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Exams

= June 13
= July 8
s September 11




Lectures

s Introduction to ML

Decision Tree
Bayesian Classifiers
Vector spaces

s Vector Space Categorization

Feature design, selection and weighting
Document representation

Category Learning: Rocchio and KNN
Measuring of Performance

From binary to multi-class classification




Lectures

s Probably Approximately Correct Learning (PAC)
# VC dimension

= Perceptron
» Vector Space Model
» Representer Theorem

s Support Vector Machines (SVMs)
» Hard/Soft Margin (Classification)
¥ Regression and ranking




Lectures

s Kernels Methods
» Theory and Algebraic properties
e Linear, Polynomial, Gaussian
» Kernel construction,

s Kernels for structured data
¥ Sequence, Tree Kernels

s Structured Output




Slides of former professor also here:

Computational Methods for Data Analysis http //

- Introduction to Machine Learning: Decision Tree and Bayesian Classifiers d iSl UNn Itl‘l - |t/

- Vector Space Learning TR

- Introduction to Statistical Learning Theory mOSCh Ittl/

- VC-dimension teaching.html

- Perceptron
- Support Vector Machines

- Kernel Methods for Structured Data

As referring text please use my new chapter:

Kernel-Based Machines for Abstract and Easy Modeling of Automatic Learning

along with the old book (with some typos)

Roberto Basili and Alessandro Moschitti, Automatic Text Categorization: from
Information Retrieval to Support Vector Learning. Aracne editrice, Rome, Italy.

http://disi.unitn.it/~agiordani/teaching.htm




Reference Book + some articles

Roberto Basili
Alessandro Moschitti

Automatic Text Categorization
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From Information Retrieval
to Support Vector Learning
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Today

= Introduction to Machine Learning
= Vector Spaces




Why Learning Functions
Automatically?

= Anything is a function

¥ From the planet motion
» To the input/output actions in your computer

= Any problem would be automatically solved




More concretely

= Given the user requirement (input/output
relations) we write programs

» Different cases typically handled with if-then
applied to input variables

= What happens when

¥ millions of variables are present and/or
» values are not reliable (e.g. noisy data)

= Machine learning writes the program (rules) for
you




What is Statistical Learning?

s Statistical Methods — Algorithms that learn
relations in the data from examples

= Simple relations are expressed by pairs of
variables: (X, 1), (Xo,¥o)svey X1, V)

= Learning fsuch that evaluate y given a new value
X, e (X, f{(xX)y =(X", y)




You have already tackled the learning
problem




Linear Regression




Degree 2




Degree




Machine Learning Problems

s Overfitting

= How dealing with millions of variables instead of
only two?

= How dealing with real world objects instead of
real values?




Learning Models

= Real Values: regression
= Finite and integer: classification

= Binary Classifiers:

r 2 classes, e.Q.
f(x) - {cats,dogs}




Decision Trees




Decision Tree (between Dogs/Cats)

Taller than 50 cm?

No / \ yes

Short hair? Output: dog

-

Mustaches?




Mustaches or Whiskers

s Whiskers are an important orientation tools for
both dogs and cats

= all dogs and cats have them
= not good features

= We may use their length

= What about mustaches?




Mustaches?







Entropy-based feature selection

= Entropy of class distribution P(C)):

H(P)=Y —P(Ci)loga(P(C}))

» Measure “how much the distribution is uniform”

= Given S,...5, sets partitioned wrt a feature the
overall entropy is:

i

I

H(P%,  Po™)=)"

i=1

H(PSi)
|5l




Example: cats and dogs classification

= p(dog)=p(cat) = 4/8 = V2 (for both dogs and cats)
= H(So0) = 2*log(2) * 2 =1




Has the animal more than 6 siblings?

S

= p(dog)=p(cat) = 2/4 = V> (for both dogs and cats)
s H(S1) = H(S2) = V4 * [V2*log(2) * 2] = 0.25
s All(S1, S2) = 2*.25=0.5




Does the animal have short hair?

