
iMAP: Discovering Complex Semantic Matches
between Database Schemas

Robin Dhamankar, Yoonkyong Lee, AnHai Doan

Department of Computer Science
University of Illinois, Urbana-Champaign, IL, USA

{dhamanka,ylee11,anhai}@cs.uiuc.edu

Alon Halevy, Pedro Domingos

Department of Computer Science and Engineering
University of Washington, Seattle, WA, USA

{alon,pedrod}@cs.washington.edu

ABSTRACT
Creating semantic matches between disparate data sources
is fundamental to numerous data sharing efforts. Manu-
ally creating matches is extremely tedious and error-prone.
Hence many recent works have focused on automating the
matching process. To date, however, virtually all of these
works deal only with one-to-one (1-1) matches, such as ad-
dress = location. They do not consider the important class of
more complex matches, such as address = concat(city,state)
and room-price = room-rate * (1 + tax-rate).
We describe the iMAP system which semi-automatically

discovers both 1-1 and complex matches. iMAP reformu-
lates schema matching as a search in an often very large
or infinite match space. To search effectively, it employs a
set of searchers, each discovering specific types of complex
matches. To further improve matching accuracy, iMAP ex-
ploits a variety of domain knowledge, including past complex
matches, domain integrity constraints, and overlap data. Fi-
nally, iMAP introduces a novel feature that generates ex-
planation of predicted matches, to provide insights into the
matching process and suggest actions to converge on correct
matches quickly. We apply iMAP to several real-world do-
mains to match relational tables, and show that it discovers
both 1-1 and complex matches with high accuracy.

1. INTRODUCTION
Semantic mappings specify the relationships between data

stored in disparate sources. They lie at the heart of any data
sharing architecture, be it a data integration system, data
warehouse, peer-data management system or web-service
based architecture. Data sharing systems are crucial for
supporting a wide range of applications, such as enterprise
data integration, scientific collaborations, data management
on the WWW, and cooperation between government agen-
cies. Currently, semantic mappings are created by hand
(typically supported by advanced graphical user interfaces),
and in practice are extremely tedious and error-prone [26].
The problem of semi-automatically creating mappings has

received significant attention recently in both the database
and AI communities (see [24] for a recent survey, and [13, 12]
for several works since). The bulk of the work focused on the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro£t or commercial advantage, and that copies
bear this notice and the full citation on the £rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior speci£c
permission and/or a fee.
SIGMOD 2004 June 13-18, 2004, Paris, France.
Copyright 2004 ACM 1-58113-859-8/04/06 . . . $5.00.

first phase of mapping, called schema matching. A match

between two schemas specifies semantic correspondences be-
tween elements of both schemas [24]. These correspondences
are later elaborated (e.g., using a system such as Clio [29])
to generate the mapping. For example, the mapping can be
in the form of a SQL query that translates data from one
source to another. It should be noted that both the process
of generating matches and mappings are expected to involve
human input.
To date, the work on schema matching has focused on

discovering 1-1 matches between schema elements (e.g., re-
lation attributes, XML tags). For example, a 1-1 correspon-
dence would specify that element location in one schema
matches area in the other, or that agent-name matches name.
While 1-1 matches are common, relationships between

real-world schemas involve many complex matches. A com-

plex match specifies that a combination of attributes in one
schema corresponds to a combination in the other. For ex-
ample, it may specify that list-price = price * discount-rate
and address = concat(city,state). In fact, in the schemas we
consider in Section 6, complex matches compose up to half
of the matches. Hence, the development of techniques to
semi-automatically construct complex matches is crucial to
any practical mapping effort.
Creating complex matches is fundamentally harder than

1-1 matches for the following reason. While the number of
candidate 1-1 matches between a pair of schemas is bounded
(by the product of the sizes of the two schemas), the num-
ber of candidate complex matches is not. There are an un-
bounded number of functions for combining attributes in a
schema, and each one of these could be a candidate match.
Hence, in addition to the inherent difficulties in generating
a match to start with, the problem is exacerbated by having
to examine an unbounded number of match candidates.
This paper describes the iMAP system which semi-automa-

tically discovers both 1-1 and complex matches between
database schemas. Currently, iMAP considers matches be-
tween relational schemas, but the ideas we offer can be gen-
eralized to other data representations. Developing iMAP
required several innovations.

Generating Matches: To address the problem of exam-
ining an unbounded number of match candidates, we view
the generation of complex matches as a search in the space
of possible matches. To search the space effectively, we em-
ploy a set of search modules, called searchers, each of which
considers a meaningful subset of the space, corresponding to
specific types of attribute combinations.
As examples of searchers, a text searcher may consider

only matches that are concatenations of text attributes, while
a numeric searcher considers combining attributes with arith-
metic expressions. A schema mismatch searcher examines
complex matches that involve the data instances of one schema
and the schema elements of the other (such complex matches
have been observed to be very common in practice [20]). Fi-
nally, a date searcher focuses on complex matches that in-
volve date attributes, such as date= concat(month,”/”,year).
We use beam search [25] to control the search through the

space of candidate matches. To evaluate the quality of each
match candidate, we employ a set of techniques, including
machine learning, statistics, and heuristic methods. Since
the number of match candidates is often infinite, a key chal-
lenge in adapting search to the matching context is that we
do not know when the best match has been found and thus
the search should be terminated. We develop a simple termi-
nation criterion based on the diminishing-returns principle
and show that it is often very effective in practice.
Given the matches produced by the search modules, iMAP

evaluates their quality further, using criteria that are im-
practical to be employed at the searcher level. For exam-
ple, a numeric searcher uses mathematical transformations
commonly employed in the equation discovery area [27] to
quickly generate a ranked list of match candidates. iMAP
then re-ranks the candidates, using also the name similar-
ity between the attributes involved in a match. In the final
step, iMAP selects the best matches from the re-ranked can-
didates, taking into account domain knowledge and integrity
constraints.

Exploiting Domain Knowledge: Several recent works [9,
8, 16] have noted the benefits of exploiting domain knowl-
edge for schema matching. Intuitively, domain knowledge
(e.g., keys) are useful for pruning some candidate matches.
We show that in the context of complex matches the poten-
tial benefits of using domain knowledge are even greater: not
only can domain knowledge be used to evaluate the accuracy
of a proposed match, but it can also be used to prune which
match candidates are even considered in the search phase.
In addition to exploiting domain knowledge in the form

of integrity constraints and knowledge gleaned by learning
from previous matches, iMAP exploits two new kinds of
domain knowledge. First, if the databases being matched
share some tuples, iMAP can utilize this overlap data to
discover complex matches. Second, iMAP also exploits ex-
ternal data in the domain. For example, it can mine real
estate listings to learn that the number of real estate agents
in a specific area is bounded by 50. Now given the match
agent-name = concat(first-name,last-name), where first-name
and last-name belong to the home owner, iMAP can exam-
ine the data instances associated with the match to realize
that concat(first-name,last-name) yields hundreds of distinct
names, and hence is unlikely to match agent-name.
Finally, one of the important aspects of iMAP is that it

tries to use domain knowledge as early as possible, in order
to prune the consideration of matching candidates.

Explaining Match Predictions: As schema matching
systems employ more sophisticated techniques, the reasons
for the predictions they make become rather involved. The
complexity of the decisions is even more pronounced in the
context of complex matches, where the prediction for a com-
plex match may depend on other predictions made for sim-
pler or 1-1 matches.

Schema TSchema S

location price ($) agent-id
Atlanta, GA 360,000 32
Raleigh, NC 430,000 15

HOUSES

area list-price agent-address agent-name
Denver, CO 550,000 Boulder, CO Laura Smith
Atlanta, GA 370,800 Athens, GA Mike Brown

LISTINGS

id name city state fee-rate
32 Mike Brown Athens GA 0.03
15 Jean Laup Raleigh NC 0.04

AGENTS

Figure 1: The schemas of two relational databases on house
listing, and the semantic mappings between them.

