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ABSTRACT
Ontologies play a prominent role on the Semantic Web.
They make possible the widespread publication of machine
understandable data, opening myriad opportunities for au-
tomated information processing. However, because of the
Semantic Web’s distributed nature, data on it will inevitably
come from many different ontologies. Information process-
ing across ontologies is not possible without knowing the
semantic mappings between their elements. Manually find-
ing such mappings is tedious, error-prone, and clearly not
possible at the Web scale. Hence, the development of tools
to assist in the ontology mapping process is crucial to the
success of the Semantic Web.

We describe GLUE, a system that employs machine learn-
ing techniques to find such mappings. Given two ontologies,
for each concept in one ontology GLUE finds the most sim-
ilar concept in the other ontology. We give well-founded
probabilistic definitions to several practical similarity mea-
sures, and show that GLUE can work with all of them. This
is in contrast to most existing approaches, which deal with
a single similarity measure. Another key feature of GLUE
is that it uses multiple learning strategies, each of which
exploits a different type of information either in the data
instances or in the taxonomic structure of the ontologies.
To further improve matching accuracy, we extend GLUE
to incorporate commonsense knowledge and domain con-
straints into the matching process. For this purpose, we
show that relaxation labeling, a well-known constraint opti-
mization technique used in computer vision and other fields,
can be adapted to work efficiently in our context. Our ap-
proach is thus distinguished in that it works with a variety
of well-defined similarity notions and that it efficiently in-
corporates multiple types of knowledge. We describe a set of
experiments on several real-world domains, and show that
GLUE proposes highly accurate semantic mappings.
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1. INTRODUCTION
The current World-Wide Web has well over 1.5 billion

pages [3], but the vast majority of them are in human-
readable format only (e.g., HTML). As a consequence soft-
ware agents (softbots) cannot understand and process this
information, and much of the potential of the Web has so
far remained untapped.

In response, researchers have created the vision of the
Semantic Web [6], where data has structure and ontolo-
gies describe the semantics of the data. Ontologies allow
users to organize information into taxonomies of concepts,
each with their attributes, and describe relationships be-
tween concepts. When data is marked up using ontologies,
softbots can better understand the semantics and therefore
more intelligently locate and integrate data for a wide vari-
ety of tasks. The following example illustrates the vision of
the Semantic Web.

Example 1.1. Suppose you want to find out more about
someone you met at a conference. You know that his last
name is Cook, and that he teaches Computer Science at a
nearby university, but you do not know which one. You also
know that he just moved to the US from Australia, where
he had been an associate professor at his alma mater.

On the World-Wide Web of today you will have trouble
finding this person. The above information is not contained
within a single Web page, thus making keyword search inef-
fective. On the Semantic Web, however, you should be able
to quickly find the answers. A marked-up directory service
makes it easy for your personal softbot to find nearby Com-
puter Science departments. These departments have marked
up data using some ontology such as the one in Figure 1.a.
Here the data is organized into a taxonomy that includes
courses, people, and professors. Professors have attributes
such as name, degree, and degree-granting institution. Such
marked-up data makes it easy for your softbot to find a pro-
fessor with the last name Cook. Then by examining the at-
tribute “granting institution”, the softbot quickly finds the
alma mater CS department in Australia. Here, the softbot
learns that the data has been marked up using an ontol-
ogy specific to Australian universities, such as the one in
Figure 1.b, and that there are many entities named Cook.
However, knowing that “associate professor” is equivalent to
“senior lecturer”, the bot can select the right subtree in the



departmental taxonomy, and zoom in on the old homepage
of your conference acquaintance. 2

The Semantic Web thus offers a compelling vision, but it
also raises many difficult challenges. Researchers have been
actively working on these challenges, focusing on fleshing out
the basic architecture, developing expressive and efficient
ontology languages, building techniques for efficient marking
up of data, and learning ontologies (e.g., [15, 8, 30, 23, 4]).

