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Course ScheduleCourse Schedule

April 16: 15:45 - 18:15  

May 7:  15:45 - 18:15  

May 9: 14:30 - 17:00 

May 16: 14:30 - 17:00May 16: 14:30 - 17:00

May 23: 14:30 - 17:00

May 28: 14:30 - 17:00

May 30: 14:30 - 17:00



ExamsExams

June 13

July 8

September 11



LecturesLectures

Introduction to ML
Decision Tree

Bayesian Classifiers

Vector spaces

Vector Space CategorizationVector Space Categorization

Feature design, selection and weighting 

Document representation

Category Learning: Rocchio and KNN

Measuring of Performance

From binary to multi-class classification



LecturesLectures

Probably Approximately Correct Learning (PAC)
VC dimension

Perceptron
Vector Space Model

Representer TheoremRepresenter Theorem

Support Vector Machines (SVMs)
Hard/Soft Margin (Classification)

Regression and ranking



LecturesLectures

Kernels Methods
Theory and Algebraic properties

Linear, Polynomial, Gaussian

Kernel construction,

Kernels for structured dataKernels for structured data
Sequence, Tree Kernels 

Structured Output



Slides of former professor also here:Slides of former professor also here:

http://
disi.unitn.it/
moschitti/
teaching.html

http://
disi.unitn.it/
moschitti/
teaching.html

http://disi.unitn.it/~agiordani/teaching.htm http://disi.unitn.it/~agiordani/teaching.htm 



Reference Book + some articlesReference Book + some articles



TodayToday

Introduction to Machine Learning

Vector Spaces



Anything is a function

From the planet motion

To the input/output actions in your computer

Any problem would be automatically solved

Why Learning Functions 
Automatically?
Why Learning Functions 
Automatically?

Any problem would be automatically solved



More concretelyMore concretely

Given the user requirement (input/output 

relations) we write programs

Different cases typically handled with if-then 

applied to input variablesapplied to input variables

What happens when

millions of variables are present and/or

values are not reliable (e.g. noisy data)

Machine learning writes the program (rules) for 

you



What is Statistical Learning?What is Statistical Learning?

Statistical Methods – Algorithms that learn 

relations in the data from examples

Simple relations are expressed by pairs of 

variables: 〈x ,y 〉, 〈x ,y 〉,…, 〈x ,y 〉variables: 〈x1,y1〉, 〈x2,y2〉,…, 〈xn,yn〉

Learning f such that evaluate y* given a new value 

x*, i.e. 〈x*, f(x*)〉 = 〈x*, y*〉



You have already tackled the learning 
problem
You have already tackled the learning 
problem

Y

X



Linear RegressionLinear Regression

Y

X



Degree 2Degree 2

Y

X



Degree Degree 

Y

X



Machine Learning ProblemsMachine Learning Problems

Overfitting

How dealing with millions of variables instead of 

only two?

How dealing with real world objects instead of How dealing with real world objects instead of 

real values?



Learning ModelsLearning Models

Real Values: regression

Finite and integer: classification

Binary Classifiers:

2 classes, e.g.2 classes, e.g.

f(x) � {cats,dogs}



Decision TreesDecision TreesDecision TreesDecision Trees



Decision Tree (between Dogs/Cats) Decision Tree (between Dogs/Cats) 

Taller than 50 cm?

Short hair? 

No yes

Output: dog

No 

Mustaches?

No 

Output: Dog Output: Cat

Si 

...



Mustaches or WhiskersMustaches or Whiskers

Whiskers are an important orientation tools for 

both dogs and cats

all dogs and cats have them

⟾ not good features⟾ not good features

We may use their length

What about mustaches?



Mustaches?Mustaches?



ENDEND



Entropy-based feature selectionEntropy-based feature selection

Entropy of class distribution P(Ci):

Measure “how much the distribution is uniform”Measure “how much the distribution is uniform”

Given S1…Sn sets partitioned wrt a feature the 

overall entropy is:



Example: cats and dogs classificationExample: cats and dogs classification

S0

p(dog)=p(cat) = 4/8 = ½ (for both dogs and cats)

H(S0) = ½*log(2) * 2 = 1



Has the animal more than 6 siblings?Has the animal more than 6 siblings?

