
SPIN: Introduction and Examples ∗

Alessandra Giordani
agiordani@disi.unitn.it

http://disi.unitn.it/~agiordani

Formal Methods Lab Class, September 28, 2014

*These slides are derived from those by Stefano Tonetta, Alberto Griggio, Silvia Tomasi,
Thi Thieu Hoa Le for FM lab 2011/13

Alessandra Giordani (DISI) SPIN: Introduction and Examples Feb 28, 2014 1 / 6

http://disi.unitn.it/~agiordani


Contents

1 Introduction

2 Promela examples
Hello world!
Producers/Consumers

Alessandra Giordani (DISI) SPIN: Introduction and Examples Feb 28, 2014 2 / 6



The Spin (= Simple Promela Interpreter) model checker

Tool for formal verification of distributed and concurrent systems
(e.g. operating systems, data communications protocols).

Developed at Bell Labs.
In 2002, recognized by the ACM with Software System Award
(like Unix, TeX, Smalltalk, Postscript, TCP/IP, Tcl/Tk).
Automated tools convert programs written in Java or in C into Spin
models.

The modelling language is called Promela.

Spin has a graphical user interface, ispin.

Materials:

Homepage: http://spinroot.com/spin/whatispin.html

Manual: http://spinroot.com/spin/Man/index.html

Alessandra Giordani (DISI) SPIN: Introduction and Examples Feb 28, 2014 3 / 6



Promela (= Protocol/Process Meta Language)

Promela is suitable to describe concurrent systems:

dynamic creation of concurrent processes.
(synchronous/asynchronous) communication via message channels.

Programs written in Promela can be executed/simulated.

Simulation shows one execution.

random, interactive or guided.
not useful for finding bugs!

Verification checks every execution looking for a counterexample.

exhaustive or approximate verification of correctness properties.
a counterexample is a computation that violates a correct property.

Alessandra Giordani (DISI) SPIN: Introduction and Examples Feb 28, 2014 4 / 6



Basic commands

To simulate a program:

spin system.pml

Interactively:

spin -i system.pml

To generate a verifier (pan.c):

spin -a system.pml

To run a guided simulation:

spin -t model.pml

To run ispin:

ispin model.pml

Useful commands:

To see available options: spin --

To display processes moves at each simulation step: spin -p system.pml

To display values of global variables: spin -g system.pml

To display values of local variables: spin -I -p system.pml

Alessandra Giordani (DISI) SPIN: Introduction and Examples Feb 28, 2014 4 / 6



Contents

1 Introduction

2 Promela examples
Hello world!
Producers/Consumers

Alessandra Giordani (DISI) SPIN: Introduction and Examples Feb 28, 2014 5 / 6



Hello world!

active proctype main()

{

printf("hello world\n")

}

active instantiates one process of the type that follows.

proctype denotes that main is a process type.

main identifies the process type, it’s not a keyword.

Note that ’;’ is missing after printf:
’;’ is a statement separator, not a statement terminator.

Alessandra Giordani (DISI) SPIN: Introduction and Examples Feb 28, 2014 5 / 6



Hello world! Alternative

init {

printf("hello world\n")

}

init is a process that initializes the system.

Initially just the initial process is executed.

Simulation:

> spin hello.pml

hello world

1 process created

One process was created to simulate the execution of the model.

Alessandra Giordani (DISI) SPIN: Introduction and Examples Feb 28, 2014 5 / 6



Hello world! Alternative

init {

printf("hello world\n")

}

init is a process that initializes the system.

Initially just the initial process is executed.

Simulation:

> spin hello.pml

hello world

1 process created

One process was created to simulate the execution of the model.

Alessandra Giordani (DISI) SPIN: Introduction and Examples Feb 28, 2014 5 / 6



Producers/Consumers

mtype = { P, C };

mtype turn = P;

active proctype producer(){

do

:: (turn == P) ->

printf("Produce\n");

turn = C

od

}

active proctype consumer(){

do

:: (turn == C) ->

printf("Consume\n");

turn = P

od

}

Alessandra Giordani (DISI) SPIN: Introduction and Examples Feb 28, 2014 5 / 6



Producers/Consumers (Language Details)

mtype defines symbolic values
(similar to an enum declaration in a C program).

turn is a global variable.

do ... od (do-statement) defines a loop.

Every option of the loop must start with ’::’.

(turn == P) is the guard of the option.

A break/goto statement can break the loop.

-> and ; are equivalent
(-> indicates a causal relation between successive statements).

If all guards are false, then the process blocks
(no statement can be executed).

If multiple guards are true, we get non-determinism.

Alessandra Giordani (DISI) SPIN: Introduction and Examples Feb 28, 2014 6 / 6



Producers/Consumers

The producer’s definition is equivalent to:

active proctype producer()

{

again: if

:: (turn == P) ->

printf("Produce\n");

turn = C

fi;

goto again

}

goto transfers control to the statement labeled by again.

Alessandra Giordani (DISI) SPIN: Introduction and Examples Feb 28, 2014 6 / 6



Producers/Consumers

Also equivalent to:

active proctype producer()

{

again: if

:: (turn == P) ->

printf("Produce\n");

turn = C

:: else -> goto again

fi;

goto again

}

else is only executable if all other options are not executable.