A key challenge in building the Semantic Web, one that
has received relatively little attention, is finding semantic
mappings among the ontologies. Given the de-centralized
nature of the development of the Semantic Web, there will
be an explosion in the number of ontologies. Many of these
ontologies will describe similar domains, but using different
terminologies, and others will have overlapping domains. To
integrate data from disparate ontologies, we must know the
semantic correspondences between their elements [6, 35].
For example, in the conference-acquaintance scenario de-
scribed earlier, in order to find the right person, your softbot
must know that “associate professor” in the US corresponds
to “senior lecturer” in Australia. Thus, the semantic corre-
spondences are in effect the “glue” that hold the ontologies
together into a “web of semantics”. Without them, the Se-
mantic Web is akin to an electronic version of the Tower of
Babel. Unfortunately, manually specifying such correspon-
dences is time-consuming, error-prone [28], and clearly not
possible on the Web scale. Hence, the development of tools
to assist in ontology mapping is crucial to the success of the
Semantic Web [35].

In this paper we describe the GLUE system, which ap-
plies machine learning techniques to semi-automatically cre-
ate such semantic mappings. Since taxonomies are central
components of ontologies, we focus first on finding corre-
spondences among the taxonomies of two given ontologies:
for each concept node in one taxonomy, find the most similar
concept node in the other taxonomy.

The first issue we address in this realm is: what is the
meaning of similarity between two concepts? Clearly, many
different definitions of similarity are possible, each being ap-
propriate for certain situations. Our approach is based on
the observation that many practical measures of similarity
can be defined based solely on the joint probability distribu-
tion of the concepts involved. Hence, instead of committing
to a particular definition of similarity, GLUE calculates the
joint distribution of the concepts, and lets the application
use the joint distribution to compute any suitable similarity
measure. Specifically, for any two concepts A and B, we
compute P (A, B), P (A, B), P (A, B), and P (A, B), where a
term such as P (A, B) is the probability that an instance in
the domain belongs to concept A but not to concept B. An
application can then define similarity to be a suitable func-
tion of these four values. For example, a similarity measure
we use in this paper is P (A∩B)/P (A∪B), otherwise known
as the Jaccard coefficient [36].

The second challenge we address is that of computing the
joint distribution of any two given concepts A and B. Under
certain general assumptions (discussed in Section 4), a term
such as P (A, B) can be approximated as the fraction of in-
stances that belong to both A and B (in the data associated
with the taxonomies or, more generally, in the probability
distribution that generated it). Hence, the problem reduces
to deciding for each instance if it belongs to A ∩ B. How-
ever, the input to our problem includes instances of A and

instances of B in isolation. GLUE addresses this problem
using machine learning techniques as follows: it uses the in-
stances of A to learn a classifier for A, and then classifies
instances of B according to that classifier, and vice-versa.
Hence, we have a method for identifying instances of A∩B.

Applying machine learning to our context raises the ques-
tion of which learning algorithm to use and which types
of information to use in the learning process. Many differ-
ent types of information can contribute toward deciding the
membership of an instance: its name, value format, the word
frequencies in its value, and each of these is best utilized by
a different learning algorithm. GLUE uses a multi-strategy
learning approach [12]: we employ a set of learners, then
combine their predictions using a meta-learner. In previous
work [12] we have shown that multi-strategy learning is ef-
fective in the context of mapping between database schemas.

Finally, GLUE attempts to exploit available domain con-
straints and general heuristics in order to improve matching
accuracy. An example heuristic is the observation that two
nodes are likely to match if nodes in their neighborhood
also match. An example of a domain constraint is “if node
X matches Professor and node Y is an ancestor of X in
the taxonomy, then it is unlikely that Y matches Assistant-
Professor”. Such constraints occur frequently in practice,
and heuristics are commonly used when manually mapping
between ontologies. Previous works have exploited only one
form or the other of such knowledge and constraints, in re-
strictive settings [29, 26, 21, 25]. Here, we develop a unifying
approach to incorporate all such types of information. Our
approach is based on relaxation labeling, a powerful tech-
nique used extensively in the vision and image processing
community [16], and successfully adapted to solve matching
and classification problems in natural language processing
[31] and hypertext classification [10]. We show that relax-
ation labeling can be adapted efficiently to our context, and
that it can successfully handle a broad variety of heuristics
and domain constraints.

