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Summary

= Support Vector Machines

¥ Hard-margin SVMs
v Soft-margin SVMs




Which hyperplane choose?

A




Classifier with a Maximum Margin

Var,

IDEA 1: Select the
hyperplane with
maximum margin

v




Support Vector

Var,

Support Vectors

Margin




Support Vector Machine Classifiers

Var, .
The margin is equal to

2[K

v




Support Vector Machines

Var,

The margin is equal to M
|

We need to solve

2K

Il wll
W- X+ b>+K, if Xis positive

max

w- X+ b<—Kk, if Xis negative




Support Vector Machines

Var,

There is a scale for
which k=1.

The problem transforms
in:

2
I wil

W- X+ b>+1, if Xis positive
w- X+ b<—1, if Xis negative

max




Final Formulation

2
W .
W- X, +b>+1, y,=1 = I =
WX +b<—1, y, =-1 yi(w- X +0)21
— minII wl — min|| V;”z

y(w-X+b)=1 y(w-x,+b)=1




Optimization Problem

s Optimal Hyperplane:
I
¥ Minimize 7(W)= EH Vlrﬂ2
® Subjectto Yy ((W-X)+b)=>1,/=1,...,m

= The dual problem 1s simpler




Warning!

= On the graphical examples, we always consider
normalized hyperplane (hyperplanes with normalized

gradient)

= b 1n this case 1s exactly the distance of the hyperplane

from the origin

= S0 1f we have an equation not normalized we may have
X- W+b=0 with X= (X,}O and W= (1,1)

s and b 1s not the distance




Warning!

= Let us consider a normalized gradient

w=(1/~/2,1/42)
(xY) (1N2,1/N2)+ b=0=> X/\2+ yIN2 =-b
= y=—x—b2

s Now we see that -b 1s exactly the distance.

m For x =0, we have the intersection with —b\/i . This
distance projected on |j 1s -b




Soft Margin SVMs

Var,

& slack variables are
added

Some errors are allowed
but they should penalize
the objective function




Soft Margin SVMs

The new constraints are

e YW %+ D) =1-¢&

VX, where & >0
The objective function

penalizes the incorrect
classified examples

N R
min I Wil +CZI_§,-

C is the trade-off
between margin and the -
error SRl




Soft Margin Support Vector Machines

1, = (W-x.+b)=>1-¢& VX
min— ” W”2 +CZ§/ y/( f b) 5/ /
2 7 gz0
The algorithm tries to keep &; low and maximize the margin

NB: The number of error is not directly minimized (NP-complete
problem); the distances from the hyperplane are minimized

If C—eq the solution tends to the one of the hard-margin algorithm
Attention !!!: if C =0 we get |l Wll=0, since y,.b >1- 5/ VX,

If C increases the number of error decreases. When C tends to
infinite the number of errors must be 0, 1.e. the hard-margin
formulation




Robusteness of Soft vs. Hard Margin SVMs

Var,

W-X+b=0

Soft Margin SVM

S
X!
_|_
ey
Il
-

Hard Margin SVM




Soft vs Hard Margin SVMs

s Soft-Margin has ever a solution
= Soft-Margin 1s more robust to odd examples

s Hard-Margin does not require parameters




Parameters

min— N WIF +CY & = min NWIP+C' > & +C D &
= min~ Il WIP +C(JZI§,+ + Zif,._)

n C: trade-off parameter

m J: cost factor




Theoretical Justification




Definition of Training Set error

s Training Data

f:R —{t1] (X, ¥)sen(X ¥y ) e R x{£1}

s Empirical Risk (error)

Rm[f]=m§%\f(7<,)—y,-

s Risk (error)

R f1=] L]0~ yidP(x y)




Error Characterization (part 1)

s From PAC-learning Theory (Vapnik):

Ra)< R, (a)+ p(L,~52)
(2 20y — \/ (log2r +1>—log<>

where d 1s theVC-dimension, m 1s the number of

examples, o0 is a bound on the probability to get such
error and A 1s a classifier parameter.




There are many versions for different bounds

Theorem 2.11 (Vapnik and Chervonenkis, [Vapnik, 1995])

Let H be a hypothesis space having VC dimension d. For any probability
distribution D on X x{—1, 1}, with probability 1— 06 over m random examples
S, any hypothesis h € H that is consistent with S has error no more than

. 2 2e X m 2
error(h) < e(m,H,0) = —(d x In ¥ + I’”’E)-‘

Tré

provided that d < m and m = 2/e.




