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Linear Classifier

= [he equation of a hyperplane is

f(X)=Xx-w+b=0, x,we R".be R
= X is the vector representing the classifying example
= Wis the gradient of the hyperplane
= [he classification function is

h(x) = sign( f(X)) 2.2 @




The main idea of Kernel Functions

s Mapping vectors in a space where they are linearly
separable X — @(X)




A mapping example

= Given two masses m,and m,, one is constrained
= Apply a force f, to the mass m,
= Experiments

s Features m,, m,and f,

= We want to learn a classifier that tells when a mass m, will
get far away from m,

s If we consider the Gravitational Newton Law

f(m,mz,r>=CmrTZ

= we need to find when f(m,, m,, r) <f,




A mapping example (2)

X= (X5 X3) = O(X) = (§(X),..., §,(X))

s [he gravitational law is not linear so we need to change
space

(f,m,m,r)—> K x y,2=0n f,,Inm,lnm,Inr)
m As

In f(m,m,rN)=InC+Inm+Inm -2Inr=c+ x+ y-2z
s We need the hyperplane
Inf,-Inm—-Inm +2Inr-InC=0

(In m,,In m,,-2In r)- (x,y,z)- In f, + In C = 0, we can decide
without error if the mass will get far away or not




A kernel-based Machine
Perceptron training

W, < ﬁ;bo — 0;: k< 0; R max
do
fori= 1to/
if y(W, - X +b,) <0 then
|7I7/(
b.,=b.+nyR
k=k+1
endif

endfor

B4l

1<i</

+1 — |7I7/(_|_77.y15>(/

while an error 1s found

return k,(W,,b,)




Kernel Function Definition

Def. 2.26 A kernel is a function k, such that vV r,z € X

—
"

k(Z,7) = o(T) - d(2)

where ¢ is a mapping from X to an (inner product) feature space.

s Kernels are the product of mapping functions such as

xe R, ¢(X)=(4(X),0,(),...0 (X)) e R"




The Kernel Gram Matrix

= With KM-based learning, the sole information used from
the training data set is the Kernel Gram Matrix

KX, X,) KX,X,) .. KX,X)

Ko | KOGX) KOG %) KOG, X)

fraining

k(x xl) k(x.,,;xz) k(x

m? m)

= |f the kernel is valid, K is symmetric definite-positive .




Valid Kernels

Def. B.11 Eigen Values

Given a matrix A € R™ x R", an egeinvalue A\ and an egeinvector T

R™ — {0} are such that

i

AT = A&

Def. B.12 Svmmetric Matrix
A square matrix A € R" xR" is symmetriciff A;; = Ajifori #ji=1,..,m
andj=1,..,nie iff A=A"

Def. B.13 Positive (Semi-) definite Matrix
A square matrix A € R™ x R" is said to be positive (semi-) definite if its
eigenvalues are all positive (non-negative).




Mercer’s condition

Proposition 2.27 (Mercer’s conditions)
Let X be a finite input space with K (¥, 2) a symmetric function on X. Then
K(Z, ) is a kernel function if and only if the matrix

k(Z,%) = o(T) - p(Z)

is positive semi-definite (has non-negative eigenvalues).

s If the Gram matrix: (G= k()*(i,)?j)
IS positive semi-definite there is a mapping ¢ that
produces the target kernel function




Mercer’s Theorem (finite space)

= Letus consider K = (K(%,.%,))

i, j=1
s K symmetric =3V:K = VAV’ for Takagi factorization of a
complex-symmetric matrix, where:

= A is the diagonal matrix of the eigenvalues A, of K

n . .
sV, = (vn- )i=1are the eigenvectors, i.e. the columns of V

= Let us assume lambda values non-negative

¢:xX, — ( )Ltvti)j=169‘%”,i=1,..,n




Mercer’s Theorem
(sufficient conditions)

s [ herefore

(%) P(X,) = Z/lvv =(VAV)), =K, =K(X, X))

= Which implies that K IS a kernel function




Mercer’s Theorem
(necessary conditions)

= Suppose we have negative eigenvalues L] and
eigenvectors {7 the following point

E D(F,) = E( v) =VAVY,

= has the foIIowmg norm

Iz =77 = «FVV_ V! VAVAVAV'Y, =

Vi Kv = V. AV =

this contradicts the geometry of the space.




Is it a valid kernel?

» It may not be a kernel so we can use M"-M
Proposition B.14 Let A be a symmetric matrix. Then A is positive (semi-)
definite iff for any vector € # 0
FAT >0 (>0).

From the previous proposition it follows that: If we find a decomposition
A in M'M, then A is semi-definite positive matrix as

TAZ =7 M'Mi = (MZ) (M%) = Mz - MZ = ||MZ||* > 0.




