Computational Models for Data Analysis

Introduction

Alessandra Giordani

Department of Computer Science and Information Engineering University of Trento Email: agiordani@disi.unitn.it

Course Schedule

- April 16: 15:45 18:15
- May 7: 15:45 18:15
- May 9: 14:30 17:00
- May 16:
- May 23:
- May 28:
- 14:30 17:00 14:30 - 17:00

14:30 - 17:00

- May 30:
- 14:30 17:00

Exams

- June 13
- July 8
- September 11

Lectures

- Introduction to ML
 - Decision Tree
 - Bayesian Classifiers
 - Vector spaces
- Vector Space Categorization
 - Feature design, selection and weighting
 - Document representation
 - Category Learning: Rocchio and KNN
 - Measuring of Performance
 - From binary to multi-class classification

Lectures

- Probably Approximately Correct Learning (PAC)
 VC dimension
- Perceptron
 - Vector Space Model
 - Representer Theorem
- Support Vector Machines (SVMs)
 - Hard/Soft Margin (Classification)
 - Regression and ranking

Lectures

Kernels Methods

- Theory and Algebraic properties
- Linear, Polynomial, Gaussian
- Kernel construction,
- Kernels for structured data
 - Sequence, Tree Kernels
- Structured Output

Slides of former professor also here:

Computational Methods for Data Analysis

- Introduction to Machine Learning: Decision Tree and Bayesian Classifiers
- Vector Space Learning
- Introduction to Statistical Learning Theory
- VC-dimension
- Perceptron
- Support Vector Machines
- Kernel Methods for Structured Data

As referring text please use my new chapter:

Kernel-Based Machines for Abstract and Easy Modeling of Automatic Learning

along with the old book (with some typos)

Roberto Basili and Alessandro Moschitti, *Automatic Text Categorization: from Information Retrieval to Support Vector Learning*. Aracne editrice, Rome, Italy.

http://disi.unitn.it/~agiordani/teaching.htm

http:// disi.unitn.it/ moschitti/ teaching.html

Reference Book + some articles

Today

- Introduction to Machine Learning
- Vector Spaces

Why Learning Functions Automatically?

- Anything is a function
 - From the planet motion
 - To the input/output actions in your computer
- Any problem would be automatically solved

More concretely

- Given the user requirement (input/output relations) we write programs
- Different cases typically handled with *if-then* applied to input variables
- What happens when
 - millions of variables are present and/or
 - values are not reliable (e.g. noisy data)
- Machine learning writes the *program* (rules) for you

What is Statistical Learning?

- Statistical Methods Algorithms that learn relations in the data from examples
- Simple relations are expressed by pairs of variables: $\langle x_1, y_1 \rangle$, $\langle x_2, y_2 \rangle$,..., $\langle x_n, y_n \rangle$
- Learning *f* such that evaluate y^* given a new value x^* , i.e. $\langle x^*, f(x^*) \rangle = \langle x^*, y^* \rangle$

You have already tackled the learning problem

Linear Regression

Degree 2

Degree

Machine Learning Problems

- Overfitting
- How dealing with millions of variables instead of only two?
- How dealing with real world objects instead of real values?

Learning Models

- Real Values: regression
- Finite and integer: classification
- Binary Classifiers:
 - 2 classes, e.g. $f(x) \rightarrow \{cats, dogs\}$

Decision Trees

Decision Tree (between Dogs/Cats)

Mustaches or Whiskers

- Whiskers are an important orientation tools for both dogs and cats
- all dogs and cats have them
- \Rightarrow not good features
- We may use their length
- What about mustaches?

Mustaches?

Entropy-based feature selection

• Entropy of class distribution $P(C_i)$:

$$H(P) = \sum_{i=1}^{m} -P(C_i) log_2(P(C_i))$$

- Measure "how much the distribution is uniform"
- Given S₁...S_n sets partitioned wrt a feature the overall entropy is:

$$\bar{H}(P^{S_1},..,P^{S_n}) = \sum_{i=1}^m \frac{H(P^{S_i})}{|S_i|}$$

Example: cats and dogs classification

- $p(dog)=p(cat) = 4/8 = \frac{1}{2}$ (for both dogs and cats)
- $H(S_0) = \frac{1}{2} \log(2) * 2 = 1$

Has the animal more than 6 siblings?

