Computational Methods for Data Analysis

Vector Space Categorization; (On Text)

Alessandra Giordani

Department of Computer Science and Information Engineering University of Trento Email: agiordani@disi.unitn.it

Course Schedule

- April 16: 15:45 18:15
- May 7: 15:45 18:15
- May 14: 15:45 18:15
- May 16: 14:30 17:00
- May 23: 14:30 17:00
- May 28: 14:30 17:00
- May 30: 14:30 17:00

Outline

Text Categorization and Optimization

- TC Introduction
- TC designing steps
- Rocchio text classifier
- Support Vector Machines
- Performance evaluation
- The Parameterized Rocchio Classifier (PRC)
- Evaluation of PRC against Rocchio and SVM

Introduction to Text Categorization

Text Classification Problem

Given:

- a set of target categories: $C = \{ C^1, ..., C^n \}$
- the set *T* of documents,

define

$$f:T \rightarrow 2^C$$

- VSM (Salton89')
 - Features are dimensions of a Vector Space.
 - Documents and Categories are vectors of feature weights.
 - d is assigned to C^i if

$$\vec{d} \cdot \vec{C}^i > th$$

The Vector Space Model

Automated Text Categorization

- A corpus of pre-categorized documents
- Split document in two parts:
 - Training-set
 - Test-set
- Apply a supervised machine learning model to the training-set
 - Positive examples
 - Negative examples
- Measure the performances on the test-set
 - e.g., Precision and Recall

Feature Vectors

 Each example is associated with a vector of n feature types (e.g. unique words in TC)

 $\vec{x} = (0, ..., 1, ..., 0, ..., 0, ..., 1, ..., 0, ..., 0, ..., 1, ..., 0, ..., 1)$ acquisition buy market sell stocks

- The dot product $\vec{\chi} \cdot \vec{z}$ counts the number of features in common
- This provides a sort of *similarity*

Text Categorization phases

- Corpus pre-processing (e.g. tokenization, stemming)
- Feature Selection (optionally)
 - Document Frequency, Information Gain, χ_2 , mutual information,...
- Feature weighting
 - for documents and profiles
- Similarity measure
 - between document and profile (e.g. scalar product)
- Statistical Inference
 - threshold application
- Performance Evaluation
 - Accuracy, Precision/Recall, BEP, f-measure,..

Feature Selection

- Some words, i.e. features, may be irrelevant
- For example, "function words" as: "the", "on","those"...
- Two benefits:
 - efficiency
 - Sometime the accuracy
- Sort features by relevance and select the *m*-best

Statistical Quantity to sort feature

- Based on corpus counts of the pair <feature,category>
- A is the number of documents in which both f and c occur, i.e. (f, c);
- B is the number of documents in which only f occurs, i.e. (f, \bar{c}) ;
- C is the number of documents in which only c occurs, i.e. (\bar{f}, c) ;
- D is the number of documents in which neither f nor c occur, i.e. (\bar{f}, \bar{c}) ;
- N is the total number of documents, i.e. A + B + C + D.

Statistical Selectors

Chi-square, Pointwise MI and MI

$$\begin{split} \chi^2(f,c) &= \frac{N \times (AD - CB)^2}{(A + C)(B + D)(A + B)(C + D)} \\ PMI(f,c) &= \log \frac{P(f,c)}{P(f) \times P(c)} \\ MI(f) &= -\sum_{c \in \mathcal{C}} P(c) log(P(c)) + P(f) \sum_{c \in \mathcal{C}} P(c|f) log(P(c|f)) \\ &+ P(\bar{f}) \sum_{c \in \mathcal{C}} P(c|\bar{f}) log(P(c|\bar{f})) \end{split}$$

Chi-Square Test

$$\mathbf{X}^{2} = \sum_{i=1}^{n} \frac{(O_{i} - E_{i})^{2}}{E_{i}},$$

- O_i = an observed frequency;
- *E_i* = an expected (theoretical) frequency, asserted by the null hypothesis;
- n = the number of cells in the table.