In iMAP we introduce a new feature that helps a human
designer interacting with the system. We show how the
system can offer an explanation of a predicted match, and
we consider several fundamental types of explanations, such
as knowing why a particular match is or is not created, and
why a certain match is ranked higher than another.

In summary, this paper makes the following contributions:

• An architecture for semi-automatically discovering com-
plex matches that combines search through a set of can-
didate matches and methods for evaluating each match in
isolation, and a set of matches as a whole.

• Uses of new kinds of domain knowledge (overlap data
and mining external data), and applying the knowledge
as early as possible in the matching process.

• A mechanism for explaining the decisions made by the
matching system.

• The iMAP system which embodies all these innovations,
and a set of experiments on real-world schemas that il-
lustrate the effectiveness of the system. Our experiments
show that we can correctly match 43-92% of the complex
matches in the schemas we considered.

The paper is organized as follows. Section 2 defines the
schema matching problem. Sections 3-5 describe the iMAP
system. Section 6 presents our experiments and discusses
the current system’s limitations. Section 7 reviews related
work and Section 8 concludes.

2. PROBLEM DEFINITION
We discuss schema matching in terms of relational schemas,

but the ideas we offer here carry over to other data repre-
sentations (e.g., matching XML schemas and DTDs). As
a running example, consider the two relational schemas S
and T in Figure 1. Both databases store house listings and
are managed by two different real-estate companies. The
schema of database T , for example, has one table, LISTINGS,
whereas database S stores its data in two tables, HOUSES
and AGENT.
Suppose the two real-estate companies have decided to

merge. To cut costs, they eliminate database S by transfer-
ring all house listings from S to database T . Such data trans-
fer is not possible without knowing the semantic mappings
between the relational schemas of the databases. Below we
show some of the mappings for the individual attributes of
T , using SQL notation. Together, they specify how to cre-
ate tuples for T from data in S. In general, a variety of
approaches have been used to specify semantic mappings
(e.g., SQL, XQuery, GAV, LAV, GLAV [14]).

area = SELECT location from HOUSES
agent-address = SELECT concat(city, state) FROM AGENTS

list-price = SELECT price * (1 + fee-rate)
FROM HOUSES, AGENTS
WHERE agent-id = id

The process of creating mappings typically proceeds in
two steps. In the first step, called schema matching, we find
matches (a.k.a. correspondences) between elements of the
two schemas. In the second step we elaborate the matches to
create query expressions (as above) that enable automated
data translation or exchange. The majority of the work in
the area has considered algorithms for schema matching,
with the significant exception of Clio [29], which is a nice
example of a system that studies the second step of the
process. We note that both steps of schema mapping may
involve interaction with a designer. In fact, the goal of a
schema mapping system is to provide a design environment
where a human can quickly create a mapping between a pair
of schemas. The human builds on the system’s suggestions
where appropriate, and provides the system with feedback
to direct it to the appropriate mapping.
There are two kinds of schema matches. The first, and the

topic of the vast majority of past works on schema match-
ing, is 1-1 matches. Such matches state that there is a corre-
spondence between a pair of attributes, one in each schema.
For example, attribute area in T corresponds to attribute
location in table HOUSES of S.
The second kind, complex matches, specify that some com-

bination of attributes in one schema corresponds to a com-
bination in the other. In our example, an instance of agent-
address in T is obtained by concatenating an instance of city
and an instance of state in table AGENTS of schema S.
Complex matches may involve attributes from different

tables. For example, list-price is obtained by the following
combination of attributes: price ∗ (1+ fee-rate). However, in
order to obtain the appropriate pair of price and fee-rate, we
need to specify that tables HOUSES and AGENTS be joined
by HOUSES.agent-id = AGENTS.id. In fact, discovering such
join relationships was usually postponed to the second step
of schema mapping [29].
In this paper we describe the iMAP system which semi-

automatically discovers complex matches for relational data.
Initially, our goal was to discover complex matches that in-
volve only attributes in a single table. However, by casting
the problem of finding complex matches as search, we are
sometimes able to find matches that combine attributes from
multiple tables (and suggesting the appropriate join path,
see Section 3.1.1). The key challenge that iMAP faces is that
the space of possible match candidates is unbounded, corre-
sponding to all the possible ways of combining attributes in
expressions.

3. THE IMAP ARCHITECTURE
In our explanation of iMAP, we assume we are trying to

find matches from a source schema (in our case S) to a
target schema (T). In practice, we would typically generate
matches in both directions.
The iMAP architecture is shown in Figure 2. It consists of

three main modules: match generator, similarity estimator,
and match selector. The match generator takes as input two
schemas S and T . For each attribute t of T , it generates a set
of match candidates, which can include both 1-1 and com-
plex matches. As we explain below, the generation is guided

Match selector

1-1 and complex matches

Match candidates

Explanation
module

User

Domain
knowledge
and data

Target schema T and source schema S

Similarity matrix

Similarity estimator

Searcher M1 Searcher Mk
…... Match

generator

Figure 2: The iMAP architecture

by a set of search modules. The similarity estimator then
computes for each match candidate a score which indicates
the candidate’s similarity to attribute t. Thus, the output
of this module is a matrix that stores the similarity score
of 〈target attribute, match candidate〉 pairs. Finally, the
match selector examines the similarity matrix and outputs
the best matches for the attributes of T .
During the entire matching process, the above three mod-

ules also exploit domain knowledge and data to maximize
matching accuracy, and interact with an explanation mod-

ule to generate explanations for matches. The rest of this
section describes the three modules. We discuss the use of
domain knowledge in Section 4 and the explanation facility
in Section 5.

3.1 Candidate Match Generation
Given an attribute in the target schema, the match gener-

ator must quickly discover a relatively small set of promising
candidate matches for the attribute. The key idea under-
lying the match generator is that it recasts this discovery
process as a search through the space of possible match can-
didates.
The space of match candidates can be extremely large or

even infinite, since any expression for combining attributes
of the source schema can potentially be a match candidate.
Some combinations make sense (e.g., concat(city,state)), and
others do not (e.g., (price - agent-id) * 2). The match gener-
ator addresses this challenge by employing a set of special-
purpose searchers. A searcher explores a specialized portion
of the search space, based on knowledge of particular com-
bination operators and attribute types.
The set of best match candidates is given by the union of

the match candidates returned by the specialized searchers.
The following example illustrates searchers:

Example 3.1. Consider the text searcher and the nu-
meric searcher. Given a target attribute t, the text searcher
examines the space of all matches that are either attributes
or concatenations of attributes in source schema S, to find
a small set of matches that best match attribute t. The text
searcher accomplishes this by analyzing the textual prop-
erties of the attributes of the two schemas. In the case of
target attribute agent-address (Figure 1), this searcher may
return the following matches, in decreasing order of confi-
dence: concat(city,state), location, concat(name,state).
The numeric searcher exploits the values of numeric at-

tributes to find matches that are arithmetic expressions over
the attributes of source schema S. Given target attribute

list-price in Figure 1, this searcher may return the following
matches: price ∗ (1 + fee-rate), price, price+ agent-id. 2

In general, a searcher is applicable to only certain types
of attributes. For example, the text searcher examines the
concatenations of attributes, and hence is applicable to only
textual ones. Except for data-type information that is avail-
able in the schema, this searcher employs a set of heuristics
to decide if an attribute is textual. The heuristics examine
the ratio between the number of numeric and non-numeric
characters, and the average number of words per data value.
As another example, the numeric searcher examines arith-
metic expressions of attributes, and hence is applicable to
only numeric attributes.
There are two main benefits to using multiple searchers

in iMAP. First, the searchers enable considering a small and
meaningful part of the space of candidate matches. Second,
the system is easily extensible with additional searchers. For
example, if we later develop a specialized searcher that finds
complex matches for address attributes, then we can just
plug the searcher into the system. In addition, particular
domains are likely to benefit from specialized searchers for
the domain.

3.1.1 The Internals of a Searcher
Applying search to candidate generation requires address-

ing three issues: search strategy, evaluation of candidate
matches, and termination condition.

