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SummarySummary

Support Vector Machines

Hard-margin SVMs

Soft-margin SVMs



Which hyperplane choose?Which hyperplane choose?



Classifier with a Maximum MarginClassifier with a Maximum Margin

Var1 IDEA 1: Select the 

hyperplane with 

maximum margin

Var2

Margin

Margin



Support VectorSupport Vector

Var1

Support Vectors

Var2

Margin



Support Vector Machine ClassifiersSupport Vector Machine Classifiers
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Support Vector MachinesSupport Vector Machines

Var1
The margin is equal to
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Support Vector MachinesSupport Vector Machines

Var1 There is a scale for 
which k=1. 

The problem transforms 
in:
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Final FormulationFinal Formulation
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Optimization ProblemOptimization Problem

Optimal Hyperplane:

Minimize

Subject to
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Warning!Warning!

On the graphical examples, we always consider 

normalized hyperplane (hyperplanes with normalized 

gradient)

b in this case is exactly the distance of the hyperplane b in this case is exactly the distance of the hyperplane 

from the origin 

So if we have an equation not normalized we may have

and b is not the distance
    
r 
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w '+b = 0 with 

r 
x = x,y( ) and 

r 
w '= 1,1( )



Warning!Warning!

Let us consider a normalized gradient

 
r 
w = 1/ 2,1/ 2( )
x,y( ) ⋅ 1/ 2,1/ 2( ) + b = 0 ⇒ x/ 2 + y/ 2 = −b

    

( )
⇒ y = −x − b 2

Now we see that -b is exactly the distance. 

For x =0, we have the intersection with           . This 

distance projected on      is -b
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Soft Margin SVMsSoft Margin SVMs

Var1
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but they should penalize 
the objective function



Soft Margin SVMsSoft Margin SVMs

Var1

iξ

The new constraints are

The objective function 
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The objective function 
penalizes the incorrect 
classified examples

C is the trade-off 
between margin and the 
error
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Soft Margin Support Vector MachinesSoft Margin Support Vector Machines

The algorithm tries to keep ξi low and maximize the margin

NB: The number of error is not directly minimized (NP-complete 

problem); the distances from the hyperplane are minimized
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problem); the distances from the hyperplane are minimized

If C→∞, the solution tends to the one of the hard-margin algorithm

Attention !!!: if C = 0 we get          = 0, since 

If C increases the number of error decreases. When C tends to 

infinite the number of errors must be 0, i.e. the hard-margin 

formulation
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Robusteness of Soft vs. Hard Margin SVMsRobusteness of Soft vs. Hard Margin SVMs
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Soft vs Hard Margin SVMsSoft vs Hard Margin SVMs

Soft-Margin has ever a solution

Soft-Margin is more robust to odd examples

Hard-Margin does not require parameters



ParametersParameters

  
min

1

2
||
r 
w ||2 +C ξ ii

∑ = min
1

2
||
r 
w ||2 +C+ ξ ii

∑
+

+ C− ξ ii
∑

−

  
= min

1

2
||
r 
w ||2 +C J ξ ii

∑
+

+ ξ ii
∑

− 
 
 




C: trade-off parameter

J: cost factor



Theoretical JustificationTheoretical JustificationTheoretical JustificationTheoretical Justification



Definition of Training Set errorDefinition of Training Set error

Training Data

Empirical Risk (error)
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Error Characterization (part 1)Error Characterization (part 1)

From PAC-learning Theory (Vapnik):

R(α) ≤ R
emp

(α) + ϕ( d
m , log(δ )

m )

ϕ( d , log(δ )) =
d(log 2 m

d
+1)− log(δ

4
)

where d is theVC-dimension, m is the number of 

examples, δ is a bound on the probability to get such 

error and α is a classifier parameter.