Valid Kernel operations

s K(X,2) = Ki(X,2)+K5(X,2)
s K(X,Z) = K,(x,2)"K,(X,2)
s K(X,Z2) = aki(X,2)

s K(X,z) =f(x)f(z)

s K(X,2) = Ky(9(X),0(2))

s K(X,z) =xBz




Basic Kernels for unstructured data

s Linear Kernel
s Polynomial Kernel
s Lexical kernel

= String Kernel




Linear Kernel

s In Text Categorization documents are word vectors

dd)=x=(,..1,.0,.0,.1,.0,.0,.1,.,0,.0,.1,.0,.1)

buy  acquisition  stocks sell market
dd)=z=(,.1,.,0,.1,.0,.0,.0,.1,.,0,.0,..1,.,0,.,0)
buy company stocks sell

= The dot product x-Zz counts the number of features in
common

s This provides a sort of similarity




Feature Conjunction (polynomial Kernel)

= [he initial vectors are mapped in a higher space

D(< X, %>) > (O, X,V2x%,v2%,42x.1)
» More expressive, as (x x,) encodes
Stock+Market vS. Downtown+Market features

s We can smartly compute the scalar product as

D(X) - D(Z) =
=(X. 6 N2x%.2x.V2%.1)(Z.2.N222.422.22.1) =
=XZ +X5+2XX%22 +2XZ+2%2 +1=
=(XZ+X%Z+D"=(X-2+1)" = Kp,, (X, 2)




Document Similarity

Doc 1

industry @g------oee

~
~

—_

Doc 2




Lexical Semantic Kernel [CoNLL 2005]

= The document similarity is the SK function:

3'((0’190'2): Zs(vvaz)

w, € d;,w, € d,

= where sis any similarity function between words, e.g.
WordNet [Basili et al.,2005] similarity or LSA [Cristianini et
al., 2002]

s Good results when training data is small




Using character sequences

¢("bank")=x=(0,...1,..,0,...1,...0,.....1,..,0,...1,..,0,...1,..,0)
bank ank bnk bk b

¢("rank")=2z=(1,..0,..0,..1,..,0,....0,..,1,..,0,...1,..,0,..,1)

rank ank rnk rk r

= x -z counts the number of common substrings




String Kernel

= Given two strings, the number of matches between their
substrings is evaluated

= E.g. Bank and Rank

¥ B, a, n, k, Ba, Ban, Bank, Bk, an, ank, nk,..

¥ R, a,n,k, Ra, Ran, Rank, Rk, an, ank, nk,..
s String kernel over sentences and texts

= Huge space but there are efficient algorithms




Formal Definition

Tu=s[l]
I{(S‘t} — Z "i'u@} * Py {TJ — y ) )\!U} Z )’13{'}} —
uEd* ued* f:uzs[_] Eu:f.[j]
=y Y ¥ A+ o
o o . n
wEL”® Ty=s[I] Jou=t[J] , Where 27 = U )




Kernel between Bank and Rank

B. a. n, k. Ba, Ban. Bank. an. ank. nk, Bn. Bnk. Bk and ak are the
substrings of Bank.

R. a. n, k, Ra, Ran, Rank. an. ank, nk, Rn, Rnk, Rk and ak are the
substrings of Hank.




An example of string kernel computation

- ba(Bank) = ¢4 (Rank) = Ali—i+l) = (\(2=241) = )
) qbn(Bank) _ Q’)D(Rank) — \(i—i41) — \(B3=3+1) A\,
- ¢ (Bank) = ¢y (Rank) = A0+l = \(4=4+1) — |

I
¢

) qﬁan(Bank) _ q’ban(Rank) _ )\(-i.z—-i1+l) _ )\(3—2+1) _ )\2’
) Q5ank(Baﬂk) _ Q5ank(Raﬂk) _ )\(z‘.g—z’-wl) _ )\(4—2+1) _ )\3’
- dnk(Bank) = @py (Rank) = Al2=iHl) = \@=3+1) — )2

- ¢5ak(Bank) = q’ﬁak(Rank) — )\('i-:z—'i1+1) _ )\(4—2+1) —\3

\

= 3\2 Lo\ L9\




String Kernels for OCR

O N 0D A~ 00 91
RN OINITR O
O=~ N J BN T
ONVWYIT OO N o*
O MO ANT
N T SN MNMNA NN G5
O~NMIN YN L
OTVVA T WD MNYS
DN AT o Mo0T
@A o ol AVAR VB d o]\




Pixel Representation

(a) (b

Figure 6: Resampling of an image from 16 16 to 8 <8 format




Sequence of bits

L1 00011100
00111100
00101100
00001100
00001100
L8 00001100

SK(im,,im,)= > SK(L., L)

I=1..8




Results

= Using columns+rows+diagonals

Digit Precision | Recall | FI
0 97178 9778 | 97.78
1 05.45 03.33 | 9438
2 03.62 0778 | 95.65
3 03.33 03.33 | 93.33
4 07.83 100.00 | 98.90
S5 07.67 03.33 | 9545
6 100.00 U778 | 98.88
7 01.84 100.00 | 95.74
& 03.18 OL11 | 92.13
Y 03.02 88.89 | 9091
Multiclass accuracy 95.33