• $p(dog)=p(cat) = 2/4 = \frac{1}{2}$ (for both dogs and cats)

• $H(S_1) = H(S_2) = \frac{1}{4} * [\frac{1}{2} \log(2) * 2] = 0.25$

•
$$AII(S_1, S_2) = 2^*.25 = 0.5$$

Does the animal have short hair?

- $H(S_2)=H(S_1) = \frac{1}{4} * [(1/4)*\log(4) + (3/4)*\log(4/3)] = \frac{1}{4} * [\frac{1}{2} + 0.31] = \frac{1}{4} * 0.81 = 0.20$
- $AII(S_{1},S_{2}) = 0.20*2 = 0.40$ (note that $|S_{1}| = |S_{2}|$)

Follow up

- hair length feature is better than number of siblings since 0.40 is lower than 0.50
- Test all the features
- Choose the best
- Start with a new feature on the collection sets induced by the best feature

Probabilistic Classifier

Probability (1)

- Let Ω be a space and β a collection of subsets of Ω
- β is a collection of events
- A probability function *P* is defined as:

$$P:\beta\to [0,1]$$

Definition of Probability

P is a function which associates each event E with a number P(E) called probability of E as follows:

1)
$$0 \le P(E) \le 1$$

2) $P(\Omega) = 1$
3) $P(E_1 \lor E_2 \lor \ldots \lor E_n \lor \ldots) =$
 $= \sum_{i=1}^{\infty} P(E_i)$ if $E_i \land E_j = 0, \forall i \ne j$

Finite Partition and Uniformly Distributed

- Given a partition of *n* events uniformly distributed (with a probability of 1/*n*); and
- given an event *E*, we can evaluate its probability as:

$$P(E) = P(E \land E_{tot}) = P(E \land (E_1 \lor E_2 \lor ... \lor E_n)) =$$
$$\sum_i P(E \land E_i) = \sum_{E_i \subset E} P(E_i) = \sum_{E_i \subset E} \frac{1}{n} =$$
$$\frac{1}{n} \sum_{E_i \subset E} 1 = \frac{1}{n} (|\{i : E_i \subset E\}|) = \frac{\text{Target Cases}}{\text{All Cases}}$$

Conditioned Probability

- P(A | B) is the probability of A given B
- B is the piece of information that we know
- The following rule holds:

$$P(A \mid B) = \frac{P(A \land B)}{P(B)}$$

Indipendence

• A and B are indipedent iff:

 $P(A \mid B) = P(A)$ $P(B \mid A) = P(B)$

• If A and B are indipendent:

$$P(A) = P(A | B) = \frac{P(A \land B)}{P(B)}$$
$$P(A \land B) = P(A)P(B)$$

Bayes's Theorem

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

Proof:

$$P(A | B) = \frac{P(A \land B)}{P(B)}$$
 (Def. of. Cond. prob)
$$P(B | A) = \frac{P(A \land B)}{P(A)}$$
 Def. of. Cond. prob
$$P(A | B) = \frac{[P(B | A) P(A)]}{P(B)}$$

Bayesian Classifier

- Given a set of categories $\{c_1, c_2, \dots c_n\}$
- Let E be a description of a classifying example.
- The category of E can be derived by using the following probability:

$$P(c_i | E) = \frac{P(c_i)P(E | c_i)}{P(E)}$$

$$\sum_{i=1}^{n} P(c_i | E) = \sum_{i=1}^{n} \frac{P(c_i) P(E | c_i)}{P(E)} = 1$$

$$P(E) = \sum_{i=1}^{n} P(c_i) P(E \mid c_i)$$

Bayesian Classifier (cont)