Search Strategy: Even the specialized search space of
a searcher, such as the space of concatenations of the text
searcher, could still be very large or even unbounded. Hence,
we face the challenge of efficiently searching such spaces. In
iMAP we propose to address this problem using a standard
search technique called beam search [25]. The basic idea be-
hind beam search is that it uses a scoring function to eval-
uate each match candidate, then at each level of the search
tree, it keeps only k highest-scoring match candidates, where
k is a pre-specified number. This way, the searcher can con-
duct a very efficient search in any type of search space.

Match Evaluation: To conduct beam search, given a
match candidate such as concat(city,state), we must assign to
it a score which approximates the semantic distance between
it and the target attribute (say agent-address). In iMAP,
we use a range of techniques, including machine learning,
statistics, and heuristics, to compute such candidate scores
(see Section 3.1.2 on implemented searchers).
For example, to use learning techniques, we build a classi-

fier for target attribute agent-address using the data in tar-
get schema T , then apply it to classify candidate match
concat(city,state). The classifier returns a confidence value
which we can assign to be the candidate match’s score.

Termination Condition: Since the search space can be
unbounded, we need a criterion for deciding when to stop the
search. Our criterion is based on terminating when we start
seeing diminishing returns from our search. Specifically, in
the ith iteration of the beam search algorithm, we keep track
of the highest score of any candidate matches (that have
been seen up to that point), denoted by Maxi. Then if
the difference in the values of Maxi and Maxi+1 (i.e., two
consecutive iterations) is less than a pre-specified threshold
δ, we stop the search and return the k highest-scoring match
candidates as the most promising match candidates.
The following example illustrates the text searcher in more

detail.

Example 3.2. Given a target attribute such as agent-
address, the text searcher begins by considering all 1-1 matches,
such as agent-address = location, agent-address = price, and
so on (see Figure 1).
The text searcher then computes a score for each of the

above matches. Consider the match agent-address = location.
The searcher assembles a set of training examples for agent-
address: a data instance in target schema T is labeled “pos-
itive” if it belongs to agent-address and “negative” other-
wise. Next, the searcher trains a Naive Bayes text clas-
sifier [10] on the training examples to learn a model for
agent-address. The data instances are treated as text frag-
ments in this training process. The searcher then applies
the trained Naive Bayes text classifier to each data instance
of attribute location (in source schema S) to obtain an esti-
mate of the probability that that data instance belongs to
agent-address. Finally, the searcher returns the average of
the instance probabilities as the desired score.
After computing the scores for the 1-1 matches, the text

searcher begins a beam search. It picks the k highest-scoring
1-1 matches, then generates new matches by concatenating
each of the k matches with each attribute in S. For exam-
ple, if agent-address = city is picked, then agent-address =
concat(city, state) is generated as a new match. The searcher
then computes the scores of the new matches as described
above. In general, the score of match t = f(s1, . . . , sn) is
computed by comparing the column corresponding to t and
the “composite column” corresponding to f(s1, . . . , sn), and
the comparison is carried out using the Naive Bayes text
classifier. The searcher then picks the k best matches among
all matches it has seen so far, and the process repeats un-
til the diminishing-returns condition sets in, as described
earlier. 2

Handling Join Paths: Recall from Section 2 that a com-
plex match can involve join paths. In our example, for the
match list-price = price * (1 + fee-rate), we need to discover
that price and fee-rate should be joined via HOUSES.agent-id
= AGENTS.id.
We can find join paths for complex matches as follows.

First, for each set of tables in S, iMAP finds all possible
join paths that can relate the tables. Note that the set of
reasonable join paths for any group of tables is typically
small, and can be discovered using a variety of techniques,
including analyzing joins in queries that have been posed
over the schemas and examining the data associated with
the schemas [5]. The user can also suggest additional join
paths for consideration.
Once iMAP has identified a small set of join paths per each

group of tables, it modifies the search process to take the
join paths into consideration. Consider the text searcher.
Suppose it is in the process of generating new candidate
matches. The current match is t = concat(a, b), where a
and b are attributes of table X in schema S. Now suppose
the searcher is considering attribute c of table Y (also of S).
Suppose iMAP has determined that tables X and Y can join
via paths j1 and j2. Then the text searcher would create
two candidate matches: concat(a, b, c) with a, b, c relating
via j1, and concat(a, b, c) with a, b, c relating via j2. When
materialized, each of the above two matches will likely form
a different column of values, due to using different join paths.

Equation discovery (LAGRAMGE)interest-earned = balance * interest-rateSpecified by a context free grammarOverlap numeric

Overlap version of the text, category, schema mismatch and unit conversion searchers (see Section 4 "Exploiting Domain Knowledge")

Mapping into an ontologybirth-date = b-day / b-month / b-yearColumns recognized as ontology nodesDate

Properties of the distributionsweight-kg = 2.2* net-weight-poundsPhysical quantity attributes Unit conversion

KL divergencefireplace = 1 if house-desc has “ fireplace”Source attribute containing target schema infoSchema mismatch

KL divergenceproduct-categories = product-typesAttributes with less than t distinct valuesCategory

Binning and KL divergencelist-price = price * (1+tax-rate)User supplied matches or past complex matchesNumeric
Naïve Bayesand beam searchname = concat(first-name,last-name)Text attributes at the source schemaText

Evaluation TechniqueExamplesSpace of candidates Searcher

Table 1: Implemented searchers in iMAP.

3.1.2 Implemented Searchers
Table 1 characterizes the searchers currently implemented

in iMAP. The searchers cover a variety of complex match
types (text, numeric, category, etc.). They employ diverse
techniques to evaluate match candidates, and can exploit
several forms of domain knowledge, such as domain con-
straints and overlap data. In what follows we describe the
searchers that do not exploit overlap data. The rest will be
described in Section 4. We do not discuss the text searcher
any further.

Numeric Searcher: This searcher finds the best match
for a target attribute judged to be numeric, such as lot-area.
Building it raises the problem of how to compute the sim-
ilarity score of a complex match, such as lot-dimension1 *
lot-dimension2. We address this problem by considering the
similarity between two value distributions: those of the val-
ues observed in column lot-area, and the values of the “com-
posite column” created by “materializing” lot-dimension1 *
lot-dimension2. We compute the similarity of value distribu-
tions using the Kullback-Leibler divergence measure [4, 18]
(which has previously been used in other contexts, such as
statistical natural language processing [18]).
The second problem we face is the type of matches the

numeric searcher should examine. The searcher cannot con-
sider an arbitrary space of matches, because this will likely
lead it to overfit the data and find an incorrect match.
Hence, we limit the numeric searcher to consider only a re-
stricted space of common matches, such as those that add,
subtract, multiply, or divide two columns. In Section 4
we discuss how the numeric searcher can exploit past com-
plex matches or overlap data to find much more expressive
matches, such as price * quantity * (1 + fee-rate).

Category Searcher: This searcher finds “conversion”
mappings between categorical attributes, such as waterfront =
f(near-water), where f(“yes′′) = 1 (i.e., a data instance
“yes” of near-water is converted into an instance “1” of wa-
terfront) and f(“no′′) = 0. Given a target attribute t, the
searcher determines if t is categorical, by counting the num-
ber of distinct values of t, and verifying that this number
is below a threshold (currently set at 10). Next, it looks
for category attributes on the source schema side, using the
same technique. The searcher then discards the category
source attributes whose number of distinct values are not
the same as that of t, or whose similarity to t is low (where
similarity is computed using the Kullback-Leibler measure
on the two value distributions).
Let the remaining category source attributes be s1, . . . , sp.

Then for each si the searcher attempts to find a conversion

function fi that transforms the values of si to those of t.
Currently, the function fi that the searcher produces maps
the value with the highest probability in the distribution of
si to that in the distribution of t, then the value with the
second highest probability in the distribution of si to that in
the distribution of t, and so on. The searcher then produces
as output attributes s1, . . . , sp together with the conversion
functions f1, . . . , fp.