Tree kernels

s Subtree, Subset Tree, Partial Tree kernels
= Efficient computation




Main Idea of Tree Kernels

A
l.,.-"{ 1"'-.,I [ Fragment space )
A A B A

/N !\ 7\ / N\
B A

A S(T1) = [2.1.1, 1, 1,0, 0] g a
VAN #(T2) = [0,0,0,0, 1,1, 1] |

| TE(T1, T2) = {&(T1), #(T2)} =1




Example of a syntactic parse tree

s “John delivers a talk in Rome”

/S . SONVE

N VP
’ / I Y — V NP PP
John V NP PP
./ \  / \PP>INN
delivers D N IN N

‘ ’ ‘ ‘ N — Rome

a talk 1n Rome




The Syntactic Tree Kernel (STK)
[Collins and Duffy, 2002]

VP
7

Vv NP

| / \

delivers D N

a talk




The overall fragment set

VP VP VP NP NP NP
\|7 /NP\ \% /NP\ v /NP\ | 1\|T I|) N T
delives D ND N D N ¢ talk a talk
. I v.o wxp D 1\|T
a  talk a  talk .| /\
VP VP VP VP delivers D N a talk
VP
V.NP vV NPV NPV v |
N 2 W W R
D N D N delivers D Ndelivers D N | | / \
| | | \ delivers delivers D N
a talk

4 talk




The overall fragment set

VP VP VP VP NP NP NP
e A V] A VR R
A A WA VA N S |
/ a talk a talk
- D D D
]‘) delivers | T N | 1\|I \V, NP I|) 1\|I
a a talk a talk o | o n \U 2 talk
/| Children are not divided P
V NP | / \
M \Y% /NP\V NP\|/ /NP\ \|f /Np\ V NP \|, 1\|IP
D ND N . | |
| | dehvers[|) Ndelivers D N delivers delivers D/ \N
a talk \

a talk




Explicit kernel space

O(T.)=Xx= (O,..,l,..,O,..,l,..,O,..,l,..,O,..,l,..,O,..&}),..,O,..,%Ig..,O)

VP VP VP NP
/ \ / / \
Y /] A A VAN
PR YR Y R | |
delivers D l\lT D N Il) 1\|I a talk a talk
a talk a talk

VP VP . VP . NP NP
e /| AR o) W
\lf NP AV /NP\ v /NP\ | |
delivers ll\I D N Il) IT a talk
| a talk

talk




Efficient evaluation of the scalar product

X z2=¢(T) ¢(T)=K(T,.T) =

= E EA(nx,nZ)

n,€l, n, €T,




Efficient evaluation of the scalar product

X z2=¢(T) ¢T)=K(T.T)=
= E EA(nx,nZ)

s [Collins and Duffy, ACL 2002] evaluate A in O(n?):

A(n_,n_ ) =0, if the productions are different else
A(n_n_ )=1, Iif pre-terminals else

nc(n, )

A(n, )= | |+ Alch(n,.j).ch(n,.j))

j=1




SubTree (ST) Kernel [Vishwanathan and Smola, 2002]

VP
e
Vv NP NP
/N /N

delivers D N D N Vv D N
a

|

a talk a talk delivers talk




Evaluation

s Given the equation for STK

A(n_,n,) =0, if the productions are different else
A(n n)) =1, If pre-terminals else

nc(n, )

A(n,n) = | [a+Acchn,. j).chn . j))

j=1




SVM-light-TK Software

Encodes ST, STK and combination kernels
in SVM-light [Joachims, 1999]

Available at http://dit.unitn.it/~moschitt/
Tree forests, vector sets

The new SVM-Light-TK toolkit will be released asap
(email me to have the current version)




Practical Example on Question
Classification

s Definition: What does HTML stand for?

s Description: What's the final line in the Edgar Allan Poe
poem "The Raven"?

= Entity: What foods can cause allergic reaction in people?
= Human: Who won the Nobel Peace Prize in 19927

= Location: Where is the Statue of Liberty?

= Manner: How did Bob Marley die?

s Numeric: When was Martin Luther King Jr. born?

= Organization: What company makes Bentley cars?




Conclusions

s Dealing with noisy and errors of NLP modules require
robust approaches

s SVMs are robust to noise and Kernel methods allows for:

¥ Syntactic information via STK
¥ Shallow Semantic Information via PTK
¥ Word/POS sequences via String Kernels

= When the IR task is complex, syntax and semantics are
essential

= Great improvement in Q/A classification
s SVM-Light-TK: an efficient tool to use them




SVM-light-TK Software

Encodes ST, SST and combination kernels
in SVM-light [Joachims, 1999]

Available at http://dit.unitn.it/~moschitt/
Tree forests, vector sets

New extensions: the PT kernel will be released
asap
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An introductory book on SVMs, Kernel
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