- We need to compute:
 - the posterior probability: $P(c_i)$
 - the conditional probability: $P(E | c_i)$
- $P(c_i)$ can be estimated from the training set, D.
 - given n_i examples in D of type c_i , then $P(c_i) = n_i / |D|$
- Suppose that an example is represented by *m features*:

$$E = e_1 \wedge e_2 \wedge \cdots \wedge e_m$$

• The elements will be exponential in m so there are not enough training examples to estimate $P(E | c_i)$

Naïve Bayes Classifiers

The *features* are assumed to be indipendent given a category (*c_i*).

$$P(E \mid c_i) = P(e_1 \land e_2 \land \dots \land e_m \mid c_i) = \prod_{j=1}^m P(e_j \mid c_j)$$

This allows us to only estimate P(e_j / c_i) for each feature and category.

An example of the Naïve Bayes Clasiffier

- C = {Allergy, Cold, Healthy}
- e_1 = sneeze; e_2 = cough; e_3 = fever
- E = {sneeze, cough, ¬fever}

Prob	Healthy	Cold	Allergy
P(<i>c_i</i>)	0.9	0.05	0.05
P(sneeze <i>c_i</i>)	0.1	0.9	0.9
P(cough <i>c_i</i>)	0.1	0.8	0.7
P(fever <i>c_i</i>)	0.01	0.7	0.4

An example of the Naïve Bayes Clasiffier (cont.)

Probability	Healthy	Cold	Allergy
P(<i>c_i</i>)	0.9	0.05	0.05
P(sneeze <i>c_i</i>)	0.1	0.9	0.9
P(cough <i>c_i</i>)	0.1	0.8	0.7
P(fever <i>c_i</i>)	0.01	0.7	0.4

E={sneeze, cough, ¬fever}

P(Healthy| E) = (0.9)(0.1)(0.1)(0.99)/P(E)=0.0089/P(E)

P(Cold | E) = (0.05)(0.9)(0.8)(0.3)/P(E)=0.01/P(E)

P(Allergy | E) = (0.05)(0.9)(0.7)(0.6)/P(E)=0.019/P(E)

The most probable category is allergy

 $\mathsf{P}(\mathsf{E}) = 0.0089 + 0.01 + 0.019 = 0.0379$

P(Healthy| E) = 0.23, P(Cold | E) = 0.26, P(Allergy | E) = 0.50

Probability Estimation

- Estimate counts from training data.
- Let n_i be the number of examples in c_i
- let n_{ij} be the number of examples of c_i containing the feature e_j, then:

$$P(e_j \mid c_i) = \frac{n_{ij}}{n_i}$$

- Problems: the data set may still be too small.
- For rare features we may have, e_k , $\forall c_i : P(e_k | c_i) = 0$.

Smoothing

- The probabilities are estimated even if they are not in the data
- Laplace smoothing
 - each feature has a priori probability, p,
 - We assume that such feature has been observed in an example of size *m*.

$$P(e_j \mid c_i) = \frac{n_{ij} + mp}{n_i + m}$$

Naïve Bayes for text classification

- "bag of words" model
 - The examples are category documents
 - Features: Vocabulary $V = \{w_1, w_2, \dots, w_m\}$
 - $P(w_i | c_i)$ is the probability to have w_i in a category *i*
- Let us use the Laplace's smoothing
 - Uniform distribution (p = 1/|V|) and m = |V|
 - That is each word is assumed to appear exactly one time in a category

Training (version 1)

- V is built using all training documents D
- For each category $c_i \in C$

Let D_i the document subset of D in c_i

 $\Rightarrow \mathsf{P}(c_i) = |D_i| / |D|$

 n_i is the total number of words in D_i

for each $w_i \in V$, n_{ij} is the counts of w_i in c_i

$$\Rightarrow \mathsf{P}(w_j \mid c_i) = (n_{ij} + 1) / (n_i + |V|)$$

Testing

- Given a test document *X*
- Let *n* be the number of words of *X*
- The assigned category is:

$$\operatorname{argmax}_{c_i \in C} P(c_i) \prod_{j=1}^n P(a_j \mid c_j)$$

where a_j is a word at the *j*-th position in X

Part I: Abstract View of Statistical Learning Theory

Main Ingredients of Statistical Learning

Training set

- Set of objects associated with a label
- Similarity Function between the objects
- A learning algorithm
 - Ioss function: it tells the algorithm if is doing well