In the rest of the paper we describe the GLUE system and
the experiments we conducted to validate it. Specifically,
the paper makes the following contributions:

• We describe well-founded notions of semantic similar-
ity, based on the joint probability distribution of the
concepts involved. Such notions make our approach
applicable to a broad range of ontology-matching prob-
lems that employ different similarity measures.

• We describe the use of multi-strategy learning for find-
ing the joint distribution, and thus the similarity value
of any concept pair in two given taxonomies. The
GLUE system, embodying our approach, utilizes many
different types of information to maximize matching
accuracy. Multi-strategy learning also makes our sys-
tem easily extensible to additional learners, as they
become available.

• We introduce relaxation labeling to the ontology-match-
ing context, and show that it can be adapted to effi-
ciently exploit a broad range of common knowledge
and domain constraints to further improve matching
accuracy.

• We describe a set of experiments on several real-world
domains to validate the effectiveness of GLUE. The
results show the utility of multi-strategy learning and
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Figure 1: Computer Science Department Ontologies

relaxation labeling, and that GLUE can work well with
different notions of similarity.

In the next section we define the ontology-matching prob-
lem. Section 3 discusses our approach to measuring similar-
ity, and Sections 4-5 describe the GLUE system. Section 6
presents our experiments. Section 7 reviews related work.
Section 8 discusses future work and concludes.

2. ONTOLOGY MATCHING
We now introduce ontologies, then define the problem of

ontology matching. An ontology specifies a conceptualiza-
tion of a domain in terms of concepts, attributes, and rela-
tions [14]. The concepts provided model entities of interest
in the domain. They are typically organized into a taxon-
omy tree where each node represents a concept and each
concept is a specialization of its parent. Figure 1 shows two
sample taxonomies for the CS department domain (which
are simplifications of real ones).

Each concept in a taxonomy is associated with a set of
instances. For example, concept Associate-Professor has in-
stances “Prof. Cook” and “Prof. Burn” as shown in Fig-
ure 1.a. By the taxonomy’s definition, the instances of a
concept are also instances of an ancestor concept. For ex-
ample, instances of Assistant-Professor, Associate-Professor,
and Professor in Figure 1.a are also instances of Faculty and
People.

Each concept is also associated with a set of attributes.
For example, the concept Associate-Professor in Figure 1.a
has the attributes name, degree, and granting-institution. An
instance that belongs to a concept has fixed attribute values.
For example, the instance “Professor Cook” has value name
= “R. Cook”, degree = “Ph.D.”, and so on. An ontology also
defines a set of relations among its concepts. For example, a
relation AdvisedBy(Student,Professor) might list all instance
pairs of Student and Professor such that the former is advised
by the latter.

Many formal languages to specify ontologies have been
proposed for the Semantic Web, such as OIL, DAML+OIL,
SHOE, and RDF [8, 2, 15, 7]. Though these languages differ
in their terminologies and expressiveness, the ontologies that
they model essentially share the same features we described

above.
Given two ontologies, the ontology-matching problem is to

find semantic mappings between them. The simplest type
of mapping is a one-to-one (1-1) mapping between the ele-
ments, such as “Associate-Professor maps to Senior-Lecturer”,
and “degree maps to education”. Notice that mappings be-
tween different types of elements are possible, such as “the
relation AdvisedBy(Student,Professor) maps to the attribute
advisor of the concept Student”. Examples of more complex
types of mapping include “name maps to the concatenation
of first-name and last-name”, and “the union of Undergrad-
Courses and Grad-Courses maps to Courses”. In general, a
mapping may be specified as a query that transforms in-
stances in one ontology into instances in the other [9].

