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Objectives: defining a well defined
statistical framework

= What can we learn and how can we decide if our
learning 1s effective?

s Efficient learning with many parameters
= Trade-off (generalization/and training set error)

= How to represent real world objects
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PAC Learning Definition (1)

Let ¢ be the function (i.e. a concept) we want to learn

Let h be the learned concept and x an instance (e.g. a

person)

error(h) = Prob [c(x) £ h(x)]

It would be useful if we could find:
Pr(error(h) >€) < 0

Given a target error €, the probability to make a larger

error is less O




Definizione di PAC Learning (2)

This methodology 1s called Probably Approximately
Correct Learning

The smaller € and o0 are the better the learning is

Problem:

» Given € and o, determine the size m of the training-set.

B Such size may be independent of the learning algorithm

Let us do it for a simple learning problem




A simple learning problem

s Learning the concept of medium-built people from
examples:

v Interesting features are: Height and Weight.
¥ The training-set of examples has a cardinality of m.

(m people for who we know 1f they are medium-built people
size, their height and their size).

s Find m to learn this concept well.

s The adjective “well” can be expressed with probability
EeITor.




Graphical Representation of the target

learning problem
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Learning Algorithm and Learning Function
Class

1. If no positive examples of the concept are available

—> the learned concept 1s NULL

2. Else the concept 1s the smallest rectangular (parallel

to the axes) containing all positive examples




We don’t consider other complex hypotheses




We don’t consider other complex hypothesis




How good is our algorithm?

= An example x 1s misclassified if it falls between the

two rectangles.
s et € be the measure of the area

—> The error probability (error) of 4 1s €

E With which assumption?

h
re

1- €




Proving PAC Learnability

s Given an error € and a probability 6, how many
training examples m are needed to learn the concept?

= We can find a bound to 9, i.e. the probability of
learning a function 4 with an error > €.

= For this purpose, let us compute the probability of
selecting a hypothesis 4 which:

B correctly classifies m training examples and;

E shows an error greater than €.

¢ This is a bad function




Probability of Bad Hypotheses

s Given x, P(h(x)=c(x)) < 1- €
F since the error of bad function 1s greater than €
s Given €, m examples fall in the rectangle 4 with a
probability < (1-€)™
s The probability of choosing a bad hypothesis /4 1s
< (l-ey"- N

¥ where N 1s the number of hypotheses with an error > €.




Upper-bound Computation

= If we set a bound on the probability of bad hypotheses
N-(l-e)"< o
= we would be done but we don’t know N

—> we have to find a bound, independent of the number

of bad hypothesis.

s Let us divide our rectangle in four strip of area €/4
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A bad hypothesis cannot intersect more than 3

strips at a time

I- €

1- €

Bad hypotheses with error >
1- € € are contained in those
having an error = €

To intersect 3 edges I can
increase the rectangle length
but I must decrease the

height to have an area < 1- €




Upper-bound computation (2)

= A bad hypothesis has error > € = it has an area < 1- €

s A rectangle of area < 1- € cannot intersect 4 strips = if the
examples fall into all the 4 strips they cannot be part of the same
bad hypothesis.

= A necessary condition to have a bad hypothesis 1s that all the m
examples are at least outside of one strip.

= In other words, when m examples are outside of one of the 4
strips we may have a bad hypothesis.

—> the probability of “outside at least one of the strips” >
probability of bad hypothesis.




Logic view

= Bad Hypothesis = examples out of at least one strip

¥ (viceversa1s not true)

s A= B
>1-€ = P(A) <P(B)
s P(bad hyp.) < P(out of one strip)




Upper-bound computation (3)

s P(x out of the target strip) = (1- €/4)
s P(m points out of the target strip) = (1- €/4)™

n P(m points out of at least one strip) < 4-(1- €/4)"

—> P(error(h) >€)<4-(1-¢e/4)™




Expliciting m

s -ln(l-y) =y +y4/2 + y3/3 +...

= In(1-y) = -y -y?/2 -y3/3 -... < -y

= (1-y) < e it holds strictly for y > 0 as in our case
s from m > [n(d4)/In(1- €/4)

= m > n(d4)/In(e#Y)

= m > In(d4)/(-e/4) = m > In(d4) -(4/-¢)

= m > n((d4)1)-(4/e) = m > (4/¢) - In(4/9)




Expliciting m

= Our upperbound must be lower than ¢, i.e.
n 4-(1-e/4)"<0

= In(1- €/4)"< o/4

= m- In(1- €/4) < [n(o/4)

= m > [n(0/4) / In(1- €/4)

= change “>" into “<"as In(1- €/4) < 0




Numeric Examples

el 0 Im
0.1 10.1 | 148
0.1 10.01 1240
0.1 10.001 [332
0.01 10.1 11476
0.01 10.01 [2397
0.01 10.00113318
0.001 10.1 114756
0.001 10.01 123966