S0

S1

S2

p(dog)=p(cat) = 2/4 = ½ (for both dogs and cats)

H(S1) = H(S2) = ¼ * [½*log(2) * 2] = 0.25

All(S1, S2) = 2*.25 = 0.5



Does the animal have short hair?Does the animal have short hair?

S0

S1

S2

p(dog)= 1/4; p(cat) = 3/4

H(S2)=H(S1) = ¼ * [(1/4)*log(4) + (3/4)*log(4/3)]  = 

¼ * [½ + 0.31]  = ¼ * 0.81 = 0.20

All(S1,S2) = 0.20*2 = 0.40 (note that |S1| = |S2|) 



Follow upFollow up

hair length feature is better than number of 

siblings since 0.40 is lower than 0.50

Test all the features

Choose the bestChoose the best

Start with a new feature on the collection sets 

induced by the best feature



Probabilistic ClassifierProbabilistic ClassifierProbabilistic ClassifierProbabilistic Classifier



Probability (1)Probability (1)

Let Ω be a space and β a collection of subsets of Ω

β is a collection of events

A probability function P is defined as:

[ ]      1,0: →βP



Definition of ProbabilityDefinition of Probability

1)(0 1) ≤≤ EP

P is a function which associates each event E with a 
number P(E) called probability of E as follows:

1)(0 1) ≤≤ EP

1)( 2) =ΩP

=∨∨∨∨ ...)...( )3 21 nEEEP

= P(Ei ) if Ei ∧ E j = 0
i=1

∞

∑ ,  ∀i ≠ j



Finite Partition and Uniformly DistributedFinite Partition and Uniformly Distributed

Given a partition of n events uniformly distributed 

(with a probability of 1/n); and

given an event E, we can evaluate its probability as:

P(E) = P(E ∧ Etot ) = P(E ∧ (E1 ∨ E2 ∨ ...∨ En)) =

P(E ∧ Ei ) = P(Ei )
Ei ⊂E

∑
i

∑ =
1

n
Ei ⊂E

∑ =

1

n
1 =

1

n
Ei ⊂E

∑ ( i : Ei ⊂ E{ } ) =
Target Cases

All Cases



Conditioned ProbabilityConditioned Probability

P(A | B) is the probability of A given B

B is the piece of information that we know

The following rule holds:

A BA∧ B
)(

)(
)|(

BP

BAP
BAP

∧
=



IndipendenceIndipendence

A and B are indipedent iff:

)()|( APBAP =

)()|( BPABP =

If A and B are indipendent:

)(

)(
)|()(

BP

BAP
BAPAP

∧
==

)()()( BPAPBAP =∧



Bayes’s TheoremBayes’s Theorem

Proof:

P(A∧ B)

P(A | B) =
P(B | A)P(A)

P(B)

P(A | B) =
P(A∧ B)

P(B)

P(B | A) =
P(A∧ B)

P(A)

P(A | B) =
[P(B | A)P(A)]

P(B)

(Def. of. Cond. prob)

Def. of. Cond. prob



Bayesian ClassifierBayesian Classifier

Given a set of categories {c1, c2,…cn}

Let E be a description of a classifying example.

The category of E can be derived by using the following 

probability:

P(c )P(E | c )
P(ci | E) =

P(ci )P(E | ci )

P(E)

P(ci

i=1

n

∑ | E) =
P(ci )P(E | ci )

P(E)
=1

i=1

n

∑

P(E) = P(ci )P(E | ci )
i=1

n

∑



Bayesian Classifier (cont)Bayesian Classifier (cont)

We need to compute:

the posterior probability: P(ci) 

the conditional probability: P(E | ci)

P(ci) can be estimated from the training set, D. 

given n examples in D of type c , then P(c ) =  n / |D|given ni examples in D of type ci, then P(ci) =  ni / |D|

Suppose that an example is represented by m features:

The elements will be exponential in m so there are not 

enough training examples to estimate P(E |ci)

meeeE ∧∧∧= L21



Naïve Bayes ClassifiersNaïve Bayes Classifiers

The features are assumed to be indipendent 

given a category (ci).