In this paper we focus on finding 1-1 mappings between
the taxonomies. This is because taxonomies are central com-
ponents of ontologies, and successfully matching them would
greatly aid in matching the rest of the ontologies. Extending
matching to attributes and relations and considering more
complex types of matching is the subject of ongoing research.

There are many ways to formulate a matching problem
for taxonomies. The specific problem that we consider is
as follows: given two taxonomies and their associated data
instances, for each node (i.e., concept) in one taxonomy,
find the most similar node in the other taxonomy, for a pre-
defined similarity measure. This is a very general problem
setting that makes our approach applicable to a broad range
of common ontology-related problems on the Semantic Web,
such as ontology integration and data translation among the
ontologies.

Data instances: GLUE makes heavy use of the fact that
we have data instances associated with the ontologies we are
matching. We note that many real-world ontologies already
have associated data instances. Furthermore, on the Se-
mantic Web, the largest benefits of ontology matching come
from matching the most heavily used ontologies; and the
more heavily an ontology is used for marking up data, the
more data it has. Finally, we show in our experiments that
only a moderate number of data instances is necessary in
order to obtain good matching accuracy.



3. SIMILARITY MEASURES
To match concepts between two taxonomies, we need a

notion of similarity. We now describe the similarity mea-
sures that GLUE handles; but before doing that, we discuss
the motivations leading to our choices.

First, we would like the similarity measures to be well-
defined. A well-defined measure will facilitate the evaluation
of our system. It also makes clear to the users what the sys-
tem means by a match, and helps them figure out whether
the system is applicable to a given matching scenario. Fur-
thermore, a well-defined similarity notion may allow us to
leverage special-purpose techniques for the matching pro-
cess.

Second, we want the similarity measures to correspond
to our intuitive notions of similarity. In particular, they
should depend only on the semantic content of the concepts
involved, and not on their syntactic specification.

Finally, it is clear that many reasonable similarity mea-
sures exist, each being appropriate to certain situations.
Hence, to maximize our system’s applicability, we would
like it to be able to handle a broad variety of similarity
measures. The following examples illustrate the variety of
possible definitions of similarity.

Example 3.1. In searching for your conference acquain-
tance, your softbot should use an “exact” similarity measure
that maps Associate-Professor into Senior Lecturer, an equiv-
alent concept. However, if the softbot has some postprocess-
ing capabilities that allow it to filter data, then it may tol-
erate a “most-specific-parent” similarity measure that maps
Associate-Professor to Academic-Staff, a more general con-
cept. 2

Example 3.2. A common task in ontology integration is
to place a concept A into an appropriate place in a taxon-
omy T . One way to do this is to (a) use an “exact” similarity
measure to find the concept B in T that is “most similar”
to A, (b) use a “most-specific-parent” similarity measure to
find the concept C in T that is the most specific superset
concept of A, (c) use a “most-general-child” similarity mea-
sure to find the concept D in T that is the most general
subset concept of A, then (d) decide on the placement of A,
based on B, C, and D. 2

Example 3.3. Certain applications may even have differ-
ent similarity measures for different concepts. Suppose that
a user tells the softbot to find houses in the range of $300-
500K, located in Seattle. The user expects that the softbot
will not return houses that fail to satisfy the above crite-
ria. Hence, the softbot should use exact mappings for price
and address. But it may use approximate mappings for other
concepts. If it maps house-description into neighborhood-info,
that is still acceptable. 2

Most existing works in ontology (and schema) matching
do not satisfy the above motivating criteria. Many works
implicitly assume the existence of a similarity measure, but
never define it. Others define similarity measures based on
the syntactic clues of the concepts involved. For example,
the similarity of two concepts might be computed as the
dot product of the two TF/IDF (Term Frequency/Inverse
Document Frequency) vectors representing the concepts, or
a function based on the common tokens in the names of the
concepts. Such similarity measures are problematic because

they depend not only on the concepts involved, but also on
their syntactic specifications.