SchemaMismatch Searcher: Schema-mismatch matches
relate the data of a schema with the schema of the other.
In the current iMAP implementation we focus on a partic-
ular type: a binary target attribute matches the data in a
source attribute. For example, if a data instance of source
attribute house-description contains (does not contain) the
term “fireplace”, then the corresponding instance of target
attribute fireplace is “yes” (“no”). This schema-mismatch
type occurs very frequently in practice (e.g., product de-
scription, course listing). The fundamental reason is that
often one schema chooses to mention a particular property

(e.g., fireplace, zoom capability, hard copy edition) of an en-
tity in the data, but another schema chooses to create an
attribute modeling that property.
Given a target attribute t, this searcher determines if t is

a binary category attribute (using the same technique as in
the category searcher). Next, it searches for the presence of
the name of t in the data instances of source attributes. If
this name appears at least p times (currently set at 5) in the
data of s, then there may exist a schema mismatch between
t and s. The searcher then transforms s into a category
attribute s′, such that each data instance of s is transformed
into “1” if it contains the name of t, and 0 otherwise. Next,
the searcher creates a conversion function f that transforms
data values of s′ into those of t (similar to how it is done in
the category searcher).

Unit Conversion Searcher: This searcher finds matches
such as weight = 2.2 * net-weight, a conversion between two
different types of unit (pounds and kilogram in this case). It
first determines physical-quantity attributes, by looking for
the presence of certain tokens (e.g., “hours”, “kg”, “$”, etc.)
in the name and data of the attributes. The searcher then
finds the best conversion from a set of conversion functions
between commonly used units.

Date Searcher: This searcher finds complex matches for
date attributes, using a set of terms in a simple ontology that
captures date entities (e.g., day, month, year, week) and re-
lationships among them (e.g., concatenation, generalization,
specialization, subset). Suppose the searcher matches target
attribute birth-date to ontology concept DATE, and source

attributes bday, bmonth, and byear to ontology concepts
DAY, MONTH, and YEAR, respectively. Suppose from the
ontology we know that DATE is composed of DAY, MONTH,
and YEAR, then we can infer that birth-date = concat(bday,
bmonth, byear).

3.2 The Similarity Estimator
For each target attribute t, the searchers suggest a rel-

atively small set of promising match candidates. However,
the scores assigned to each of the candidate matches is based
only on a single type of information. For example, the
text searcher considers only word frequencies via the Naive
Bayes learner. Consequently, the accuracy reported by the
searchers may not be very accurate.
The task of the similarity estimator is then to further

evaluate these candidates, and assign to each of them a fi-
nal score that measures the similarity between the candidate
and t. In doing so, the similarity estimator tries to exploit
additional types of information to compute a more accurate
score for each match. To this end, it employs multiple evalu-
ator modules, each of which exploits a specific type of infor-
mation to suggest a score, and then combines the suggested
scores into a final one. It is important to note that such an
exhaustive evaluation would be prohibitively expensive to
perform during the search phase.
Prior work suggests many evaluator modules, which ex-

ploit learning [9, 1, 11, 15], statistical [13], linguistic and
heuristic [8, 3, 21] techniques. The modules can be employed
at this stage of iMAP. Currently, iMAP uses two modules:

• a name-based evaluator, which computes a score for a
match candidate based on the similarity of its name to
the name of the target attribute. The name of a match
candidate is the concatenation of the names of the at-
tributes appearing in that candidate, together with the
names of the tables that contain the attributes.

• a Naive Bayes evaluator, which is the Naive Bayes classi-
fier described earlier in Example 3.2.

These evaluators are similar to corresponding learner mod-
ules in [9], and are described in detail in [6].

3.3 The Match Selector
Once the similarity estimator has revised the score of the

suggested matches of all target attributes, conceivably, the
best global match assignment could simply be the one where
each target attribute is assigned the match with the highest
score. However, this match assignment may not be accept-
able in the sense that it may violate certain domain integrity
constraints. For example, it may map two source attributes
to target attribute list-price, thus violating the constraint
that a house has only one price.
The task of the match selector is to search for the best

global match assignment that satisfies a given set of domain
constraints. The match selector is similar in spirit to the
constraint handler module described in [9], but extended to
handle complex matches in addition to 1-1 matches (see [6]).
A particularly interesting extension that we have devel-

oped allows the match selector to “clean up” complex matches
using domain constraints. For example, in our experiments
the overlap numeric searcher (described in the next section)
frequently suggested matches such as lot-area =
(lot-sq-feet/43560) + 1.3e-15 ∗ baths. If the selector knows

that source attribute baths maps to target attribute num-
baths, and that lot area and the number of baths are seman-
tically unrelated and hence typically do not appear in the
same formula, then it can drop the terms involving baths
(provided that the value of the term is very small), thus
transforming the above match into the correct one.

4. EXPLOITING DOMAIN KNOWLEDGE
As we experimented with iMAP, we soon realized that

exploiting domain knowledge can greatly improve the accu-
racy of complex matching. Indeed, past work (e.g., [9, 8,
16]) has noted the benefits of exploiting such knowledge in
the context of 1-1 matching. There, the knowledge helps in
evaluating matches and pruning unlikely matches. In the
context of complex matching, however, exploiting domain
knowledge brings even greater benefits, because it can also
help to direct the search process and prune meaningless can-
didates early, avoiding costly evaluation. We now describe
the use of domain knowledge in iMAP.
iMAP innovates in its use of domain knowledge in two

ways. The first is the types of knowledge that it uses. Prior
work on 1-1 matching has exploited domain constraints and
past matches [9, 8, 16]. Here, in addition to these types
of knowledge, iMAP also exploits overlap data between the
databases and external data in the domain. Second, iMAP
innovates in how to use domain knowledge. Specifically,
iMAP uses domain knowledge at all levels of the system. In
fact, (in the same spirit as pushing selections in query exe-
cution plans) we try to push the relevant domain knowledge
to as early a point as possible in the match generation.
We now illustrate the above points by discussing how we

exploit each particular type of domain knowledge.

Domain Constraints: Such constraints are either present
in the schemas, or are provided by the domain experts or
the user. In Section 6 we show that even with just a few
constraints iMAP can greatly improve matching accuracy.
Given a particular domain constraint, iMAP decides which

system component should exploit it, trying to use it as early
as possible. There are three cases:

• The constraint implies that two attributes of schema S are
unrelated, such as “name and beds are unrelated”, mean-
ing that they cannot appear in the same match formula.
Any searcher can use this constraint to never generate any
match candidate that combines name and beds.

• The constraint involves a single attribute of T , such as
“the average value of num-rooms does not exceed 10”. Any
searcher can use this constraint to evaluate a match can-
didate for target attribute num-rooms. However, if the
constraint is too expensive to be checked (e.g., when the
searcher evaluates a very large number of match candi-
dates), then it may have to be moved to the similarity
estimator level, where the number of match candidates
that it must be verified on will be far less than that at the
searcher level.

• The constraint relates multiple attributes of T , such as
“lot-area and num-baths are unrelated”. This constraint
can only be exploited at the match selector level, as de-
scribed earlier in Section 3.3, because the previous levels
consider each attribute of schema T in isolation.

Past Complex Matches: When mapping tasks are repet-
itive or done in closely related domains, we may often have

examples of past matches. For example, in data integra-
tion settings, we map many sources into a single mediated
schema [14, 9]. In enterprise data management we often
find that we are mapping the same or similar schemas (and
different versions thereof) repeatedly. iMAP currently ex-
tracts the expression template of these matches and uses
those templates to guide the search process in the numeric
searcher described in Section 3.1.2. For example, given the
past match price = pr * (1 + 0.06), it will extract the tem-
plate VARIABLE * (1 + CONSTANT) and asks the numeric
searcher to look for matches of that template.

Overlap Data: There are many practical mapping scenar-
ios where the source and target databases share some data
(e.g., when two sources describe the same company’s data or
when two databases are views created from the same under-
lying database). Clearly, in such “overlap” cases the shared
data can provide valuable information for the mapping pro-
cess (as shown in [23]). Hence, we developed searchers to ex-
ploit such data. In what follows, we describe how searchers
can incorporate overlap data.