Intuitions on Machine Learning (kernel machines)

Example based Classifiers

Learning phase

Similarity in Statistical Learning Theory

- Similarity is intuitively useful to learn and implement the classification function
- NB: This does not lead to heuristic models
- In statistical learning theory valid similarities are called *Kernel Functions*
 - Kernels map examples in vector spaces
 - Examples are classified based on geometric properties
- Formally proved upperbound to the system error

In other words

Vector Spaces

Definition (1)

- A set V is a vector space over a field F (for example, the field of real or of complex numbers) if, given
- an operation *vector* **addition** defined in V, denoted $\mathbf{v} + \mathbf{w}$ (where $\mathbf{v}, \mathbf{w} \in V$), and
- an operation, scalar multiplication in V, denoted a * v (where v ∈ V and a ∈ F),
- the following properties hold for all $a, b \in F$ and u, v, and $w \in V$:
- v + w belongs to V.
 (Closure of V under vector addition)
- **u** + (**v** + **w**) = (**u** + **v**) + **w** (Associativity of vector addition in V)
- There exists a neutral element **0** in V, such that for all elements **v** in V, $\mathbf{v} + \mathbf{0} = \mathbf{v}$

(Existence of an additive identity element in V)

Definition (2)

- For all v in V, there exists an element w in V, such that v + w = 0 (Existence of additive inverses in V)
- $\mathbf{V} + \mathbf{W} = \mathbf{W} + \mathbf{V}$

(Commutativity of vector addition in V)

- a * v belongs to V (Closure of V under scalar multiplication)
- a * (b * v) = (ab) * v
 (Associativity of scalar multiplication in V)
- If 1 denotes the multiplicative identity of the field F, then 1 * v = v (Neutrality of one)
- a * (v + w) = a * v + a * w
 (Distributivity with respect to vector addition.)
- (a + b) * v = a * v + b * v
 (Distributivity with respect to field addition.)

An example of Vector Space

- For all n, Rⁿ forms a vector space over R, with component-wise operations.
- Let V be the set of all n-tuples, [v₁,v₂,v₃,...,v_n] where v_i is a member of R={real numbers}
- Let the field be **R**, as well
- Define Vector Addition:
 For all v, w, in V, define v+w=[v₁+w₁,v₂+w₂,v₃+w₃,...,v_n+w_n]
- Define Scalar Multiplication:
 For all a in F and v in V, a*v=[a*v₁,a*v₂,a*v₃,...,a*v_n]
- Then **V** is a Vector Space over **R**.

Linear dependency

- Linear combination:
- $\alpha_1 \mathbf{v}_1 + \ldots + \alpha_n \mathbf{v}_n = 0$ for some $\alpha_1 \ldots \alpha_n$ not all zero
 - \Rightarrow y = α_1 V₁ + ...+ α_n V_n has a unique expression
- In case $\alpha_i > 0$ and the sum is 1 it is called convex combination

Normed Vector Spaces

- Given a vector space V over a field K, a norm on V is a function from V to R,
- it associates each vector **v** in *V* with a real number, ||**v**||
- The norm must satisfy the following conditions:
 - For all a in K and all \mathbf{u} and \mathbf{v} in V,
 - 1. $||\mathbf{v}|| \ge 0$ with equality if and only if $\mathbf{v} = \mathbf{0}$
 - 2. ||*a***v**|| = |*a*| ||**v**||
 - 3. $||\mathbf{u} + \mathbf{v}|| \le ||\mathbf{u}|| + ||\mathbf{v}||$
- A useful consequence of the norm axioms is the inequality
 - $||u \pm v|| \ge |||u|| ||v|||$
- for all vectors u and v

Inner Product Spaces

- Let V be a vector space and u, v, and w be vectors in V and c be a constant.
- Then, an *inner product* (,) on V is
 - a function with domain consisting of pairs of vectors and
 - range real numbers satisfying
 - the following properties:
 - 1. $(\mathbf{u}, \mathbf{u}) \ge 0$ with equality if and only if $\mathbf{u} = \mathbf{0}$.