» p(dog)= 1/4; p(cat) = 3/4 <w
s H(S2)=H(S1) = ¥4 * [(1/4)*log(4) + (3/4)*log(4/3)] =
Ya* Yo+ 0.31] = % * 0.81 = 0.20

s All(S1,S2) = 0.20"2 = 0.40 (note that |S1| = |S2|)




Follow up

hair length feature is better than number of
siblings since 0.40 is lower than 0.50

Test all the features
Choose the best

Start with a new feature on the collection sets
iInduced by the best feature




Probabilistic Classifier




Probability (1)

s Let Q be a space and 3 a collection of subsets of Q

s B is a collection of events

= A probability function P is defined as:

P: B —]0,1]




Definition of Probability

s Pis a function which associates each event E with a
number P(E) called probability of E as follows:

1)0< P(E)<1
2) P(Q)=1
) P(E,VE,v.VE, V..)=

=) P(E)ifEEAE =0,Vi# |

=1




Finite Partition and Uniformly Distributed

m Given a partition of n events uniformly distributed
(with a probability of 1/n); and

= given an event E, we can evaluate its probability as:

P(E)=P(EAE,,)=P(EA(E, VE,v..VE)))=

Z P(EAE)= ) P(E)= Z -

E,cE E; cE
Target Cases
— 1=—({/: E c =
Z (‘{ E}‘) All Cases

ECE




Conditioned Probability

= P(A [/ B)is the probability of A given B
= Bis the piece of information that we know
= The following rule holds:

ENERICY




Indipendence

= A and B are indipedent iff:
P(AIB)= P(A)
P(B|A)=P(B)

= If A and B are indipendent:
P(AAB)

P(A)=P(A|B) = B

P(AAB)=P(A)P(B)




Bayes’s Theorem

P(BI A)P(A)

P(A| B) = P(B)

Proof:

P(AA B)
P(B)
P(BI A) = P(/:;;\)B)

[P(B1 A)P(A)]

P(A|B) =

P(A| B) =

P(B)




Bayesian Classifier

s Given a set of categories {c;, C,,...C,}
= Let E be a description of a classifying example.

= [he category of E can be derived by using the following
probability:

P(c)P(E|c)
P(c1 E)="5 '
Zn Zn P(c)P(E|c)
i=1 (CI i=1 P(E)

P(E)=) P(c)P(Elc)




Bayesian Classifier (cont)

We need to compute:

¥ the posterior probability: P(c))

» the conditional probability: P(E | ¢,

P(c;) can be estimated from the training set, D.

e given n, examples in D of type c;, then P(c) = n./ |D|

Suppose that an example is represented by m features:
E=e ne,n--Ne,

The elements will be exponential in m so there are not

enough training examples to estimate P(E |c)




Naive Bayes Classifiers

s The features are assumed to be indipendent
given a category (c;).

P(Elc)=Penrnen---ne_lC) =HP(ej IC)
j=1
= This allows us to only estimate P(¢e;/ ¢;) for each
feature and category.




An example of the
Naive Bayes Clasiffier

s C ={Allergy, Cold, Healthy}

= &, = Sneeze; e, = cough; e; = fever

s E ={sneeze, cough, —fever}

Prob Healthy Cold Allergy
P(c) 0.9 0.05 0.05
P(sneeze|c) 0.1 0.9 0.9
P(cough|c) 0.1 0.8 0.7
P(fever|c) 0.01 0.7 0.4




An example of the
Naive Bayes Clasiffier (cont.)

Probability Healthy Cold Allergy

P(c) 0.9 0.05 0.05

P(sneeze | c) 0.1 0.9 0.9 E={sneeze, cough, —fever}
P(cough | c) 0.1 0.8 0.7

P(fever | c) 0.01 0.7 0.4

P(Healthy| E) = (0.9)(0.1)(0.1)(0.99)/P(E)=0.0089/P(E)
P(Cold | E) = (0.05)(0.9)(0.8)(0.3)/P(E)=0.01/P(E)

P(Allergy | E) = (0.05)(0.9)(0.7)(0.6)/P(E)=0.019/P(E)

The most probable category is allergy

P(E) = 0.0089 + 0.01 + 0.019 = 0.0379

P(Healthy| E) = 0.23, P(Cold | E) = 0.26, P(Allergy | E) = 0.50




Probability Estimation

Estimate counts from training data.
Let n, be the number of examples in ¢

let n, be the number of examples of ¢; containing the
feature e, then:

n.
P(e lc,)=—
n.

l

Problems: the data set may still be too small.
For rare features we may have, ¢, Vc;:P(e,| c) = 0.