0.001 10.001 133176




Formal PAC-Learning Definition

s Letf be the function we want to learn, f: X—I, f € F

= D is a probability distribution on X
E used to draw training and test sets
m he H,
E h1s the learned function and H the set of such function class

= m 1s the training-set size
m error(h) = Prob [f(x) # h(x)]

s Fisa PAC learnable function class if there is a learning
algorithm such that for each f, for all distribution D over X and
for each 0 <g 0 <1, produces h : P(error(h) > €< 0




Lower Bound on training-set size

m [et us reconsider the first bound that we found:

E his bad: error(h) > €
¥ P(f(x)=h(x)) for m examples 1s lower than (1- €)™

¥ Multiplying by the number of bad hypotheses we calculate
the probability of selecting a bad hypothesis

» P(bad hypothesis) < N-(1- )" <0
¥ P(bad hypothesis) < N-(e¥y"=N-e " <0

= m >(1/€) (In(1/0)+In(N))

This 1s a general lower bound




Example

= Suppose we want to learn a boolean function in n

variable

s The maximum number of different function are 22n
=m> (1/¢) (In(1/8)+In(?")=
=(1/¢) (In(1/0)+2"n(2))




Some Numbers

n | epsilon | delta | m

5 | 0.1 | 0.1 |1 245

5 | 0.1 | 0.01 | 208

5 | 0.01 | 0.1 12450
5 | 0.01 | 0.01 | 2680
10 | 0.1 | 0.1 | 7123
10 | 0.1 | 0.01 | 7146

10 | 0.01 | 0.1 | 71230
10 | 0.01 | 0.01 | 71460




Computational Learing Theory

What general laws constrain inductive learning?
We seek theory to relate:

e Probability of successtul learning

e Number of training examples

e Complexity of hypothesis space

e Accuracy to which target function is
approximated

e Manner in which training examples presented




Sample Complexity

How many training examples are sufficient to learn
the target concept?

Target concept is 1. If learner proposes instances, as queries to
the boolean-valued teacher

fn to be learned
e X > {01} \Learner proposes instance x, teacher provides
' c(x)

2. If teacher (who knows ¢) provides training

examples
e teacher provides sequence of examples of form
(z,c(x))
3. If some random process (e.g.., nature) proposes
instances

e instance r generated randomly, teacher
provides ¢(z)




Sample Complexity

Given:
e set of instances X
e set of hypotheses H
e set of possible target concepts C

e training instances generated by a fixed. unknown
probability distribution D over X

Learner observes a sequence D of training examples
of form (z,¢(x)), for some target concept ¢ € C

e instances r are drawn from distribution D
e teacher provides target value c(r) for each
Learner must output a hypothesis h estimating c

e h is evaluated by its performance on subsequent
instances drawn according to D

Note: randomly drawn instances. noise-free
classifications




True Error of the Hypotesis

Instance space X P(X)=D

Where ¢
and h disagree

Definition: The true error (denoted
errorp(h)) of hypothesis h with respect to
target concept ¢ and distribution D is the
probability that h will misclassify an instance
drawn at random according to D.

errorp(h) = EB[C(J'] # h(z)]




> zeD 9(c(x) # h(x))
DI

errorny(h) = Plr:‘)[c(:r) = h(z)] = Canwe bound
TE —

errorp(h)
N
E;:;:Es in terms of
errorp(h)
Probability 7
errorp(h) = E}‘*[C(I) # h(z)] distribution
P(x)

If D was a set of examples drawn from pand independent of h,
then we could use standard statistical confidence intervals to
determine that with 95% probability, errorp(h)lies in the interval:

errorp(h) (1 — errorp(h) )

errorp(h) = 1.96 .
\

but D is the training data for h .. ..




Pr[(ﬂh € H)'g‘t*(ETTGTfTain(h) — O)A(ETTOTQ{‘T‘TLE(h) > E)] E ‘H‘E_E.m

T

Suppose we want this probability to be at most o

1. How many training examples suffice?
m > Z(In |H| + In(1/8))
€
2. If erroryq;n(h) = Othen with probability at least (1-5):

erroreme(h) < %(In H| + In(1/6))




=xample: H is Conjunction of Boolean Literals
m > S(In|H| + In(1/8))
Consider classification problem f:X—>Y: ‘
+ Instances: .\ - <\, .\, 1, 1,> where each \, is boolean
+ learned hypotheses are rules of the form:
- IF<X, X, X; X,>=<0,2,1,>>, THEN Y=1, ELSE Y=0
— 1.e., rules constrain any subset of the X,

How many training examples m suffice to assure that with probability
at least 0.99, any consistent learner will output a hypothesis with true
error at most 0.057
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