3.1 Distribution-based Similarity Measures
We now give precise similarity definitions and show how

our approach satisfies the motivating criteria. We begin by
modeling each concept as a set of instances, taken from a
finite universe of instances. In the CS domain, for example,
the universe consists of all entities of interest in that world:
professors, assistant professors, students, courses, and so on.
The concept Professor is then the set of all instances in the
universe that are professors. Given this model, the notion of
the joint probability distribution between any two concepts
A and B is well defined. This distribution consists of the
four probabilities: P (A, B), P (A, B), P (A, B), and P (A, B).
A term such as P (A, B) is the probability that a randomly
chosen instance from the universe belongs to A but not to B,
and is computed as the fraction of the universe that belongs
to A but not to B.

Many practical similarity measures can be defined based
on the joint distribution of the concepts involved. For in-
stance, a possible definition for the “exact” similarity mea-
sure in Example 3.1 is

Jaccard-sim(A, B) = P (A ∩ B)/P (A ∪ B)

=
P (A, B)

P (A, B) + P (A, B) + P (A, B)
(1)

This similarity measure is known as the Jaccard coefficient
[36]. It takes the lowest value 0 when A and B are disjoint,
and the highest value 1 when A and B are the same concept.
Most of our experiments will use this similarity measure.

A definition for the “most-specific-parent” similarity mea-
sure in Example 3.2 is

MSP (A, B) =

{

P (A|B) if P (B|A) = 1
0 otherwise

(2)

where the probabilities P (A|B) and P (B|A) can be trivially
expressed in terms of the four joint probabilities. This def-
inition states that if B subsumes A, then the more specific
B is, the higher P (A|B), and thus the higher the similar-
ity value MSP (A, B) is. Thus it suits the intuition that
the most specific parent of A in the taxonomy is the small-
est set that subsumes A. An analogous definition can be
formulated for the “most-general-child” similarity measure.

Instead of trying to estimate specific similarity values di-
rectly, GLUE focuses on computing the joint distributions.
Then, it is possible to compute any of the above mentioned
similarity measures as a function over the joint distribu-
tions. Hence, GLUE has the significant advantage of being
able to work with a variety of similarity functions that have
well-founded probabilistic interpretations.

4. THE GLUE ARCHITECTURE
We now describe GLUE in detail. The basic architecture

of GLUE is shown in Figure 2. It consists of three main
modules: Distribution Estimator, Similarity Estimator, and
Relaxation Labeler.

The Distribution Estimator takes as input two taxonomies
O1 and O2, together with their data instances. Then it ap-
plies machine learning techniques to compute for every pair
of concepts 〈A ∈ O1, B ∈ O2〉 their joint probability dis-
tribution. Recall from Section 3 that this joint distribution
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Figure 2: The GLUE Architecture

consists of four numbers: P (A, B), P (A, B), P (A, B), and
P (A, B). Thus a total of 4|O1||O2| numbers will be com-
puted, where |Oi| is the number of nodes (i.e., concepts) in
taxonomy Oi. The Distribution Estimator uses a set of base
learners and a meta-learner. We describe the learners and
the motivation behind them in Section 4.2.

Next, GLUE feeds the above numbers into the Similarity
Estimator, which applies a user-supplied similarity function
(such as the ones in Equations 1 or 2) to compute a similarity
value for each pair of concepts 〈A ∈ O1, B ∈ O2〉. The
output from this module is a similarity matrix between the
concepts in the two taxonomies.

The Relaxation Labeler module then takes the similar-
ity matrix, together with domain-specific constraints and
heuristic knowledge, and searches for the mapping config-
uration that best satisfies the domain constraints and the
common knowledge, taking into account the observed simi-
larities. This mapping configuration is the output of GLUE.