P(E |ci ) = P(e1 ∧e2 ∧L∧em | ci ) = P(ej | ci

m

∏ )

This allows us to only estimate P(ej | ci) for each 

feature and category.

  

P(E |ci ) = P(e1 ∧e2 ∧L∧em | ci ) = P(ej | ci

j=1

∏ )



An example of the

Naïve Bayes Clasiffier

An example of the

Naïve Bayes Clasiffier

C = {Allergy, Cold, Healthy}

e1 = sneeze; e2 = cough; e3 = fever

E = {sneeze, cough, ¬fever}

Prob Healthy Cold Allergy

P(ci) 0.9 0.05 0.05

P(sneeze|ci) 0.1 0.9 0.9

P(cough|ci) 0.1 0.8 0.7

P(fever|ci) 0.01 0.7 0.4



An example of the

Naïve Bayes Clasiffier (cont.)

An example of the

Naïve Bayes Clasiffier (cont.)

Probability Healthy Cold Allergy

P(ci) 0.9 0.05 0.05

P(sneeze | ci) 0.1 0.9 0.9

P(cough | ci) 0.1 0.8 0.7

P(fever | ci) 0.01 0.7 0.4

E={sneeze, cough, ¬fever}

P(Healthy| E) = (0.9)(0.1)(0.1)(0.99)/P(E)=0.0089/P(E)

P(Cold | E) = (0.05)(0.9)(0.8)(0.3)/P(E)=0.01/P(E)

P(Allergy | E) = (0.05)(0.9)(0.7)(0.6)/P(E)=0.019/P(E)

The most probable category is allergy

P(E) = 0.0089 + 0.01 + 0.019 = 0.0379

P(Healthy| E) = 0.23, P(Cold | E) = 0.26, P(Allergy | E) = 0.50



Probability EstimationProbability Estimation

Estimate counts from training data.

Let ni be the number of examples in ci

let nij be the number of examples of ci containing the 
feature ej, then:

ij

ij

n
ceP =)|(

Problems: the data set may still be too small.

For rare features we may have, ek, ∀ci :P(ek | ci) = 0.

i

ij
n

ceP =)|(



SmoothingSmoothing

The probabilities are estimated even if they are not 

in the data

Laplace smoothing

each feature has a priori probability, p, each feature has a priori probability, p, 

We assume that such feature has been observed in an 

example of size m.

mn

mpn
ceP

i

ij

ij
+

+
=)|(



Naïve Bayes for text classificationNaïve Bayes for text classification

“bag of words” model

The examples are category documents

Features: Vocabulary V = {w1, w2,…wm}

P(wj | ci) is the probability to have wj in a category i

Let us use the Laplace’s smoothingLet us use the Laplace’s smoothing

Uniform distribution (p = 1/|V|) and m = |V|

That is each word is assumed to appear exactly one time in a 

category



Training (version 1)Training (version 1)

V is built using all training documents D

For each category ci  ∈ C

Let Di the document subset of D in ci

⇒ P(ci) = |Di| / |D|

ni is the total number of words in Di

for each wj ∈ V, nij is the counts of wj in ci

⇒ P(wj | ci) = (nij + 1) / (ni + |V|)  



TestingTesting

Given a test document X

Let n be the number of words of X

The assigned category is:

argmaxP(c ) P(a |c
n

∏ )

where aj is a word at the j-th position in X

argmax
ci ∈C

P(ci ) P(a j |ci

j=1

∏ )



Part I: Abstract View of
Statistical Learning Theory

Part I: Abstract View of
Statistical Learning TheoryStatistical Learning TheoryStatistical Learning Theory



Main Ingredients of Statistical LearningMain Ingredients of Statistical Learning

Training set

Set of objects associated with a label

Similarity Function between the objects

A learning algorithm

loss function: it tells the algorithm if is doing well



Similarity 
Function

Intuitions on Machine Learning 
(kernel machines)
Intuitions on Machine Learning 
(kernel machines)

C1: Questions asking 

for a person

Who is the Italian
prime minister?