Smoothing

= The probabilities are estimated even if they are not
In the data

= Laplace smoothing

» each feature has a priori probability, p,

¥ We assume that such feature has been observed in an
example of size m.

n.+mp
P(e lc;)=—
n.+m




Naive Bayes for text classification

= “bag of words” model
» The examples are category documents
¥ Features: Vocabulary V = {w,, w,,...w_}
* P(w;| c) is the probability to have w;in a category i

» Let us use the Laplace’s smoothing

¥ Uniform distribution (p = 1/|]V]) and m = | V|

¥ That is each word is assumed to appear exactly one time in a
category




Training (version 1)

= Vs built using all training documents D
s For each category c. € C
Let D, the document subset of D in ¢
= P(c) = |D)|/|D|
n. is the total number of words in D.
for each w; e V. n; IS the counts of W, in
= P(w;| ¢) =(n; + 1)/ (n; + V)




Testing

= Given a test document X
= Let nbe the number of words of X
= The assigned category is:

argmax P(C,-)H P(a; lc))
Ci€ C j=1

where a; Is a word at the j-th position in X




Part |: Abstract View of
Statistical Learning Theory




Main Ingredients of Statistical Learning

= [raining set
» Set of objects associated with a label

= Similarity Function between the objects

= Alearning algorithm
» |oss function: it tells the algorithm if is doing well




Intuitions on Machine Learning
(kernel machines)

C1: Questions asking
for a person ﬂearning Algorithm

Who is the US
president?
Who is the Italian @
Similarity
Function

prime minister?

When was Martin
Luther King born?

C2: Questions asking \

for a number




Example based Classifiers

Objects to be classified: o -

Category 1 Category 2

me O
e t_
-Q

-




Learning phase

Positive Learning Objects o @l BIK |

Negative Learning Objects ‘ * A

Category 1 Heigns -
Support vectors ] 1.2
- O 7! . 2]
H — i
- 1
|




Similarity in Statistical Learning
Theory

= Similarity is intuitively useful to learn and
iImplement the classification function

s NB: This does not lead to heuristic models

= In statistical learning theory valid similarities are
called Kernel Functions

» Kernels map examples in vector spaces
» Examples are classified based on geometric properties

s Formally proved upperbound to the system error




In other words

Category 1

=3° A
B < o

z3

‘*. I@\‘ °

o = 1 F 1

<
‘ o Category 2 0' ‘




Vector Spaces




Definition (1)

= AsetVis avector space over a field F (for example, the field of real
or of complex numbers) if, given

= an operation vector addition defined in V, denoted v + w (where v, w
e V), and

= an operation, scalar multiplication in V, denoted a * v (wherev € V
and aeF),

= the following properties hold for all a, be F and u, v, and w € V:

= V+WbelongstoV.
(Closure of V under vector addition)
s U+ (V+W)=(U+V)+W
(Associativity of vector addition in V)
s There exists a neutral element 0 in V, such that for all elements vin V,
v+0=vV
(Existence of an additive identity element in V)




Definition (2)

m ForallvinV, there exists an elementw in V, suchthatv+w=0
(Existence of additive inverses in V)

E V+IW=W+V
(Commutativity of vector addition in V)

m a"VbelongstoV
(Closure of V under scalar multiplication)
= a*(b*v)=(ab)*v
(Associativity of scalar multiplication in V)
= If 1 denotes the multiplicative identity of the field F, then 1 *v=v
(Neutrality of one)
m a’(v+w)=a*v+a*w
(Distributivity with respect to vector addition.)
(a+b)*v=a*v+b*v
(Distributivity with respect to field addition.)




An example of Vector Space

= For all n, R" forms a vector space over R, with
component-wise operations.

s Let V be the set of all n-tuples, [v{,V,,V3,...,v,] Where v; is a
member of R={real numbers}

s Let the field be R, as well

= Define Vector Addition:
For all v, w, in V, define v+W=[V,+W,,Vo+W,,V5+Ws,...,V +W,]

s Define Scalar Multiplication:
Forallain FandvinV, a*v=[a*v,,a*Vv,,a*vs,...,a"V,]

= ThenVis a Vector Space over R.