Overlap Text Searcher: In the “overlap” case we can use
this module instead of the text searcher in Example 3.2, to
obtain improved matching accuracy. The module applies
the text searcher to obtain an initial set of mappings. It
then uses the overlap data to re-evaluate the mappings: the
new score of each mapping is the fraction of the overlap
data entities for which the mapping is correct. For exam-
ple, suppose we know that databases S and T share a house
listing (“Atlanta, GA,...”). Then, when re-evaluated, map-
ping agent-address = location receives score 0 because it is
not correct for the shared house listing, whereas mapping
agent-address = concat(city, state) receives score 1.

Overlap Numeric Searcher: In the “overlap” cases, this sear-
cher can be used instead of the numeric searcher of Sec-
tion 3.1.2. For each numeric attribute t of schema T , this
module finds the best arithmetic expression matches over
numeric attributes of schema S. Suppose that the overlap
data contains ten entities (e.g., house listings) and that the
numeric attributes of S are s1, s2, s3. Then for each entity
the searcher assembles a numeric tuple that consists of the
values of t and s1, s2, s3 for that entity. Next, it applies an
equation discovery system to the ten assembled numeric tu-
ples in order to find the best arithmetic-expression match
for attribute t. We use the recently developed LAGRAMGE
equation discovery system [27]. This system uses a context-
free grammar to define the search space of matches. As a
result, this searcher can incorporate domain knowledge on
numeric relationships in order to efficiently find the right
numeric match. LAGRAMGE conducts a beam search in the
space of arithmetic matches. It uses the numeric tuples and
the sum-of-squared-errors formula (commonly used in equa-
tion discovery) to compute match scores.

Overlap Category & Schema Mismatch Searchers: Similar
to the overlap text searcher, these searchers use their non-
overlap counterparts to find an initial set of matches, then
re-evaluate the matches using the overlap data.

External Data: Finally, another source of domain data
is in sources external to the databases being matched. In
principle, we can use external sources to mine properties
of attributes (and their data values) that may be useful in
schema matching. In fact, the mining can be completely de-
coupled from the matching system. In iMAP, given a target

attribute (e.g., agent-name) and a feature that can be po-
tentially useful in schema matching (e.g., number of distinct
agent names), we mine external data (currently supplied by
the domain experts) to learn a value distribution of the fea-
ture, then apply the learned distribution in evaluating match
candidates for that target attribute.

5. GENERATING EXPLANATIONS
As described earlier, the goal of a schema mapping sys-

tem is to provide a design environment where a human user
can quickly generate a mapping between a pair of schemas.
In doing so, the user will inspect the matches predicted by
the system, modify them manually and provide the system
feedback. As mapping systems rely on more complex algo-
rithms, there is a need for the system to explain to the user
the nature of the predictions being made. Explanations can
greatly help users gain insights into the matching process
and take actions to converge on the correct matches quickly.
In iMAP we offer a novel explanation facility. We begin

with an example that illustrates a possible scenario.

Example 5.1. Suppose in matching real-estate schemas,
for attribute list-price iMAP produces the ranked matches in
decreasing order of confidence score:

list-price = price
list-price = price * (1 + monthly-fee-rate)

The user is uncertain which of the two is the correct
match, and hence asks iMAP to explain the above ranking.
iMAP can explain as follows. Both matches were gen-

erated by the overlap numeric searcher, and that searcher
ranked the match list-price = price * (1 + monthly-fee-rate)
higher than list-price = price. The similarity estimator also
agreed on that ranking.
However, the match selector cannot rank list-price = price

* (1 + monthly-fee-rate) first because (a) it has accepted the
match month-posted = monthly-fee-rate and (b) there is a
domain constraint which states that the matches for month-
posted and price do not share common attributes. Hence,
the match selector must accept the match list-price = price,
and in essence flipped the ranking between the two matches.
When asked to explain the matchmonth-posted = monthly-

fee-rate, which seems incorrect to the user, iMAP explains
that the match is created because the date searcher has ex-
amined the data instances of source attribute monthly-fee-
rate and concludes that it is a type of date.
At this point, the user examines monthly-fee-rate and tells

iMAP that it is definitely not a type of date. iMAP responds
by retracting the assumption made by the date searcher,
and revising its match candidate ranking, to produce list-
price = price * (1 + monthly-fee-rate) as the top match. The
user accepts this match with more confidence now that an
explanation for the ranking exists. 2

We now explain the explanation facility in iMAP. We be-
gin by describing the kinds of questions a user may want to
ask of an explanation facility.

5.1 Types of User Questions
In principle, there are many question variations that a user

may want to ask a matching system. In iMAP, we identified
three main questions that are at the core of the rest:

list-price=price
list-price=price(1 + monthly-fee-rate)

list-price = price(1+ monthly-fee-rate)
score = 0.76

month-posted
is unrelated to

list-price

month-posted = monthly-fee-rate
score = 0.67

Match selector

month-posted = monthly-fee-rate
score = 0.79

month-posted = monthly-fee-rate
score = 0.55

Combining module

month-posted = monthly-fee-rate
Naïve Bayes evaluatorName based evaluator

monthly-fee-rate is a monthmonth-posted is a month.

Date searcher

PreprocessorPreprocessor

If data in a column is in (1..12) it’s a month

Assumption Assumption

Source ColumnConstraintTarget Column

Match List

Constraint

Candidate

Candidate

Candidate

Candidate

Candidate Candidate
list-price = price

score = 0.63

month-posted monthly-fee-rate
3
2
…

9
10
…

Figure 3: A sample fragment of the dependency graph as
generated by iMAP.

1. Explain existing match: “why a certain match X
is present in the output of iMAP?”. An example is asking
why the match month-posted = monthly-fee-rate is present
in Example 5.1. In essence, the user wants to know how it
was created and survived the evaluation and selection pro-
cess, which components are most instrumental in getting
the match to where it is in the output, and what important
assumptions were made while generating it.

2. Explain absent match: Conversely, “why a certain
match Y is not present in the iMAP’s output”.

3. Explain match ranking: “why match X is ranked
higher than match Y in the output of iMAP”.
In fact, it is interesting to note that as we were developing

iMAP and experimenting with it, we were asking the same
questions.
One of our important design considerations is that we

can ask the above questions from each component of iMAP
(searchers, evaluator modules in the similarity estimator,
and match selector). This greatly simplifies the construction
of the explanation module, since questions can be reformu-
lated recursively to the underlying components.

5.2 The Explanation Module
The key data structure underlying the explanation mod-

ule of iMAP is the dependency graph, which is constructed
during the matching process. The dependency graph records
the flow of matches, data, and assumptions into and out of
system components. The nodes of the graph are: schema
attributes, assumptions made by system components, can-
didate matches, and pieces of domain knowledge such as
domain constraints.
Two nodes in the graph are connected by a directed edge

if one of them is the successor of the other in the decision
process. The label of the edge is the system component that
was responsible for the decision.
Figure 3 shows a dependency graph fragment that records

the creation and flow of match month-posted = monthly-
fee-rate. A preprocessor finds that both month-posted and
monthly-fee-rate have values between 1 and 12 and hence
makes the assumptions that they represent months. The
date searcher consumes these assumptions and generates
month-posted = monthly-fee-rate as a match candidate.
This candidate is then scored by the name-based evaluator

and the Naive Bayes evaluator. The scores are combined
by a combination module to produce a single score. The

match selector acts upon the several mapping candidates
generated to produce the final list of mappings. Here for
the target attribute list-price the selector reduces the rank
of the mapping candidate price * (1+ monthly-fee-rate) since
it discovers that monthly-fee-rate maps to month-posted.
The dependency graph is constructed as the system is run.

Each of the components contributes nodes and edges during
the execution of the system. At the end of the execution
when the system has generated the matches the dependency
graph is already in place.