Alessandra Giordani (DISI) SPIN: Introduction and Examples Feb 28, 2014 6 / 6



Producers/Consumers

Also equivalent to:

active proctype producer()

{

again: (turn == P) ->

printf("Produce\n");

turn = C;

goto again

}

If the boolean expression does not hold, execution blocks until it does.

Alessandra Giordani (DISI) SPIN: Introduction and Examples Feb 28, 2014 6 / 6



Producers/Consumers

Also equivalent to:

active proctype producer()

{

again: (turn == P) ->

printf("Produce\n");

turn = C;

goto again

}

If the boolean expression does not hold, execution blocks until it does.

Alessandra Giordani (DISI) SPIN: Introduction and Examples Feb 28, 2014 6 / 6



Producers/Consumers

Simulation:

> spin prodcons.pml | more

Produce

Consume

Produce

Consume

Produce

Consume

Produce

Consume

Produce

Consume

...

Alessandra Giordani (DISI) SPIN: Introduction and Examples Feb 28, 2014 6 / 6



Producers/Consumers Extended

We can extend the example to more processes for each type:

active [2] proctype producer {...}

The alternation is no more guaranteed. Simulation:

> spin prodcons2_flaw.pml | more

Produce

Consume

Consume

Produce

Consume

Produce

Produce

Consume

...

Alessandra Giordani (DISI) SPIN: Introduction and Examples Feb 28, 2014 6 / 6



Producers/Consumers Extended

Reason:

> spin -i prodcons2_flaw.pml

Select a statement

choice 3: proc 1 (producer) prodcons2_flaw.pml:7 (state 4) [((turn==P))]

choice 4: proc 0 (producer) prodcons2_flaw.pml:7 (state 4) [((turn==P))]

Select [1-4]: 3

Select a statement

choice 3: proc 1 (producer) prodcons2_flaw.pml:9 (state 2) [printf(’Produce\\n’)]

choice 4: proc 0 (producer) prodcons2_flaw.pml:7 (state 4) [((turn==P))]

Select [1-4]: 3

Produce

Select a statement

choice 3: proc 1 (producer) prodcons2_flaw.pml:10 (state 3) [turn = C]

choice 4: proc 0 (producer) prodcons2_flaw.pml:7 (state 4) [((turn==P))]

Select [1-4]: 4

Select a statement

choice 3: proc 1 (producer) prodcons2_flaw.pml:10 (state 3) [turn = C]

choice 4: proc 0 (producer) prodcons2_flaw.pml:9 (state 2) [printf(’Produce\\n’)]

Select [1-4]:

Problem: Both processes can pass the guard (turn == P) and execute

printf("Produce") before turn is set to C.

Alessandra Giordani (DISI) SPIN: Introduction and Examples Feb 28, 2014 6 / 6



Producers/Consumers Extended

A correct declaration for the producer:

active [2] proctype producer()

{

do

:: request(turn, P, N) -> // if turn==P then turn=N

printf("P%d\n", _pid);

assert(who == _pid); // "who" is producing

release(turn, C) // turn=C

od

}

assert aborts the program if the expression is false (i.e. zero),
otherwise it is just passed.

pid is a predefined, local, read-only variable of type pid that stores
the instantiation number of the executing process.

Alessandra Giordani (DISI) SPIN: Introduction and Examples Feb 28, 2014 6 / 6



Producers/Consumers Extended

Definition of request:

inline request(x, y, z) {

atomic { x == y -> x = z; who = _pid }

}

inline functions like C macros.

their body is directly pasted into the body of a proctype at each point
of invocation.

atomic: when it starts, the process will keep running until all steps
will complete.

no interleaving with statements of other processes!

The executability of the atomic sequence is determined by the first
statement.

i.e. if x==y is true then the atomic block is executed.

Alessandra Giordani (DISI) SPIN: Introduction and Examples Feb 28, 2014 6 / 6



Producers/Consumers Extended

File prodcons2.pml:

mtype = { P, C, N };

mtype turn = P;

pid who;

inline request(x, y, z) {

atomic { x == y -> x = z; who = _pid }

}

inline release(x, y) {

atomic { x = y; who = 0 }

}

...

Alessandra Giordani (DISI) SPIN: Introduction and Examples Feb 28, 2014 6 / 6



Producers/Consumers Extended

Simulation:

> spin prodcons2.pml | more

P1

C3

P0

C3

P1

C3

P1

C2

P0

C3

P1

...

Alessandra Giordani (DISI) SPIN: Introduction and Examples Feb 28, 2014 6 / 6



Producers/Consumers Extended

Simulation can detect errors:

> spin false.pml

spin: line 1 "false.pml", Error: assertion violated

spin: text of failed assertion: assert(0)

#processes: 1

1: proc 0 (:init:) line 1 "false.pml" (state 1)

1 process created

However, simulation cannot prove that errors do not exist!

