { byte }

The channel size is zero:
the channel port can pass, but can not store messages!

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 12 / 14



Rendezvous Ports

Declaration of a rendezvous port (it pass single byte messages)

chan port = [0] of { byte }

The channel size is zero:
the channel port can pass, but can not store messages!
Message interaction is synchronous: two processes execute a send and
a receive statement at the same time (as a single atomic operation).

mtype = { msgtype };

chan name = [0] of { mtype, byte };

active proctype A()

{ name!msgtype(124);

name!msgtype(121)

}

active proctype B()

{ byte state;

name?msgtype(state)

}

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 12 / 14



Channels of channels

Message parameters are always passed by value.

We can pass the value of a channel from a process to another.

mtype = { msgtype };

chan glob = [0] of { chan };

active proctype A()

{ chan loc = [0] of { mtype, byte };

glob!loc;

loc?msgtype(121)

}

active proctype B()

{ chan who;

glob?who;

who!msgtype(121)

}

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 12 / 14



Contents

1 Promela overview
Processes
Data objects
Message Channels
Executability

2 Exercises

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 13 / 14



Statements

Every statement is either executable or blocked.
Three main types of statements:

print statements
assignments
expression statements

Print statements and assignments are always executable
(as well as skip, assert, ...).
Expression statements are executable iff they evaluate to true.

(2 < 3) always executable;
(x < 27) blocked until x is less than 27;
(3 + x) executable when x differs from -3.

Expressions must be side effect free
(e.g. b = c++ is not valid).
Exception: the run statement can be considered as a blocking
expression:

it blocks when there are 255 processes alive;
if it does not block, it creates a new process.

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 13 / 14



Contents

1 Promela overview
Processes
Data objects
Message Channels
Executability

2 Exercises

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 14 / 14



Basic verification 1

Given the following PROMELA program:

active proctype P() {

int x = 0;

x++;

int y = x;

assert(y == 1);

}

Is the assertion invalid? If yes, why?

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 14 / 14



Basic verification 1

Given the following PROMELA program:

active proctype P() {

int x = 0;

x++;

int y = x;

assert(y == 1);

}

Is the assertion invalid? If yes, why?

All variable declarations are always implicitly moved to the beginning of
process.

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 14 / 14



Basic verification 2

chan com = [0] of { byte };

byte value;

bool d;

proctype p() {

byte i;

do

:: if

:: i >= 5 -> break

:: else -> printf("Doing something else\n"); i ++

fi

:: com ? value; printf("p received: %d\n",value)

od;

d = 1

}

init {

atomic {

run p();

}

end: com ! 100;

}

Is it possible that process p does not read from the channel at all?
Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 14 / 14



Basic verification 2

chan com = [0] of { byte };

byte value;

bool d;

proctype p() {

byte i;

do

:: if

:: i >= 5 -> break

:: else -> printf("Doing something else\n"); i ++

fi

:: com ? value; printf("p received: %d\n",value)

od;

d = 1

}

init {

atomic {

run p();

}

end: com ! 100;

}

Is it possible that process p does not read from the channel at all? Yes
Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 14 / 14



Sum of array elements

Write a PROMELA model for summing up an array of integers.

Declare and (nondeterministically) initialize an integer array.

Add a loop that sums up the elements.

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 14 / 14



Channels

Declare a rendezvous channel and create two processes:

The first process sends the numbers 0 through 9 onto the channel.

The second process reads the values of the channel and outputs them.

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 14 / 14



Channels

Declare a rendezvous channel and create two processes:

The first process sends the numbers 0 through 9 onto the channel.

The second process reads the values of the channel and outputs them.

Replace the rendezvous with a buffered channel and check how the
behavior changes.

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 14 / 14