Linear dependency

= Linear combination:
m Oy Vy+ ...+ 0,V,=0 for some q,...0,not all zero
=Yy =04V + ...+ 0, V, has a unique expression

= Incase a,> 0 and the sum is 1 it is called convex
combination




Normed Vector Spaces

Given a vector space Vover afield K, a normon Vis a
function from Vto R,

It associates each vector v in V with a real number, ||v||

The norm must satisfy the following conditions:

¢ Forallain Kandalluandvin V,
1. [|v|| 2 0 with equality if and only if v =0
2. [|lav|| = |al [|v]]
3. [lu+ V|| = [[uf| + [[v]]

A useful consequence of the norm axioms is the inequality

©lux vz ] [Ju]] - [[v]] |
for all vectors u and v




Inner Product Spaces

s Let V be a vector space and u, v, and w be vectors in
V and c be a constant.

= Then, an inner product (,)on Vs
» a function with domain consisting of pairs of vectors and
¥ range real numbers satisfying
» the following properties:
1. (u, u) > 0 with equality if and only ifu = 0.
2. (u,v) = (v, u)
3. (U+Vv,wW) = (U, W)+ (V,W)
4. (cu,v) = (u,cv) = c(u,v)




Example

Let V be the vector space consisting of all continuous functions with the

standard + and *. Then define an inner product by
1

(/>8)= ‘!f{fi)g (et
1
For example: (x,x%) = J(I)(Ig)dx _ %

The four properties follow immediately from the analogous property of the

definite integral:
1

(f+ E:h)=][(f +ENDAE) at

1 1 1

_ nﬂ FORE) + g ORD)) d = n[ JOh(E) di+ D[E(f)h(f) dt

=(f.m+(g.h)




Inner Product Properties

s (v,0) = 0
s vii=L/(V, V)
= If(v,u) = O, v,u are called orthogonal

= Schwarz Inequality:
* (v, u)P< (v, v) (U, u)

= The classical scalar product is the component-wise product

(L, X)) (Y7 Yor Y0) S XY +XY+ X, Y,
(u,v)
N ull-1l vl

= cos(U, V)=




Projection

_  —

N X W
= From cos(Xx, W) =— —
I xI- 1 will
= It follows that
. L. XWw . W
I Xl cos(X, W) =—— = X-—
I wil I wil

s Norm of ¥ times the cosine between x and ,
l.e. the projection of x on




Similarity Metrics

s The simplest distance for continuous m-
dimensional instance space is Euclidian distance.

= The simplest distance for m-dimensional binary
iInstance space is Hamming distance (number of
feature values that differ).

= Cosine similarity is typically the most effective




A Simple Example: Text
Categorization

Berlusconi
acquires
Ibrahimovi¢
before
elections

Politic Economic
C, C,




Text Classification Problem

s Given: C:{Cl,”, Cn}
» a set of target categories:
» the set T of documents,

define f: T — 2¢




The Vector Space Model (VSM)

d,: Politic d,: Sport d;:Economic
A Bush declares Wog@erful Berlusconi
Berlusconi o : fottiin the acquires
Berlusconi yesterday Ibrahimovié¢
gives support match against before
Berlusconi’s elections
d ) Milan
4.t C C, : Politics
L =G Category
C, > C,: Sport
Totti Category

~ Bush




Summary of VSM

= VSM (Salton89’)

» Features are dimensions of a Vector Space
Linear Kernel

» Documents and Categories are vectors of
feature weights.

v dis assignedto ¢ if d-C'>th
= Changing symbols
W-X—th>0= Ww- X+ b>0




Summary of Today Machine Learning
Concepts

= Positive and Negative examples

» Feature representation
» Kernels

= Learning Algorithm

= [raining and test set

s Accuracy measurement

s Generalization/Empirical error Trade-off




Several Kinds of Learning Algorithms

s Logic boolean expressions, (e.g. Decision Trees).
= Probabilistic Functions, (Bayesian Classifier).

= Separating Functions working in vector spaces

* Non linear: KNN, neural network multiple-layers,...
¥ Linear: SVMs, neural network with one neuron,...

= These approaches are largely applied In
language technology

= Very Simple Example: Text Categorization




What Next?

= Can we learn any function?

= Statistical Learning Theory
» PAC learning




