An Overview of PROMELA*

Alessandra Giordani
agiordani@disi.unitn.it
http://disi.unitn.it/~agiordani

Formal Methods Lab Class, October 4, 2012

UNIVERSITA DEGLI STUDI DI
TRENTO

*These slides are derived from those by Stefano Tonetta, Alberto Griggio, Silvia Tomasi,
Thi Thieu Hoa Le for FM lab 2011/13

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 1/ 14

Attention

@ New timetable: Lab Class on Fridays 9.20-10.50

@ There will be no lab lesson next week (on March 14th)

@ When do you want to recover the class?

o March 26th afternoon (14.00-16.00)
e April 1st, 2nd or 3rd?

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 2/ 14

€@ ProMELA overview
@ Processes
@ Data objects
@ Message Channels
@ Executability

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 3/14

PROMELA

@ PROMELA design is focused on process interaction at the system level

@ Consequent features:

e non-deterministic control structures,

e primitives for process creation,

e primitives for interprocess communication.
@ Consequent lacks:

e functions with return values,
e expressions with side-effects,
e data and functions pointers.

PROMELA is a language for building verification models.
(not a programming language!)

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 4 /14

Types of objects

Three basic types of objects:
@ processes
@ data objects

@ message channels

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 5/ 14

Contents

€@ ProMELA overview
@ Processes

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 6/ 14

Process Initialization

@ By means of active (instantiate an initial set of processes):

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 6/ 14

Process Initialization

@ By means of active (instantiate an initial set of processes):

active [2] proctype you_run()

{
printf("my pid is: %d\n", _pid)

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 6/ 14

Process Initialization

@ By means of active (instantiate an initial set of processes):

active [2] proctype you_run()
{

printf("my pid is: %d\n", _pid)
by

@ By means of run (creating new processes):

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 6/ 14

Process Initialization

@ By means of active (instantiate an initial set of processes):

active [2] proctype you_run()

{
printf("my pid is: %d\n", _pid)
by

@ By means of run (creating new processes):

proctype you_run(byte x)

{
printf("x = %d, pid = %d\n", x, _pid)
by
init {
run you_run(0) ;
run you_run(1)
by

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 6/ 14

@ We cannot pass parameter values to init or to active processes.

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 7/ 14

@ We cannot pass parameter values to init or to active processes.

@ A newly created process may not start right after its initialization.

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 7/ 14

@ We cannot pass parameter values to ¢nit or to active processes.
@ A newly created process may not start right after its initialization.

@ To keep the system finite, only 255 processes can be alive in the same
moment.

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 7/ 14

@ We cannot pass parameter values to ¢nit or to active processes.
@ A newly created process may not start right after its initialization.

@ To keep the system finite, only 255 processes can be alive in the same
moment.

@ A process “terminates’ when it reaches the end of its code.

@ A process “dies’ when it has terminated and all processes
Instantiated later have died.

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 7/ 14

Process Execution

@ A process executes concurrently with all other processes.
@ Processes are scheduled non-deterministically.

@ Processes are interleaved: statements of different processes do not
occur at the same time (except for rendezvous communication).

@ Statements are atomic: each statement is executed without
interleaving with other processes.

@ Each process may have several different possible actions enabled at
each point of execution: only one choice is made
(non-deterministically).

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 8/ 14

€@ ProMELA overview

@ Data objects

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 9/ 14

Variable Scope

@ There are only two levels of scope:
e global: if it is declared outside all process declarations,
e process local: if it is declared within a process declaration.

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 9/ 14

Variable Scope

@ There are only two levels of scope:
e global: if it is declared outside all process declarations,
e process local: if it is declared within a process declaration.

@ Spin Version 6 (or newer) limits the scope of a variable to the block
in which it is declared.

init { /* x declared in outer block */

int x;

{ /* y declared in inner block */
int y;
printf("x = %d, y = %d\n", x, y);
X++;
y++;

+

/* Spin Version 6 (or newer): y is not in scope,
/* 0lder: y remains in scope */
printf("x = %d, y = %d\n", x, y);

+

Variable declarations are implicitly moved to the beginning of the process.
Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 9/ 14

Type Typical Range
bit 0,1
bool false, true
byte 0..255
chan 1..255
mtype 1..255
pid 0..255
short L |
int —231 231 1
unsigned 0. 2"—1

An Overview of PROMELA

Mar 07, 2014

Alessandra Giordani (DISI)

10 / 14

Type Typical Range
bit 0,1
bool false, true
byte 0..255
chan 1..255
mtype 1..255
pid 0..255
short 2> 2l 1
int —231 231 1
unsigned 0. 2"-1

@ No character type: literal character values can be assigned to
variables of type byte and printed using the %c format specifier.

@ No string variables: messages can be modeled using numeric codes.
@ No floating-point data types: exact values are not important!

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 10 / 14

Typical declarations

bit x, v; /* two single bits, initially O */
bool turn = true; /* boolean value, initially true */
byte al12]; /* all elements initialized to 0 */
chan m; /* uninitialized message channel */
mtype n; /* uninitialized mtype variable */
short b[4] = 89; /* all elements initialized to 89 */
int cnt = 67; /* integer scalar, initially 67 */
unsigned v : 5; /* unsigned stored in 5 bits * /

unsigned w : 3 = 5; /* value range 0..7, initially 5 x*/

@ All variables are initialized by default to 0.

@ Array indicing starts at O.

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 10 / 14

Data structures

typedef Field {
short £ = 3;
byte g
Y
typedef Record {
byte al[3];
int fldi;
Field f1d2;
chan pl[3];
bit b
s
proctype me(Field z) { z.g = 12 }
init { Record goo; Field foo;
run me (foo)

}

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 10 / 14

Arrays and Data structures

@ A structure can be passed as argument to a run statement, provided it
contains no arrays. (In the example, foo can be passed, goo cannot.)

@ Multi-dimensional arrays are not supported, although there are
indirect ways:

typedef Array A
byte ell[4]
s

Array al4];

Alessandra Giordani (DISI) An Overview of PROMELA Mar 07, 2014 10 / 14