Generating Explanations: We now briefly describe how
iMAP generates explanations for the three types of prede-
fined queries that have been described in Section 5.1. In
each case, the system synthesizes an explanation in English
for the user.
To answer the question “why match X is present”, iMAP

selects the slice of dependency graph that records the cre-
ation and processing of match X. For example, the slice for
month-posted = monthly-fee-rate is the portion of the graph
where the nodes participated in the process of creating that
match.
To answer the question “why match X is ranked higher

than match Y”, the system compares the two slices of the
dependency graph corresponding to X and Y. In comparing
the slices, it focuses on places where the ranking is flipped
and asks the relevant system component to explain why that
component flips the ranking.
To answer the question “why match X is not present”,

iMAP first examines the dependency graph to see if match
X has been generated at all. If it has, then iMAP finds out
where it has been eliminated, and asks the involved system
component to explain why it eliminated X.
If match X has not been generated, then iMAP asks the

searchers to see if any of them is capable of generating X.
Suppose a searcher S indicates that it can generate X (but
did not), then iMAP asks S for an explanation of why it did
not generate X. These explanations are processed and then
presented to the user. A more elaborate description of how
iMAP generates explanations can be found in [6].

Performance: Since each searcher produces only k top
matches where k is the width of a beam search and hence
is small, and since matching in iMAP goes through only
three stages (searchers, similarity estimator, selector), it is
easy to show that the dependency graph is relatively small.
Hence, maintaining a dependency graph and traversing it
to generate explanations incur negligible time and storage
cost. We must exercise care, however, to make sure that each
iMAP component can generate its explanations efficiently, in
order to efficiently obtain the global explanations.

6. EMPIRICAL EVALUATION
We have evaluated iMAP on four real-world domains. Our

goals were to evaluate the matching accuracy of iMAP, to
measure the relative contributions of domain knowledge, and
to examine the usefulness of match explanations.

Domains and Data Sources: Table 2 describes the
four real-world domains. Real Estate lists houses for sale.
Inventory describes product inventories of a grocery busi-
ness. Cricket describes cricket players, and Financial Wiz-
ard stores financial data of clients.
Obtaining data for schema matching experiments remains

a challenge (though several benchmarks are currently being

10505314822414
Financial

wizard

532262202242383Cricket

003044112738442Inventory

01303512719322Real estate

Date
Schema

Mismatch
CategoryUnitNumericTextTotal# attributes# attributes# tables

of complex matches# of 1-1
matches

Target
schema

Source
schemaDomains

Table 2: Real-world domains for our experiments.

considered or built). In our work, we began by obtaining
two independently developed databases for the Cricket do-
main (from cricinfo.com and cricketbase.com in December
2002), and used them as the source and target databases.
For the other three domains, we obtained one real-world

database for each domain. The databases came from the
Internet, the sample databases of Microsoft Access 97, the
students in a large undergraduate database class, and from
volunteers (who spent time populating the Financial Wizard
database). The numbers of tables and attributes in each
database are shown under the headline “Source Schema”
of Table 2. Next, for each database S we asked volunteers
to create a target schema T . We asked the volunteers to
examine and create complex matches between T and S.
The target schemas T are described in Table 2. The ta-

ble shows the number of attributes of T (under “Target
Schema”), the number of 1-1 matches (between T and S),
and then the number of complex matches, broken down into
different types. Below are a few examples of such matches:

name = CONCAT(first_name, last_name)
test_economy_rate = 6 * t_runs_given / t_balls
ODI_overs = 0.1667 * o_balls
Marital_status = f(person_marital_stats)

Single=f(SIN) Married=f(MAR) Divorced=f(DIV)
fireplace = 1 if house_description contains fireplace
ODI_debut = (o_debut_day-o_debut_month-o_debut_year)

In the final step, we populated the schemas with data,
using the database obtained for each domain. As discussed
in Section 4, both the “overlap” and “disjoint” scenarios
where the source and target databases do and do not share
data occur frequently in practice. Hence we created both
scenarios for experimental purposes. We took care to ensure
that the source and target databases share some data in the
“overlap” scenarios, but do not share any in the “disjoint”
ones.

Data Processing: We performed only trivial data clean-
ing operations such as removing “unknown” and “unk”.
Next, we specified domain constraints on the schemas. We
specified only the most obvious constraints, such as “player-
first-name does not appear in the same match as t-highest-
score”, and “zip-code does not appear in the same match as
account-number”.

Experiments: The above process in effect generated eight
experimental domains, since for each application (e.g., real
estate, inventory, etc.) we have two domains, with disjoint
and overlap data, respectively. We run experiments with
several configurations of iMAP on all eight domains, as de-
scribed in the next subsection.

Performance Measure: iMAP outputs for each target
attribute a ranked list of best matches. We define the top-
1 matching accuracy to be the fraction of target attributes
whose top-1 match candidates are correct. The top-3 match-

Figure 4: Top-1 overall matching accuracy.

ing accuracy is then the fraction of target attributes whose
top three candidates include the correct match. The top-3
accuracy is interesting because an interactive matching sys-
tem typically proposes a ranked list of matches to a designer,
and therefore the correct match needs not be the top 1.
Several prior works [8, 7] employ the notion of precision

and recall to evaluate matching algorithms. Since iMAP
finds matches for all target attributes, its precision and re-
call can be shown to be the same, and to be equivalent to
the notion of matching accuracy used above.

6.1 Overall and 1-1 Matching Accuracy
Figure 4 shows the overall top-1 matching accuracy (that

is, the fraction of all target attributes whose best match can-
didate is correct). Part (a) of the figure shows the accuracy
for the four overlap domains. For each domain, the four
bars from left to right represent respectively the accuracy of
the iMAP configuration which exploits (a) no domain knowl-
edge (i.e., the default system), (b) domain constraints, (c)
overlap data, and (d) both domain constraints and overlap
data.
The results show that iMAP achieves high matching ac-

curacy 68-92% over all four overlap domains. The default
iMAP achieves accuracy 58-74%. Exploiting domain con-
straints or overlap data further improves accuracy by 12-
23%, and exploiting both domain constraints and overlap
data further improves accuracy by as much as 11%.
Part (b) of Figure 4 shows the accuracy for the four dis-

joint domains. For each domain, the two bars from left
to right represent respectively the accuracy of the default
iMAP configuration and the one which exploits domain con-
straints. (Note that there is no overlap data and hence no
bars representing the accuracy over exploiting overlap data.)
Here iMAP achieves accuracy rates 62-79%, slightly lower

than those in the overlap domains. The default iMAP achieves
accuracy 55-76%, and exploiting domain constraints improves
accuracy by 9%.
In summary, Figure 4 shows that iMAP obtained high

overall top-1 accuracy of 62-92% across domains. Its top-3
accuracy (not shown in the figure) is even higher, ranging
from 64-95%. Finally, iMAP also achieves top-1 and top-
3 accuracy of 77-100% over 1-1 matches (not shown in the
figure). These results are competitive with those reported
by existing 1-1 matching systems (e.g., [9, 8, 19, 17, 1]).

6.2 Complex Matching Accuracy
We now examine how well iMAP does in finding complex

matches. Figure 5 shows matching accuracy in a format
similar to that of Figure 4, but only for complex matches.
Part (a) of Figure 5 shows the top-1 accuracy 50-86% for

the four overlap domains. The default iMAP achieves accu-
racy 33-55% on all domains, except for 9% on Inventory. At
the end of this subsection we analyze the reasons that pre-

Figure 5: Top-1 (top row) and top-3 (bottom row) matching
accuracy for complex matches.

Figure 6: Top-1 (top row) and top-3 matching (bottom row)
accuracy for partial complex matches.

vent iMAP from correctly identifying the remaining complex
matches, in general and also in the Inventory domain.
As expected, exploiting domain constraints further im-

proves accuracy up to 17%. Exploiting overlap data improve
accuracy over the default iMAP by up to 46%, and exploiting
both domain constraints and overlap data improves accuracy
by 10-64%.
In the four “disjoint” domains (Figure 5.b), the top-1 ac-

curacy is lower, ranging 27-58%. The main reason for lower
accuracy is that there is no overlap data to rely on. Hence
accuracy for text matches slightly decreases and most nu-
meric matches cannot be predicted. However, accuracy for
categorical and schema mismatch matches remains high.
Figure 5.c-d shows that the top-3 accuracy over both over-

lap and disjoint domains are 43-92%, improving up to 42%
over the top-1 accuracy of Figure 5.a-b. Thus, a significant
number of correct complex matches are in the top three
matches (per target attribute) produced by iMAP.
To examine exploiting past matches, we asked students

in a database class to create database schemas in the same
domain as Financial Wizard databases, then asked them to
create 15 complex matches between the schemas. Next, we
applied iMAP to exploit these 15 matches, as explained in
Section 4. iMAP was able to find complex numeric matches
and improve the top-1 matching accuracy on the disjoint

Financial Wizard domain by 28%.