We now describe the Distribution Estimator. First, we
discuss the general machine-learning technique used to es-
timate joint distributions from data, and then the use of
multi-strategy learning in GLUE. Section 5 describes the
Relaxation Labeler. The Similarity Estimator is trivial be-
cause it simply applies a user-defined function to compute
the similarity of two concepts from their joint distribution,
and hence is not discussed further.

4.1 The Distribution Estimator
Consider computing the value of P (A, B). This joint

probability can be computed as the fraction of the instance
universe that belongs to both A and B. In general we can-
not compute this fraction because we do not know every
instance in the universe. Hence, we must estimate P (A, B)
based on the data we have, namely, the instances of the two
input taxonomies. Note that the instances that we have for

the taxonomies may be overlapping, but are not necessarily
so.

To estimate P (A, B), we make the general assumption
that the set of instances of each input taxonomy is a rep-
resentative sample of the instance universe covered by the
taxonomy.1 We denote by Ui the set of instances given for
taxonomy Oi, by N(Ui) the size of Ui, and by N(UA,B

i ) the
number of instances in Ui that belong to both A and B.

With the above assumption, P (A, B) can be estimated by
the following equation:2

P (A, B) = [N(UA,B
1 )+N(UA,B

2 )] / [N(U1)+N(U2)], (3)

Computing P (A, B) then reduces to computing N(UA,B
1 )

and N(UA,B
2 ). Consider N(UA,B

2 ). We can compute this
quantity if we know for each instance s in U2 whether it
belongs to both A and B. One part is easy: we already
know whether s belongs to B – if it is explicitly specified as
an instance of B or of any descendant node of B. Hence, we
only need to decide whether s belongs to A.

This is where we use machine learning. Specifically, we
partition U1, the set of instances of ontology O1, into the set
of instances that belong to A and the set of instances that
do not belong to A. Then, we use these two sets as positive
and negative examples, respectively, to train a classifier for
A. Finally, we use the classifier to predict whether instance
s belongs to A.

In summary, we estimate the joint probability distribu-
tion of A and B as follows (the procedure is illustrated in
Figure 3):

1. Partition U1, into UA
1 and UA

1 , the set of instances that
do and do not belong to A, respectively (Figures 3.a-
b).

2. Train a learner L for instances of A, using UA
1 and UA

1

as the sets of positive and negative training examples,
respectively.

3. Partition U2, the set of instances of taxonomy O2, into

UB
2 and UB

2 , the set of instances that do and do not
belong to B, respectively (Figures 3.d-e).

4. Apply learner L to each instance in UB
2 (Figure 3.e).

This partitions UB
2 into the two sets UA,B

2 and UA,B
2

shown in Figure 3.f. Similarly, applying L to UB
2 re-

sults in the two sets UA,B
2 and UA,B

2 .

5. Repeat Steps 1-4, but with the roles of taxonomies O1

and O2 being reversed, to obtain the sets UA,B
1 , UA,B

1 ,

UA,B
1 , and UA,B

1 .

6. Finally, compute P (A, B) using Formula 3. The re-
maining three joint probabilities are computed in a

similar manner, using the sets UA,B
2 , . . . , UA,B

1 com-
puted in Steps 4-5.

1This is a standard assumption in machine learning and
statistics, and seems appropriate here, unless the available
instances were generated in some unusual way.
2Notice that N(UA,B

i )/N(Ui) is also a reasonable approx-
imation of P (A, B), but it is estimated based only on the
data of Oi. The estimation in (3) is likely to be more accu-
rate because it is based on more data, namely, the data of
both O1 and O2.
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Figure 3: Estimating the joint distribution of concepts A and B

By applying the above procedure to all pairs of concepts
〈A ∈ O1, B ∈ O2〉 we obtain all joint distributions of inter-
est.