Just an intuitions from Information Theory of MI

- $\blacksquare MI(X,Y) = H(X)-H(X|Y) = H(Y)-H(Y|X)$
- If X very similar to Y, H(Y|X) = H(X|Y) = 0
- \Rightarrow MI(X,Y) is maximal

Probability Estimation

- P(f,c) is the probability that f and c co-occurs and can be estimated by A/N;
- P(f) is the probability of f, estimated by (A + B)/N;
- P(c) is the probability of c, estimated by (A + C)/N;
- P(c|f) is the probability of c by considering only the documents that contain f. It can be estimated by $\frac{P(f,c)}{P(f)}$.
- $P(\bar{f})$ is the probability that f does not occur, estimated by (C+D)/N;

Probability Estimation (con't)

- P(c|f) is the probability of c by considering only the documents that do not contain f. It can be estimated by P(f,c) P(f,c) is estimated by C/N.
- C is the collection of categories, i.e. {c₁, c₂, ..., c_n}. Note that PMI and χ² are defined on only two categories, i.e. c and not c whereas MI can be evaluated on n > 2 categories⁷.

For example, we can apply the above formulas to evaluate the PMI as follows:

$$PMI = \log \frac{N}{A+B} \times \frac{N}{A+C} \times \frac{A}{N} = \log \frac{A \times N}{(A+C)(A+B)}$$

Global Selectors

$$PMI_{max}(f) = \max_{c \in \mathcal{C}} PMI(f, c)$$
$$PMI_{avg}(f) = \sum_{c \in \mathcal{C}} P(c) \times PMI(f, c)$$
$$\chi^2_{max}(f) = \max_{c \in \mathcal{C}} \chi^2(f, c)$$
$$\chi^2_{avg}(f) = \sum_{c \in \mathcal{C}} P(c) \times \chi^2(f, c)$$

Document weighting: an example

- N, the overall number of documents,
- N_{f} , the number of documents that contain the feature f
- O_f^a the occurrences of the features f in the document d
- The weight *f* in a document is:

$$\boldsymbol{\omega}_{f}^{d} = \left(\log \frac{N}{N_{f}}\right) \times \boldsymbol{o}_{f}^{d} = IDF(f) \times \boldsymbol{o}_{f}^{d}$$

Inverse Document Frequency

The weight can be normalized:

$$\boldsymbol{\omega}_{f}^{d} = \frac{\boldsymbol{\omega}_{f}^{d}}{\sqrt{\sum_{t \in d} (\boldsymbol{\omega}_{t}^{d})^{2}}}$$

Similarity estimation

Given the document and the category representation

$$\vec{d} = \langle \omega_{f_1}^d, ..., \omega_{f_n}^d \rangle, \quad \vec{C}_i = \langle \Omega_{f_1}^i, ..., \Omega_{f_n}^i \rangle$$

It can be defined the following similarity function (cosine measure

$$s_{d,i} = \cos(\vec{d} \ , \vec{C}_i) = \frac{\vec{d} \cdot \vec{C}^i}{\|\vec{d} \| \times \|\vec{C}_i\|} = \frac{\sum_{f} \omega_f^d \times \Omega_f^i}{\|\vec{d} \| \times \|\vec{C}_i\|}$$

• *d* is assigned to C^i if $\vec{d} \cdot \vec{C}^i > \sigma$

Bidimensional view of Rocchio categorization

Rocchio problems

 Prototype models have problems with polymorphic (disjunctive) categories.

Nearest-Neighbor Learning Algorithm

- Learning is just storing the representations of the training examples in D.
- Testing instance *x*:
 - Compute similarity between x and all examples in D.
 - Assign *x* the category of the most similar example in *D*.
- Does not explicitly compute a generalization or category prototypes.
- Also called:
 - Case-based
 - Memory-based
 - Lazy learning

K Nearest-Neighbor

- Using only the closest example to determine categorization is subject to errors due to:
 - A single atypical example.
 - Noise (i.e. error) in the category label of a single training example.
- More robust alternative is to find the k most-similar examples and return the majority category of these k examples.
- Value of k is typically odd, 3 and 5 are most common.

