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Attention

New timetable: Lab Class on Fridays 9.20-10.50

There will be no lab lesson next week (on March 14th)

When do you want to recover the class?

March 26th afternoon (14.00-16.00)
April 1st, 2nd or 3rd?
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Promela

Promela design is focused on process interaction at the system level

Consequent features:

non-deterministic control structures,
primitives for process creation,
primitives for interprocess communication.

Consequent lacks:

functions with return values,
expressions with side-effects,
data and functions pointers.

PROMELA is a language for building verification models.
(not a programming language!)
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Types of objects

Three basic types of objects:

processes

data objects

message channels
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Process Initialization

By means of active (instantiate an initial set of processes):
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Process Initialization

By means of active (instantiate an initial set of processes):

active [2] proctype you_run()

{

printf("my pid is: %d\n", _pid)

}
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Process Initialization

By means of active (instantiate an initial set of processes):

active [2] proctype you_run()

{

printf("my pid is: %d\n", _pid)

}

By means of run (creating new processes):
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Process Initialization

By means of active (instantiate an initial set of processes):

active [2] proctype you_run()

{

printf("my pid is: %d\n", _pid)

}

By means of run (creating new processes):

proctype you_run(byte x)

{

printf("x = %d, pid = %d\n", x, _pid)

}

init {

run you_run(0);

run you_run(1)

}
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Notes

We cannot pass parameter values to init or to active processes.
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A newly created process may not start right after its initialization.
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Notes

We cannot pass parameter values to init or to active processes.

A newly created process may not start right after its initialization.

To keep the system finite, only 255 processes can be alive in the same
moment.
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Notes

We cannot pass parameter values to init or to active processes.

A newly created process may not start right after its initialization.

To keep the system finite, only 255 processes can be alive in the same
moment.

A process “terminates” when it reaches the end of its code.

A process “dies” when it has terminated and all processes
instantiated later have died.
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Process Execution

A process executes concurrently with all other processes.

Processes are scheduled non-deterministically.

Processes are interleaved: statements of different processes do not
occur at the same time (except for rendezvous communication).

Statements are atomic: each statement is executed without
interleaving with other processes.

Each process may have several different possible actions enabled at
each point of execution: only one choice is made
(non-deterministically).
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Variable Scope

There are only two levels of scope:
global: if it is declared outside all process declarations,
process local: if it is declared within a process declaration.
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Variable Scope

There are only two levels of scope:
global: if it is declared outside all process declarations,
process local: if it is declared within a process declaration.

Spin Version 6 (or newer) limits the scope of a variable to the block
in which it is declared.

init { /* x declared in outer block */

int x;

{ /* y declared in inner block */

int y;

printf("x = %d, y = %d\n", x, y);

x++;

y++;

}

/* Spin Version 6 (or newer): y is not in scope,

/* Older: y remains in scope */

printf("x = %d, y = %d\n", x, y);

}

Variable declarations are implicitly moved to the beginning of the process.
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Basic types

Type Typical Range

bit 0, 1
bool false, true

byte 0..255
chan 1..255
mtype 1..255
pid 0..255
short −215 .. 215−1
int −231 .. 231−1
unsigned 0 .. 2n−1
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Basic types

Type Typical Range

bit 0, 1
bool false, true

byte 0..255
chan 1..255
mtype 1..255
pid 0..255
short −215 .. 215−1
int −231 .. 231−1
unsigned 0 .. 2n−1

No character type: literal character values can be assigned to
variables of type byte and printed using the %c format specifier.

No string variables: messages can be modeled using numeric codes.

No floating-point data types: exact values are not important!
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Typical declarations

bit x, y; /* two single bits, initially 0 */

bool turn = true; /* boolean value, initially true */

byte a[12]; /* all elements initialized to 0 */

chan m; /* uninitialized message channel */

mtype n; /* uninitialized mtype variable */

short b[4] = 89; /* all elements initialized to 89 */

int cnt = 67; /* integer scalar, initially 67 */

unsigned v : 5; /* unsigned stored in 5 bits */

unsigned w : 3 = 5; /* value range 0..7, initially 5 */

All variables are initialized by default to 0.

Array indicing starts at 0.
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Data structures

typedef Field {

short f = 3;

byte g

};

typedef Record {

byte a[3];

int fld1;

Field fld2;

chan p[3];

bit b

};

proctype me(Field z) { z.g = 12 }

init { Record goo; Field foo;

run me(foo)

}
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Arrays and Data structures

A structure can be passed as argument to a run statement, provided it
contains no arrays. (In the example, foo can be passed, goo cannot.)

Multi-dimensional arrays are not supported, although there are
indirect ways:

typedef Array {

byte el[4]

};

Array a[4];
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