Alessandra Giordani (DISI) SPIN: Introduction and Examples Feb 28, 2014 6 / 6



Producers/Consumers Extended

To prove that the assertions cannot be violated, we generate a verifier:

> spin -a prodcons2.pml

> gcc -o pan pan.c

> ./pan

...

Full statespace search for:

never claim - (none specified)

assertion violations +

acceptance cycles - (not selected)

invalid end states +

State-vector 28 byte, depth reached 7, errors: 0

...

Alessandra Giordani (DISI) SPIN: Introduction and Examples Feb 28, 2014 6 / 6



Producers/Consumers Extended

Back to the flawed Producers/Consumers

mtype = { P, C };

mtype turn = P;

int msgs;

active [2] proctype producer()

{

do

:: (turn == P) ->

printf("Produce\n");

msgs++;

turn = C

od

}

active [2] proctype consumer()

{

do

:: (turn == C) ->

printf("Consume\n");

msgs--;

turn = P

od

}

active proctype monitor() {

assert(msgs >= 0 && msgs <= 1)

}

> spin -a prodcons2_flaw.pml && gcc -o pan pan.c && ./pan
Alessandra Giordani (DISI) SPIN: Introduction and Examples Feb 28, 2014 6 / 6



Producers/Consumers Extended (Trail File)

Trail File

prodcons2 flaw.pml.trail contains Spin’s
transition markers corresponding to the contents
of the stack of transitions leading to error states

Meaning:

Step number in execution trace

Id of the process moved in the current step

Id of the transition taken in the current step

-4:-4:-4

1:1:0

2:1:1

3:1:2

4:1:3

5:3:8

6:3:9

7:3:10

8:2:8

9:2:9

10:3:11

11:2:10

12:4:16

> spin -t -p prodcons2_flaw.pml

Alessandra Giordani (DISI) SPIN: Introduction and Examples Feb 28, 2014 6 / 6



C Pan’s Output Format

> ./pan

pan: assertion violated ((x!=0)) (at depth 11)

pan: wrote model.pml.trail

Assertion Violation

Spin has found a execution trace that violates the assertion

the generated trace is 11 steps long and it is contained in
model.pml.trail

Alessandra Giordani (DISI) SPIN: Introduction and Examples Feb 28, 2014 6 / 6



C Pan’s Output Format

(Spin Version 6.0.1 -- 16 December 2010)

+ Partial Order Reduction

Meaning

1 Version of Spin that generated the verifier

2 Optimized search technique

Alessandra Giordani (DISI) SPIN: Introduction and Examples Feb 28, 2014 6 / 6



C Pan’s Output Format

Full statespace search for:

never-claim - (none specified)

assertion violations +

acceptance cycles - (not selected)

invalid endstates +

Meaning

1 Type of search: exhaustive search (Bitstate search for approx.)

2 No never claim was used for this run

3 The search checked for violations of user specified assertions

4 The search did not check for the presence of acceptance or
non-progress cycles

5 The search checked for invalid endstates (i.e., for absence of
deadlocks)

Alessandra Giordani (DISI) SPIN: Introduction and Examples Feb 28, 2014 6 / 6



C Pan’s Output Format

State-vector 32 byte, depth reached 13, errors: 0

Meaning

1 The complete description of a global system state required 32 bytes
of memory (per state).

2 The longest depth-first search path contained 13 transitions from the
initial system state.

./pan -mN set max search depth to N steps

3 No errors were found in this search.

Alessandra Giordani (DISI) SPIN: Introduction and Examples Feb 28, 2014 6 / 6



C Pan’s Output Format

74 states, stored

30 states, matched

104 transitions (= stored+matched)

1 atomic steps

1.533 memory usage (Mbyte)

Meaning

1 A total of 74 unique global system states were stored in the
statespace.

2 In 30 cases the search returned to a previously visited state in the
search tree.

3 A total of 104 transitions were explored in the search.

4 One of the transitions was part of an atomic sequence.

5 Total memory usage was 1.533 Megabytes,

Alessandra Giordani (DISI) SPIN: Introduction and Examples Feb 28, 2014 6 / 6



C Pan’s Output Format

unreached in proctype ProcA

line 7, state 8, "Gaap = 4"

(1 of 13 states)

unreached in proctype :init:

line 21, state 14, "Gaap = 3"

(1 of 19 states)

Meaning

A listing of the state numbers and approximate line numbers for the basic
statements in the specification that were not reached ⇒ since this is a full
statespace search, these transitions are effectively unreachable (dead code).

Alessandra Giordani (DISI) SPIN: Introduction and Examples Feb 28, 2014 6 / 6



C Pan’s Output Format

error: max search depth too small

Meaning

It indicates that search was truncated by depth-bound (i.e. the depth
bound prevented it from searching the complete statespace).

./pan -m50

sets a bound on the depth of the search

Nota Bene

When the search is bounded, Spin will not be exploring part of the system
statespace, and the omitted part may contain property violations that you
want to detect ⇒ you cannot assume that the system has no violations!

Alessandra Giordani (DISI) SPIN: Introduction and Examples Feb 28, 2014 6 / 6


	Introduction
	Promela examples
	Hello world!
	Producers/Consumers