ϕ( d
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d(log

d
+1)− log(

4
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There are many versions for different boundsThere are many versions for different bounds



Error Characterization (part 2)Error Characterization (part 2)



Ranking, Regression 

and 

Ranking, Regression 
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Multiclassification
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The Ranking SVM 
[Herbrich et al. 1999, 2000; Joachims et al. 2002]

The Ranking SVM 
[Herbrich et al. 1999, 2000; Joachims et al. 2002]

The aim is to classify instance pairs as correctly ranked or 

incorrectly ranked

This turns an ordinal regression problem back into a binary 

classification problem

We want a ranking function f such thatWe want a ranking function f such that

xi > xj iff f(xi) > f(xj)

… or at least one that tries to do this with minimal error

Suppose that f is a linear function 

f(xi) = w����xi



The Ranking SVM The Ranking SVM 

Ranking Model: f(xi)

f (x
i
)

•Sec. 15.4.2



The Ranking SVM The Ranking SVM 

Then (combining the two equations on the last slide):

xi > xj iff w�xi − w� xj > 0

xi > xj iff w�(xi − xj) > 0

Let us then create a new instance space from such 

•Sec. 15.4.2

Let us then create a new instance space from such 

pairs:            zk = xi − xk

yk = +1, −1 as xi ≥ , < xk



Support Vector RankingSupport Vector Ranking

min 1
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yk(w · (x i − x j ) + b) ≥ 1 − ξk , ∀i , j = 1, .., m

ξk ≥ 0, k = 1, .., m2

Given two examples we build one example (xi , xj)

yk = 1 if r ank(x i ) > r ank(x j ), 0 otherwise, wherek = i × m + j−1



Support Vector Regression (SVR)Support Vector Regression (SVR)

Constraints:
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Support Vector Regression (SVR)Support Vector Regression (SVR)
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Support Vector RegressionSupport Vector Regression

yi is not -1 or 1 anymore, now it is a value

ε is the tollerance of our function value



From Binary to Multiclass classifiersFrom Binary to Multiclass classifiers

Three different approaches:

ONE-vs-ALL (OVA)

Given the example sets, {E1, E2, E3, …} for the categories: {C1, C2, 

C3,…} the binary classifiers: {b1, b2, b3,…} are built.C3,…} the binary classifiers: {b1, b2, b3,…} are built.

For b1, E1 is the set of positives and E2∪E3 ∪… is the set of negatives, 

and so on

For testing: given a classification instance x, the category is the one 

associated with the maximum margin among all binary classifiers



From Binary to Multiclass classifiersFrom Binary to Multiclass classifiers

ALL-vs-ALL (AVA)

Given the examples: {E1, E2, E3, …} for the categories {C1, C2, C3,…} 

build the binary classifiers:

{b1_2, b1_3,…, b1_n, b2_3, b2_4,…, b2_n,…,bn-1_n} 

by learning on E1 (positives) and E2 (negatives), on E1 by learning on E1 (positives) and E2 (negatives), on E1 
(positives) and E3 (negatives) and so on…

For testing: given an example x, 

all the votes of all classifiers are collected

where bE1E2 = 1 means a vote for C1 and  bE1E2 = -1 is a vote 
for C2

Select the category that gets more votes



From Binary to Multiclass classifiersFrom Binary to Multiclass classifiers

Error Correcting Output Codes (ECOC)

The training set is partitioned according to binary sequences (codes) 

associated with category sets. 

For example, 10101 indicates that the set of examples of 

C1,C3 and  C5 are used to train the C10101 classifier. C1,C3 and  C5 are used to train the C10101 classifier. 

The data of the other categories, i.e. C2 and C4 will be 

negative examples 

In testing: the code-classifiers are used to decode one the original class, 

e.g.

C10101 = 1 and C11010 = 1 indicates that the instance belongs to C1

That is, the only one consistent with the codes



SVM-light: an implementation of SVMsSVM-light: an implementation of SVMs

Implements soft margin

Contains the procedures for solving optimization 

problems

Binary classifierBinary classifier

Examples and descriptions in the web site: 

http://www.joachims.org/ 

(http://svmlight.joachims.org/)