3 Nearest Neighbor Illustration (Euclidian Distance)

K Nearest Neighbor for Text

Training:

For each each training example $\langle x, c(x) \rangle \in D$

Compute the corresponding TF-IDF vector, \mathbf{d}_x , for document x

Test instance *y***:**

Compute TF-IDF vector **d** for document *y*

For each $\langle x, c(x) \rangle \in D$

Let $s_x = \operatorname{cosSim}(\mathbf{d}, \mathbf{d}_x)$

Sort examples, x, in D by decreasing value of s_x

Let *N* be the first *k* examples in D. (*get most similar neighbors*) Return the majority class of examples in *N*

Illustration of 3 Nearest Neighbor for Text

A state-of-the-art classifier: Support Vector Machines

• The Vector \vec{C}^i satisfies:

$$\begin{split} \min \left| \vec{C}^{i} \right| \\ \vec{C}^{i} \times \vec{d} - th &\geq +1, \text{ if } d \in T_{i} \\ \vec{C}^{i} \times \vec{d} - th &\leq -1, \text{ if } d \notin T_{i} \end{split}$$

• *d* is assigned to C^i if $\vec{d} \times \vec{C}^i > th$

SVM

Other Text Classifiers

- RIPPER [Cohen and Singer, 1999] uses an extended notion of a profile. It learns the contexts that are positively correlated with the target classes, i.e. words co-occurrence.
- EXPERT uses as context nearby words (sequence of words).
- CLASSI is a system that uses a neural network-based approach to text categorization [Ng *et al.*, 1997]. The basic units of the network are only perceptrons.
- Dtree [Quinlan, 1986] is a system based on a well-known machine learning model.
- CHARADE [I. Moulinier and Ganascia, 1996] and SWAP1 [Apt´e et al., 1994] use machine learning algorithms to inductively extract Disjunctive Normal Form rules from training documents.

Performance Measurements

- Given a set of document *T*
- Precision = # Correct Retrieved Document / # Retrieved Documents
- Recall = # Correct Retrieved Document/ # Correct Documents

Precision and Recall of C_i

- a, corrects
- b, mistakes
- c, not retrieved

The *Precision* and *Recall* are defined by the above counts:

$$Precision_{i} = \frac{a_{i}}{a_{i} + b_{i}}$$
$$Recall_{i} = \frac{a_{i}}{a_{i} + c_{i}}$$

Performance Measurements (cont'd)

Breakeven Point

- Find thresholds for which
 - Recall = Precision
- Interpolation
- f-measure
 - Harmonic mean between precision and recall
- Global performance on more than two categories
 - Micro-average
 - The counts refer to classifiers
 - Macro-average (average measures over all categories)

F-measure e MicroAverages

$$F_{1} = \frac{2 \times Precision \times Recall}{Precision + Recall}$$
$$\mu Precision = \frac{\sum_{i=1}^{n} a_{i}}{\sum_{i=1}^{n} a_{i} + b_{i}}$$
$$\mu Recall = \frac{\sum_{i=1}^{n} a_{i}}{\sum_{i=1}^{n} a_{i} + c_{i}}$$
$$\mu BEP = \frac{\mu Precision + \mu Recall}{2}$$
$$\mu f_{1} = \frac{2 \times \mu Precision \times \mu Recall}{\mu Precision + \mu Recall}$$

Parameter Estimation Procedure

- Validation-set of about 30% of the training corpus
- for all $\rho \in [0,30]$
 - TRAIN the system on the remaining material
 - Measure the BEP on the validation-set
- Select the ρ associated with the highest *BEP*
- re-TRAIN the system on the entire training-set
- TEST the system based on the obtained parameterized model
- For more reliable results:
 - 20 validation-sets and made the ρ average
- The Parameterized Rocchio Classifier will refer to as PRC

Comparative Analysis

Rocchio literature parameterization

•
$$\rho = 1 \ (\gamma = \beta = 1) \ and \ \rho = \frac{1}{4} \ (\gamma = 4, \ \beta = 16)$$

- Reuters fixed test-set
 - Other literature results
- SVM
 - To better collocate our results
- Cross Validation (20 samples)
 - More reliable results
- Cross corpora/language validation
 - Reuters, Ohsumed (English) and ANSA (Italian)