Error Characterization (part 2)

Lemma 1. [Vapnik, 1982] Consider hyperplanes h(af) = signf{w- d+ b} as hypotheses.

If all example vectors d; are contained in a ball of radius R and 1t is required that for all
examples d,

i@ - d; + b > 1, with ||| = A (5)

then this set of hyperplane has a VCdim d bounded by

d < min([R*A%],n) 41 (6)




Ranking, Regression
and
Multiclassification




The Ranking SVM
[Herbrich et al. 1999, 2000; Joachims et al. 2002]

= The aim 1s to classify instance pairs as correctly ranked or

incorrectly ranked

¥ This turns an ordinal regression problem back into a binary
classification problem

= We want a ranking function f such that
x; >x; ift flx;) > flx))
m ... or at least one that tries to do this with minimal error

= Suppose that f1s a linear function

flx,) =wex,




The Ranking SVM

s Ranking Model: f(x))




The Ranking SVM

= Then (combining the two equations on the last slide):

x;>Xx; it wex;, —we x;>0

x;>x; it we(x; —x;) >0

= Let us then create a new instance space from such
pairs: =X, — X,

yv,=+l,-lasx,>,<x,




Support Vector Ranking

min W]+ C> M, &2
y(W-(Xi = X))+ b)=1-&, W,j=1,.m
¢k =20, k= 1,..,m?

yk = 11f rank(xj) > rank(xj),—1otherwise, wherek = i x m + |

= Given two examples we build one example (x;, x;)

l




Support Vector Regression (SVR)

fix) |

Solution:

1
Min—w"w

Constraints:
T
y,—w x,—b<¢€

wx +b—y <&




Support Vector Regression (SVR)

f(x) [ Minimise:
PR S
—Ww+C) (& +&)
2 Lol |
Constraints:

T =z
y,—Ww xi—bS8:+§ |




Support Vector Regression

min_[[wl +C (6 + &)

w,b,&,£% 2
s.t.y,,;—wTXi—bﬁe—l—&;, >0 V1 <1< n;
wix;+b—y <e+&, & >0 VI<i<n.

= y;isnot-1 or 1 anymore, now it is a value

m &1 the tollerance of our function value




From Binary to Multiclass classifiers

s Three different approaches:

= ONE-vs-ALL (OVA)

¥ Given the example sets, {E1, E2, E3, ...} for the categories: {C1, C2,
C3,...} the binary classifiers: {bl, b2, b3,...} are built.

¥ For bl, El is the set of positives and E2UE3 U... is the set of negatives,
and so on

¥ For testing: given a classification instance x, the category is the one
associated with the maximum margin among all binary classifiers




From Binary to Multiclass classifiers

s ALL-vs-ALL (AVA)
E Given the examples: {E1, E2, E3, ...} for the categories {C1, C2, C3,...}
o build the binary classifiers:
{b1 2,b1 3,...,b1 _n,b2 3,b2 4,...,02 n,...,.bn-1_n}

o by learning on E1 (positives) and E2 (negatives), on E1
(positives) and E3 (negatives) and so on...

e For testing: given an example X,

o all the votes of all classifiers are collected

e where bgz, = 1 means a vote for C1 and bge, =-1is a vote
for G2

¥ Select the category that gets more votes




From Binary to Multiclass classifiers

s Error Correcting Output Codes (ECOC)

¥ The training set is partitioned according to binary sequences (codes)

associated with category sets.

o For example, 10101 indicates that the set of examples of
C1,C3 and C5 are used to train the G,y Classifier.

o The data of the other categories, i.e. C2 and C4 will be
negative examples

E In testing: the code-classifiers are used to decode one the original class,
e.g.
Ci0101= 1 and C,,4,o= 1| indicates that the instance belongs to C1

That is, the only one consistent with the codes




SVM-light: an implementation of SVMs

= Implements soft margin

= Contains the procedures for solving optimization

problems

= Binary classifier

= Examples and descriptions in the web site:
http://www.joachims.org/

(http://svmlight.joachims.org/)