Who is the US
president? C1: Model

Learning Algorithm

Function

C2: Questions asking 

for a number

C2: ModelWhen was Martin
Luther King born?



Example based ClassifiersExample based Classifiers

Category 1 Category 2

Objects to be classified:



Learning phaseLearning phase

Positive Learning Objects

Negative Learning Objects

Support vectors

1

Category 1
1

1.5

1.51.2

Weights

11.52

-1

-1

  
r 
w 



Similarity in Statistical Learning 
Theory 
Similarity in Statistical Learning 
Theory 

Similarity is intuitively useful to learn and 

implement the classification function

NB: This does not lead to heuristic models

In statistical learning theory valid similarities are In statistical learning theory valid similarities are 

called Kernel Functions

Kernels map examples in vector spaces

Examples are classified based on geometric properties

Formally proved upperbound to the system error



In other wordsIn other words

z3

Category 1

z1

z2

Category 2



Vector SpacesVector SpacesVector SpacesVector Spaces



Definition (1)Definition (1)

A set V is a vector space over a field F (for example, the field of real 
or of complex numbers) if, given

an operation vector addition defined in V, denoted v + w (where v, w
∈ V), and 

an operation, scalar multiplication in V, denoted a * v (where v ∈ V 
and a ∈ F), 

∈ ∈

∈

∈

and a ∈ F), 

the following properties hold for all a, b ∈ F and u, v, and w ∈ V:

v + w belongs to V.
(Closure of V under vector addition) 

u + (v + w) = (u + v) + w
(Associativity of vector addition in V) 

There exists a neutral element 0 in V, such that for all elements v in V, 
v + 0 = v
(Existence of an additive identity element in V) 



Definition (2)Definition (2)

For all v in V, there exists an element w in V, such that v + w = 0
(Existence of additive inverses in V) 

v + w = w + v
(Commutativity of vector addition in V) 

a * v belongs to V
(Closure of V under scalar multiplication) (Closure of V under scalar multiplication) 

a * (b * v) = (ab) * v
(Associativity of scalar multiplication in V) 

If 1 denotes the multiplicative identity of the field F, then 1 * v = v
(Neutrality of one) 

a * (v + w) = a * v + a * w
(Distributivity with respect to vector addition.) 

(a + b) * v = a * v + b * v
(Distributivity with respect to field addition.) 



An example of Vector SpaceAn example of Vector Space

For all n, Rn forms a vector space over R, with 

component-wise operations. 

Let V be the set of all n-tuples, [v1,v2,v3,...,vn] where vi is a 

member of R={real numbers}

Let the field be R, as wellLet the field be R, as well

Define Vector Addition:

For all v, w, in V, define v+w=[v1+w1,v2+w2,v3+w3,...,vn+wn]

Define Scalar Multiplication:

For all a in F and v in V, a*v=[a*v1,a*v2,a*v3,...,a*vn]

Then V is a Vector Space over R.



Linear dependencyLinear dependency

Linear combination:

α1 v1 + …+ αn vn = 0 for some α1…αn not all zero

⇒ y = α1 v1 + …+ αn vn has a unique expression

In case αi > 0 and the sum is 1 it is called convex In case αi > 0 and the sum is 1 it is called convex 

combination



Normed Vector SpacesNormed Vector Spaces

Given a vector space V over a field K, a norm on V is a 

function from V to R, 

it associates each vector v in V with a real number, ||v|| 

The norm must satisfy the following conditions:

For all a in K and all u and v in V, For all a in K and all u and v in V, 

1. ||v|| ≥ 0 with equality if and only if v = 0

2. ||av|| = |a| ||v|| 

3. ||u + v|| ≤ ||u|| + ||v|| 

A useful consequence of the norm axioms is the inequality

||u± v|| ≥ | ||u|| - ||v|| | 

for all vectors u and v



Inner Product Spaces Inner Product Spaces 

Let V be a vector space and u, v, and w be vectors in 

V and c be a constant.