Cross-Validation

- 1. Generate *n* random splits of the corpus. For each split *j*, 70% of data can be used for training (LS^j) and 30% for testing (TS^j) .
- 2. For each split j
 - (a) Generate m validation sets, ES_k^j of about 10/30% of LS^j .
 - (b) Learn the classifiers on LS^j ES^j_k and for each ES^j_k evaluate:
 (i) the threshold associated to the BEP and (ii) the optimal parameter ρ.
 - (c) Learn the classifiers Rocchio, SVMs and PRC on LS^j: in case of PRC use the estimated ρ̄.
 - (d) Evaluate f_1 on TS_j (use the estimated thresholds for Rocchio and PRC) for each category and account data for the final processing of the global μf_1 .
- 3. For each classifier evaluate the mean and the Standard Deviation for f_1 and μf_1 over the TS_j sets.

N-fold cross validation

- Divide training set in *n* parts
 - One is used for testing
 - *n-1* for training
- This can be repeated *n* times for *n* distinct test sets
- Average and Std. Dev. are the final performance index

Ohsumed and ANSA corpora

• Ohsumed:

- Including 50,216 medical abstracts.
- The first 20,000 documents year 91,
- 23 *MeSH diseases* categories [Joachims, 1998]

ANSA:

- 16,000 news items in Italian from the ANSA news agency.
- 8 target categories,
- 2,000 documents each,
- e.g. Politics, Sport or Economics.
- Testing 30 %

An Ohsumed document: Bacterial Infections and Mycoses

Replacement of an aortic valve cusp after neonatal endocarditis. Septic arthritis developed in a neonate after an infection of her hand.

Despite medical and surgical treatment endocarditis of her aortic valve developed and the resultant regurgitation required emergency surgery.

At operation a new valve cusp was fashioned from preserved calf pericardium.

Nine years later she was well and had full exercise tolerance with minimal aortic regurgitation.

Cross validation on Ohsumed/ANSA (20 samples)

	Rocchio BEP		PRC	SVM
Ohsumed			f1	f1
MicroAvg.	ρ=.25	ρ=1		
(23 cat.)	54.4 ± .5	61.8 ±.5	65.8±.4	68.37±.5

	Rocchio		PRC	
ANSA	BEP		f1	
MicroAvg.	ρ=.25	ρ=1		
(8 cat.)	61.76 ±.5	67.23 ±.5	71.00 ±.4	

Computational Complexity

PRC

- Easy to implement
- Low training complexity: O(n*m log n*m)
 - (*n* = number of doc and *m* = max num of features in a document)
- Low classification complexity:

*min{O(M), O(m*log(M))}* (*M* is the max num of features in a profile)

Good accuracy: the second top accurate classifier on Reuters

SVM

- More complex implementation
- Higher Learning time > O(n²) (to solve the quadratic optimization problem)
- Actually is linear for linear SVMs
- Low complexity of classification phase (for linear SVM) = min{O(M), O(m*log(M))}

From Binary to Multiclass classifiers

- Three different approaches:
- ONE-vs-ALL (OVA)
 - Given the example sets, {E1, E2, E3, ...} for the categories: {C1, C2, C3,...} the binary classifiers: {b1, b2, b3,...} are built.
 - For b1, E1 is the set of positives and E2∪E3 ∪... is the set of negatives, and so on
 - For testing: given a classification instance x, the category is the one associated with the maximum margin among all binary classifiers

From Binary to Multiclass classifiers

ALL-vs-ALL (AVA)

- Given the examples: {E1, E2, E3, ...} for the categories {C1, C2, C3,...}
 - build the binary classifiers:

 $b1_2, b1_3, ..., b1_n, b2_3, b2_4, ..., b2_n, ..., bn-1_n$

- by learning on E1 (positives) and E2 (negatives), on E1 (positives) and E3 (negatives) and so on...
- For testing: given an example x,
 - all the votes of all classifiers are collected
 - where $b_{E1E2} = 1$ means a vote for C1 and $b_{E1E2} = -1$ is a vote for C2
- Select the category that gets more votes

