
An Overview of PROMELA∗

Alessandra Giordani
agiordani@disi.unitn.it

http://disi.unitn.it/~agiordani

Formal Methods Lab Class, October 4, 2012

∗These slides are derived from those by Stefano Tonetta, Alberto Griggio, Silvia Tomasi,
Thi Thieu Hoa Le for FM lab 2011/13

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 1 / 14



Attention

New timetable: Lab Class on Fridays 9.20-10.50

There will be no lab lesson next week (on March 14th)

When do you want to recover the class?

March 26th afternoon (14.00-16.00)
April 1st, 2nd or 3rd?

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 2 / 14



Contents

1 Promela overview
Processes
Data objects
Message Channels
Executability

2 Exercises

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 3 / 14



Promela

Promela design is focused on process interaction at the system level

Consequent features:

non-deterministic control structures,
primitives for process creation,
primitives for interprocess communication.

Consequent lacks:

functions with return values,
expressions with side-effects,
data and functions pointers.

PROMELA is a language for building verification models.
(not a programming language!)

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 4 / 14



Types of objects

Three basic types of objects:

processes

data objects

message channels

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 5 / 14



Contents

1 Promela overview
Processes
Data objects
Message Channels
Executability

2 Exercises

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 6 / 14



Process Initialization

By means of active (instantiate an initial set of processes):

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 6 / 14



Process Initialization

By means of active (instantiate an initial set of processes):

active [2] proctype you_run()

{

printf("my pid is: %d\n", _pid)

}

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 6 / 14



Process Initialization

By means of active (instantiate an initial set of processes):

active [2] proctype you_run()

{

printf("my pid is: %d\n", _pid)

}

By means of run (creating new processes):

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 6 / 14



Process Initialization

By means of active (instantiate an initial set of processes):

active [2] proctype you_run()

{

printf("my pid is: %d\n", _pid)

}

By means of run (creating new processes):

proctype you_run(byte x)

{

printf("x = %d, pid = %d\n", x, _pid)

}

init {

run you_run(0);

run you_run(1)

}

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 6 / 14



Notes

We cannot pass parameter values to init or to active processes.

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 7 / 14



Notes

We cannot pass parameter values to init or to active processes.

A newly created process may not start right after its initialization.

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 7 / 14



Notes

We cannot pass parameter values to init or to active processes.

A newly created process may not start right after its initialization.

To keep the system finite, only 255 processes can be alive in the same
moment.

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 7 / 14



Notes

We cannot pass parameter values to init or to active processes.

A newly created process may not start right after its initialization.

To keep the system finite, only 255 processes can be alive in the same
moment.

A process “terminates” when it reaches the end of its code.

A process “dies” when it has terminated and all processes
instantiated later have died.

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 7 / 14



Process Execution

A process executes concurrently with all other processes.

Processes are scheduled non-deterministically.

Processes are interleaved: statements of different processes do not
occur at the same time (except for rendezvous communication).

Statements are atomic: each statement is executed without
interleaving with other processes.

Each process may have several different possible actions enabled at
each point of execution: only one choice is made
(non-deterministically).

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 8 / 14



Contents

1 Promela overview
Processes
Data objects
Message Channels
Executability

2 Exercises

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 9 / 14



Variable Scope

There are only two levels of scope:
global: if it is declared outside all process declarations,
process local: if it is declared within a process declaration.

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 9 / 14



Variable Scope

There are only two levels of scope:
global: if it is declared outside all process declarations,
process local: if it is declared within a process declaration.

Spin Version 6 (or newer) limits the scope of a variable to the block
in which it is declared.

init { /* x declared in outer block */

int x;

{ /* y declared in inner block */

int y;

printf("x = %d, y = %d\n", x, y);

x++;

y++;

}

/* Spin Version 6 (or newer): y is not in scope,

/* Older: y remains in scope */

printf("x = %d, y = %d\n", x, y);

}

Variable declarations are implicitly moved to the beginning of the process.
Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 9 / 14



Basic types

Type Typical Range

bit 0, 1
bool false, true

byte 0..255
chan 1..255
mtype 1..255
pid 0..255
short −215 .. 215−1
int −231 .. 231−1
unsigned 0 .. 2n−1

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 10 / 14



Basic types

Type Typical Range

bit 0, 1
bool false, true

byte 0..255
chan 1..255
mtype 1..255
pid 0..255
short −215 .. 215−1
int −231 .. 231−1
unsigned 0 .. 2n−1

No character type: literal character values can be assigned to
variables of type byte and printed using the %c format specifier.

No string variables: messages can be modeled using numeric codes.

No floating-point data types: exact values are not important!

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 10 / 14



Typical declarations

bit x, y; /* two single bits, initially 0 */

bool turn = true; /* boolean value, initially true */

byte a[12]; /* all elements initialized to 0 */

chan m; /* uninitialized message channel */

mtype n; /* uninitialized mtype variable */

short b[4] = 89; /* all elements initialized to 89 */

int cnt = 67; /* integer scalar, initially 67 */

unsigned v : 5; /* unsigned stored in 5 bits */

unsigned w : 3 = 5; /* value range 0..7, initially 5 */

All variables are initialized by default to 0.

Array indicing starts at 0.

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 10 / 14



Data structures

typedef Field {

short f = 3;

byte g

};

typedef Record {

byte a[3];

int fld1;

Field fld2;

chan p[3];

bit b

};

proctype me(Field z) { z.g = 12 }

init { Record goo; Field foo;

run me(foo)

}

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 10 / 14



Arrays and Data structures

A structure can be passed as argument to a run statement, provided it
contains no arrays. (In the example, foo can be passed, goo cannot.)

Multi-dimensional arrays are not supported, although there are
indirect ways:

typedef Array {

byte el[4]

};

Array a[4];

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 10 / 14