Discussion: There are several reasons that prevent the
current iMAP system from identifying all complex matches.
First, in many cases iMAP could not find “smaller com-
ponents” of a complex match. In our example, when the
correct match is agent-address = concat(apt-number, street-
name,city,state), iMAP may return only the complex map-
ping concat(street-name,city,state). This is because the cur-
rent learning and statistical techniques employed by iMAP
are not sophisticated enough to detect such subtle difference
of just a single number (apt-number). We believe adding for-
mat learning techniques may help in many such cases.
Second, the reverse problem also holds: in many cases

iMAP added “small noise components” to a complex match.
For example, in the Inventory domain, iMAP added agent-id
(a single digit number) to many complex matches related
to agents, thus reducing accuracy significantly. As we have
shown earlier, this problem can be addressed by more ag-
gressive match cleaning and enforcing of domain constraints.
This underscores the importance of automatically learning
domain constraints for complex matching.
Third, if the databases are disjoint, it was very difficult to

discover meaningful numeric relationships. This is a funda-
mental problem that underlies any system that finds com-
plex matches. Here, we have proposed a preliminary solution
of exploiting past numeric matches and showed its promise.
We believe more work is needed on this topic in particu-
lar, and on the issue of constructing and re-using domain
knowledge in general.
Finally, many complex matches are not in the top one, but

somewhere in the top three (and more general, in the top
ten) of the matches predicted by iMAP. Given the fact that
finding a complex match requires gluing together so many
different components, perhaps this is inevitable and inherent
to any complex matching solution. This underscores the
importance of generating explanations and building effective
mapping design environment, so that humans can examine
the top ranked matches to create mappings.

Finding Partial Complex Matches: So far we have
considered only cases where iMAP produces the exact com-
plex matches, that is, finding the exact attributes, expres-
sion, and relationship. We note, however, that even when
iMAP finds only partial complex matches, these matches
would still be useful, because the user can elaborate on them
to find the exact matches.
Hence, we examine how well iMAP finds these partial com-

plex matches. The first type of such partial matches finds
only the right attributes. Figure 6 shows the accuracy for
this type. The top-1 accuracy is 73-86% over overlap do-
mains and 36-75% over disjoint domains. The top-3 accu-
racy is high, ranging from 82 to 100% over overlap domains
and 70-83% over disjoint domains. These results suggest
that in a significant number of cases iMAP finds the correct
set of attributes in a complex match.

Finding Value Correspondences: Even when iMAP
does not find the correct match, in many cases it would
still be easy for user to examine the ranked list of candidate
matches and find the correct expression. For example, in
the Real Estate domain, iMAP generated the following top
three matches for attribute num-rooms:

2 * dining-rooms + bed-rooms + bath-rooms
bath-rooms + bed-rooms + 2 * dining-rooms
bath-rooms + 2 * living-rooms + bed-rooms

(b) Overlap inventory(a) Disjoint real estate

0

20

40

60

80

100

0 100 200 300

Number of data listings per source

M
at

ch
in

g
 a

cc
u

ra
cy

 (
%

)

0

20

40

60

80

100

0 100 200 300

Number of data listings per source

M
at

ch
in

g
 a

cc
u

ra
cy

 (
%

)

Overall accuracy for top 1 Overall accuracy for top 3
Complex matching accuracy for top 1 Complex matching accuracy for top 3

Figure 7: Performance sensitivity

For this attribute, the overlap numeric matcher converged
before generating the correct complex match having all four
terms. Nevertheless, a user can easily elaborate on the above
top three incorrect matches to arrive at the correct expres-
sion.
Finding the correct expression is useful because such ex-

pressions, known as value correspondences, can be fed di-
rectly into a schema refinement tool such as Clio [29], to
produce the final correct mapping. Hence, we are interested
in knowing how well iMAP does in finding value correspon-
dences. We asked several volunteers to examine the top
three of iMAP’s results, on all eight domains, and count the
cases where it would be fairly obvious from the top three
matches that what the correct value correspondences should
be. iMAP found 75-93% of correct value correspondences
over the overlap domains and 57-75% over the disjoint do-
mains. The results, while somewhat subjective, due to the
judgment of the volunteers, do suggest that iMAP can find
value correspondences in a large number of cases.

Performance Sensitivity: Figure 7.a-b shows the varia-
tion of the top-1 and top-3 matching accuracy as a function
of the number of data tuples available from each source,
for the “disjoint” Real Estate and “overlap” Inventory do-
mains, respectively. The results show that on these domains
the performance of iMAP stabilizes fairly quickly and almost
levels off after 100 data tuples. Experiments with other do-
mains show the same phenomenon. iMAP thus appears to
be robust, and can work well with relatively little data. One
of the reasons this observation is important is that we can
reduce the running time of iMAP if we run it on fewer ex-
amples.

Efficiency: Our unoptimized iMAP version took 5-20 min-
utes on the experimental domains. (iMAP spent most of the
time searching for promising match candidates.) We found
that by applying a variety of techniques, including prelim-
inary preprocessing to break the schemas into independent
chunks on each of which iMAP can work in isolation, we
can significantly reduce iMAP’s runtime. In the long term,
scaling up matching systems to very large schemas is an im-
portant and interesting topic that we are planning to pursue.

6.3 Explaining Match Predictions
We now provide anecdotal evidence that iMAP can gen-

erate meaningful explanations that provide insight into the
working of the system and that are actionable to the user.
We examined the matches produced by iMAP in various

experimental domains, and asked for explanations in many
cases of incorrect or suspicious matches. Figures 8 and 9
show the explanations in two such cases, slightly edited for
space reasons.
Figure 8 shows the explanation for question “why pname

= last-name ranks higher than concat(first-name,last-name)”

USER: Why pname = last-name ranks higher than concat(first-name,last-name)?

iMAP:
(1) Searcher Level:
text searcher generated last-name
text searcher generated concat(first-name,last-name)
text searcher ranked concat(first-name,last-name) higher by 0.102

(2) Similarity Estimator Level:
Name-based evaluator ranked last-name higher by 0.0419
Naive Bayes evaluator ranked concat(first-name,last-name) higher by 0.01
Final score for last-name: 0.434
Final score for concat(first-name,last-name): 0.420

(3) Match Selector Level:
Match selector did not modify two candidates

(4) Greatest influence on top five candidates for pname: Name-based evaluator

Figure 8: Generated explanation for pname vs. concat(first-
name,last-name).

USER: Why num- rooms = bath- rooms + bed- rooms + dining- rooms + living- rooms
does not appear?

iMAP:
(1) Overlap numeric matcher CAN generate

bath- rooms + bed- rooms + dining- rooms + living- rooms for num- rooms.

(2) Overlap numeric matcher DID NOT generate it.

(3) A reason: the match has length of 4 terms.
overlap numeric searcher has considered only candidates of length up to 3 terms.