Then, an inner product ( , ) on V is

a function with domain consisting of pairs of vectors and 

range real numbers satisfyingrange real numbers satisfying

the following properties:

1. (u, u) > 0 with equality if and only if u = 0.

2. (u, v) = (v, u)

3. (u + v, w) = (u, w) + (v, w)

4. (cu, v) = (u, cv) = c(u, v)



ExampleExample

Let V be the vector space consisting of all continuous functions with the 
standard + and *. Then define an inner product by

For example:

The four properties follow immediately from the analogous property of the 
definite integral:



Inner Product PropertiesInner Product Properties

(v, 0) =   0

If (v, u) =   0, v,u are called orthogonal

Schwarz Inequality: 

),(|||| vvv =

[(v, u)]2 ≤ (v, v) (u, u)

The classical scalar product is the component-wise product

(x1 , x2, … ,xn) (y1 , y2, … ,yn) = x1 y1 + x2 y2+ … +xn yn

||||||||

),(
),cos(

vu

vu
vu

⋅
=



ProjectionProjection

From
||||||||

),cos(
wx

wx
wx rr

rr
rr

⋅

⋅
=

It follows that

||||||||
),cos(||||

w

w
x

w

wx
wxx r

r
r

r

rr
rrr

⋅=
⋅

=

Norm of     times the cosine between      and     , 

i.e. the projection of     on

x
r

w
r

w
r

x
r

x
r



Similarity MetricsSimilarity Metrics

The simplest distance for continuous m-

dimensional instance space is Euclidian distance.

The simplest distance for m-dimensional binary The simplest distance for m-dimensional binary 

instance space is Hamming distance (number of 

feature values that differ).

Cosine similarity is typically the most effective



A Simple Example: Text 
Categorization
A Simple Example: Text 
Categorization

Bush 

declares 

war

Wonderful 

Totti 

Yesterday 

match

Berlusconi 

acquires 

Ibrahimović

before 

elections

Berlusconi 

acquires 

Ibrahimović

before 

elections

Berlusconi 

acquires 

Ibrahimović

before 

elections

Sport

Cn

Politic

C1

Economic

C2

. . . . . . . . . . .



Text Classification ProblemText Classification Problem

Given:

a set of target categories:

the set T of documents, 

define     f : T  → 2C

C = C1
,.., Cn{ }

define     f : T  → 2C



The Vector Space Model (VSM)The Vector Space Model (VSM)

Berlusconi

Bush declares 

war.

Berlusconi 

gives support       

Wonderful 

Totti in the 

yesterday 

match against 

Berlusconi’s 

Milan

Berlusconi 

acquires 

Ibrahimović

before 

elections

d1: Politic

d2

d2: Sport d3:Economic

Bush

Totti

Milan

d1

d2

d3

C1

C1 : Politics
Category

C2

C2 : Sport
Category



Summary of VSMSummary of VSM

VSM (Salton89’)

Features are dimensions of a Vector Space 

Linear Kernel

Documents and Categories are vectors of Documents and Categories are vectors of 

feature weights.

d is assigned to        if 

Changing symbols

  

r 

d ⋅
r 

C i > thiC

  
r 
w ⋅

r 
x − th > 0 ⇒

r 
w ⋅

r 
x + b > 0



Summary of Today Machine Learning 
Concepts
Summary of Today Machine Learning 
Concepts

Positive and Negative examples

Feature representation

Kernels

Learning AlgorithmLearning Algorithm

Training and test set

Accuracy measurement

Generalization/Empirical error Trade-off



Several Kinds of Learning AlgorithmsSeveral Kinds of Learning Algorithms

Logic boolean expressions, (e.g. Decision Trees).

Probabilistic Functions, (Bayesian Classifier).

Separating Functions working in vector spaces

Non linear: KNN, neural network multiple-layers,…Non linear: KNN, neural network multiple-layers,…

Linear: SVMs, neural network with one neuron,…

These approaches are largely applied In 

language technology

Very Simple Example: Text Categorization



What Next?What Next?

Can we learn any function?

Statistical Learning Theory

PAC learning