2.
$$(u, v) = (v, u)$$

3.
$$(u + v, w) = (u, w) + (v, w)$$

4.
$$(C\mathbf{u}, \mathbf{v}) = (\mathbf{u}, C\mathbf{v}) = C(\mathbf{u}, \mathbf{v})$$

Example

- Let V be the vector space consisting of all continuous functions with the standard + and *. Then define an inner product by

 (f,g) = ∫₀¹ f(l)g(l)dl
 For example: (x,x²) = ∫₀¹ (x)(x²)dx = 1/4
- The four properties follow immediately from the analogous property of the definite integral:

$$(f+g,h) = \int_{0}^{1} (f+g)(t)h(t) dt$$
$$= \int_{0}^{1} [f(t)h(t) + g(t)h(t)] dt = \int_{0}^{1} f(t)h(t) dt + \int_{0}^{1} g(t)h(t) dt$$
$$= (f,h) + (g,h)$$

Inner Product Properties

- **•** $(\mathbf{v}, \mathbf{0}) = 0$
- $\bullet || v| = \sqrt{(v, v)}$
- If $(\mathbf{v}, \mathbf{u}) = 0, \mathbf{v}, \mathbf{u}$ are called orthogonal
- Schwarz Inequality:

■ $[(v, u)]^2 \le (v, v) (u, u)$

- The classical scalar product is the component-wise product
- $(x_1, x_2, \dots, x_n) (y_1, y_2, \dots, y_n) = x_1 y_1 + x_2 y_2 + \dots + x_n y_n$

•
$$\cos(u, v) = \frac{(u, v)}{\|u\| \cdot \|v\|}$$

Projection

From
$$\cos(\vec{x}, \vec{W}) = \frac{\vec{x} \cdot \vec{W}}{\|\vec{x}\| \cdot \|\vec{W}\|}$$

It follows that

$$\|\vec{x}\|\cos(\vec{x},\vec{W}) = \frac{\vec{x}\cdot\vec{W}}{\|\vec{W}\|} = \vec{x}\cdot\frac{\vec{W}}{\|\vec{W}\|}$$

Norm of $\vec{\chi}$ times the cosine between $\vec{\chi}$ and \vec{W} , i.e. the projection of $\vec{\chi}$ on \vec{W}

Similarity Metrics

- The simplest distance for continuous *m*dimensional instance space is *Euclidian distance*.
- The simplest distance for *m*-dimensional binary instance space is *Hamming distance* (number of feature values that differ).
- Cosine similarity is typically the most effective

A Simple Example: Text Categorization

Text Classification Problem

• Given:
$$C = \{C^1, ..., C^n\}$$

- a set of target categories:
- the set *T* of documents,

define $f: T \rightarrow 2^C$

The Vector Space Model (VSM)

Summary of VSM

VSM (Salton89')

Features are dimensions of a Vector Space Linear Kernel

Documents and Categories are vectors of feature weights.

• *d* is assigned to C^i if $\vec{d} \cdot \vec{C}^i > th$

Changing symbols

$$\vec{W} \cdot \vec{x} - th > 0 \Rightarrow \vec{W} \cdot \vec{x} + b > 0$$

Summary of Today Machine Learning Concepts

- Positive and Negative examples
- Feature representation
 - Kernels
- Learning Algorithm
- Training and test set
- Accuracy measurement
- Generalization/Empirical error Trade-off

Several Kinds of Learning Algorithms

- Logic boolean expressions, (e.g. Decision Trees).
- Probabilistic Functions, (Bayesian Classifier).
- Separating Functions working in vector spaces
 - Non linear: KNN, neural network multiple-layers,...
 - Linear: SVMs, neural network with one neuron,...
- These approaches are largely applied In language technology
- Very Simple Example: Text Categorization

What Next?

- Can we learn any function?
- Statistical Learning Theory
 - PAC learning