(4) Characteristics of the search space for num- rooms:
a. Number of considered numeric attributes: 7
b. Considered numeric attributes: building- area lot- dimension1 lot- dimension2

bath- rooms bed- rooms dining- rooms living- rooms
c. Used successor functions: Addition Multiplication
d. Max. number of terms: 3
e. Max. number of elements in a term: 3

Figure 9: Generated explanation for numrooms.

in the Cricket domain. The figure shows that at the searcher
level concat(first-name,last-name) was ranked higher than
last-name. It also clearly shows that things went wrong at
the similarity estimator level. Here, the Naive Bayes eval-
uator still ranked matches correctly, but the name-based
evaluator flipped the ranking. This flipping was clearly re-
sponsible for the final ranking, since the explanation shows
that the match selector did not modify the ranking that
came from the similarity estimator.
The last line of the explanation also confirmed the above

conclusion, since it states that the name-based evaluator has
the greatest influence on the top five match candidates for
pname. The influence of an evaluator is computed by (a)
simulating the matching process on the dependency graph
without that evaluator, and (b) compute the difference be-
tween the new ranking of candidate matches and the original
ranking. The difference in ranking is currently computed as
∑

i
|ni −oi|, where ni and oi are the positions of match can-

didate i in the new ranking and old ranking, respectively.
Thus, the main reason for the incorrect ranking for pname

appears to be that the name-based evaluator has too much
influence. This explanation would allow the user to fine tune
the system, possibly by reducing the weight of the name-
based evaluator (in the score combination step)
In the second example in Figure 9, when asked why a

particular match for num-rooms (in the Real Estate domain)
does not appear in the output, iMAP did not find that match
on the dependency graph, so it asked the searchers. The
overlap numeric searcher explained that it could, but did
not generate the match because the match has length four
and the searcher converged before generating candidates of
that length.
The above explanation suggests that the convergence cri-

terion of the overlap numeric searcher was set too loosely.
This provides grounds for the future actions of the user.

7. RELATED WORK
To the best of our knowledge, the only other work on com-

plex matching is [28]. This work considers finding complex
matches between two schemas by first mapping them into
a domain ontology, then constructing the matches based on
the relationships inherent in that ontology. Such ontology-
based matching would work very well in certain contexts
(e.g., see the date searcher in Section 3.1.2) and can be added
to iMAP as additional searchers.
Many works have addressed the schema matching problem

(e.g., [21, 2, 22, 9, 17, 19, 15, 3, 1, 16, 13], see also [24] for a
survey of other works in databases and AI). Among these,
iMAP is most related to the current body of work on build-
ing multi-matcher systems [9, 8, 11], but builds upon these
works to find both 1-1 and complex matches. In particular,
iMAP innovates significantly by adding the searchers to find
complex matches, and showing that the multi-matcher ar-
chitecture can indeed be extended to handle complex match-
ing. Further, iMAP considers the issue of exploiting domain
knowledge in more depth, and offers a novel explanation
capability.
As discussed earlier, the Clio system [29] has developed

a sophisticated set of user-interaction techniques to elabo-
rate on the matches to create SQL-style mappings. Our
work here is therefore complementary to Clio. Indeed, our
experience with iMAP suggests that semantic mappings can
best be created using a combination of iMAP-style automatic
techniques and Clio-style user interaction. We are currently
studying such combinations.

8. CONCLUSION
Semantic matches are key for enabling a wide variety

of data sharing and exchange scenarios. The vast major-
ity of the research on schema matching has focused on 1-1
matches. This paper described a solution to the problem
of finding complex matches, which are prevalent in practice.
The key challenge with complex matches is that the space
of possible matching candidates is possibly unbounded, and
evaluating each candidate is harder. iMAP uses two main
techniques to search the space effectively. First, it employs a
set of specialized searchers that explore meaningful parts of
the space. Second, it makes aggressive use of various types
of domain knowledge to guide the search and the evaluation
where possible. Keeping in spirit with recent works, the ar-
chitecture of iMAP is modular and extensible. New searchers
and new evaluation modules can be added easily. Finally,
iMAP offers a novel explanation facility that helps human
users interact with the system to generate mappings quickly.
Our experimental results show that iMAP achieves 43-92%
accuracy on several real-world domains, thus demonstrating
the promise of the approach.

9. REFERENCES
[1] J. Berlin and A. Motro. Database schema matching using

machine learning with feature selection. In Proc. of
CAiSE-2002.

[2] S. Castano and V. D. Antonellis. A schema analysis and
reconciliation tool environment. In Proc. of IDEAS-1999.

[3] C. Clifton, E. Housman, and A. Rosenthal. Experience with
a combined approach to attribute-matching across
heterogeneous databases. In Proc. of the IFIP Working
Conference on Data Semantics (DS-7), 1997.

[4] T. M. Cover and J. A. Thomas. Elements of Information
Theory. Wiley, New York, NY, 1991.

[5] T. Dasu, T. Johnson, S. Muthukrishnan, and
V. Shkapenyuk. Mining database structure; or, how to
build a data quality browser. In Proc. of SIGMOD-2002.

[6] R. Dhamankar. Semi-automated discovery of matches
between schemas, ontologies, and data fragments of
disparate data sources. M.S. Thesis, Dept. of CS, Univ. of
Illinois. To appear.

[7] H. Do, S. Melnik, and E. Rahm. Comparison of schema
matching evaluations. In Proceedings of the 2nd Int.
Workshop on Web Databases 2002.

[8] H. Do and E. Rahm. Coma: A system for flexible
combination of schema matching approaches. In Proc. of
VLDB-2002.

[9] A. Doan, P. Domingos, and A. Halevy. Reconciling schemas
of disparate data sources: A machine learning approach. In
Proc. of SIGMOD-2001.

[10] R. O. Duda and P. E. Hart. Pattern Classification and
Scene Analysis. Wiley, New York, NY, 1973.

[11] D. Embley, D. Jackman, and L. Xu. Multifaceted
exploitation of metadata for attribute match discovery in
information integration. In Proc. of the WIIW-01, 2001.

[12] B. He and K. C.-C. Chang. Statistical schema matching
across web query interfaces. In Proc. of SIGMOD-2003.

[13] J. Kang and J. Naughton. On schema matching with
opaque column names and data values. In Proc. of
SIGMOD-2003.

[14] M. Lenzerini. Data integration; a theoretical perspective. In
Proc. of PODS-2002.

[15] W. Li and C. Clifton. SEMINT: A tool for identifying
attribute correspondence in heterogeneous databases using
neural networks. Data and Knowledge Engineering,
33:49–84, 2000.

[16] J. Madhavan, P. Bernstein, K. Chen, A. Halevy, and
P. Shenoy. Matching schemas by learning from a schema
corpus. In Proc. of the IJCAI-03 Workshop on Info.
Integration, 2003.

[17] J. Madhavan, P. Bernstein, and E. Rahm. Generic schema
matching with cupid. In Proc. of VLDB-2001.

[18] C. Manning and H. Schütze. Foundations of Statistical
Natural Language Processing. The MIT Press, Cambridge,
US, 1999.

[19] S. Melnik, H. Molina-Garcia, and E. Rahm. Similarity
flooding: a versatile graph matching algorithm. In Proc. of
ICDE-2002.

[20] R. Miller. Using schematically heterogeneous structures. In
Proc. of SIGMOD-1998.

[21] T. Milo and S. Zohar. Using schema matching to simplify
heterogeneous data translation. In Proc. of VLDB-1998.

[22] P. Mitra, G. Wiederhold, and J. Jannink. Semi-automatic
integration of knowledge sources. In Proc. of Fusion-1999.

[23] M. Perkowitz and O. Etzioni. Category translation:
Learning to understand information on the internet. In
Proc. of Int. Conf. on AI (IJCAI), 1995.

[24] E. Rahm and P. Bernstein. On matching schemas
automatically. VLDB Journal, 10(4), 2001.

[25] S. Russell and P. Norvig. Artificial Intelligence: A Modern
Approach. Prentice Hall, 1995.

[26] L. Seligman, A. Rosenthal, P. Lehner, and A. Smith. Data
integration: Where does the time go? IEEE Data
Engineering Bulletin, 2002.

[27] L. Todorovski and S. Dzeroski. Declarative bias in equation
discovery. In Proc. of the Int. Conf. on Machine Learning
(ICML), 1997.

[28] L. Xu and D. Embley. Using domain ontologies to discover
direct and indirect matches for schema elements. In Proc.
of the Semantic Integration Workshop at ISWC-2003.

[29] L. Yan, R. Miller, L. Haas, and R. Fagin. Data driven
understanding and refinement of schema mappings. In
Proc. of SIGMOD-2001.