4.2 Multi-Strategy Learning
Given the diversity of machine learning methods, the next

issue is deciding which one to use for the procedure we de-
scribed above. A key observation in our approach is that
there are many different types of information that a learner
can glean from the training instances, in order to make pre-
dictions. It can exploit the frequencies of words in the text
value of the instances, the instance names, the value for-
mats, the characteristics of value distributions, and so on.

Since different learners are better at utilizing different
types of information, GLUE follows [12] and takes a multi-
strategy learning approach. In Step 2 of the above estima-
tion procedure, instead of training a single learner L, we
train a set of learners L1, . . . , Lk, called base learners. Each
base learner exploits well a certain type of information from
the training instances to build prediction hypotheses. Then,
to classify an instance in Step 4, we apply the base learn-
ers to the instance and combine their predictions using a
meta-learner. This way, we can achieve higher classifica-
tion accuracy than with any single base learner alone, and
therefore better approximations of the joint distributions.

The current implementation of GLUE has two base learn-
ers, Content Learner and Name Learner, and a meta-learner
that is a linear combination of the base learners. We now
describe these learners in detail.

The Content Learner: This learner exploits the frequen-
cies of words in the textual content of an instance to make
predictions. Recall that an instance typically has a name
and a set of attributes together with their values. In the cur-
rent version of GLUE, we do not handle attributes directly;
rather, we treat them and their values as the textual content
of the instance3. For example, the textual content of the
instance “Professor Cook” is “R. Cook, Ph.D., University
of Sidney, Australia”. The textual content of the instance
“CSE 342” is the text content of this course’ homepage.

The Content Learner employs the Naive Bayes learning
technique [13], one of the most popular and effective text
classification methods. It treats the textual content of each
input instance as a bag of tokens, which is generated by pars-
ing and stemming the words and symbols in the content.
Let d = {w1, . . . , wk} be the content of an input instance,

3However, more sophisticated learners can be developed
that deal explicitly with the attributes, such as the XML
Learner in [12].

where the wj are tokens. To make a prediction, the Con-
tent Learner needs to compute the probability that an input
instance is an instance of A, given its tokens, i.e., P (A|d).

Using Bayes’ theorem, P (A|d) can be rewritten as
P (d|A)P (A)/P (d). Fortunately, two of these values can be
estimated using the training instances, and the third, P (d),
can be ignored because it is just a normalizing constant.
Specifically, P (A) is estimated as the portion of training
instances that belong to A. To compute P (d|A), we assume
that the tokens wj appear in d independently of each other
given A (this is why the method is called naive Bayes). With
this assumption, we have

P (d|A) = P (w1|A)P (w2|A) · · ·P (wk|A)

P (wj |A) is estimated as n(wj , A)/n(A), where n(A) is the
total number of token positions of all training instances that
belong to A, and n(wj , A) is the number of times token
wj appears in all training instances belonging to A. Even
though the independence assumption is typically not valid,
the Naive Bayes learner still performs surprisingly well in
many domains, notably text-based ones (see [13] for an ex-
planation).

We compute P (A|d) in a similar manner. Hence, the Con-
tent Learner predicts A with probability P (A|d), and A with
the probability P (A|d).

The Content Learner works well on long textual elements,
such as course descriptions, or elements with very distinct
and descriptive values, such as color (red, blue, green, etc.).
It is less effective with short, numeric elements such as course
numbers or credits.

The Name Learner: This learner is similar to the Con-
tent Learner, but makes predictions using the full name of
the input instance, instead of its content . The full name of
an instance is the concatenation of concept names leading
from the root of the taxonomy to that instance. For exam-
ple, the full name of instance with the name s4 in taxonomy
O2 (Figure 3.d) is “G B J s4”. This learner works best on
specific and descriptive names. It does not do well with
names that are too vague or vacuous.

The Meta-Learner: The predictions of the base learn-
ers are combined using the meta-learner. The meta-learner
assigns to each base learner a learner weight that indicates
how much it trusts that learner’s predictions. Then it com-
bines the base learners’ predictions via a weighted sum.

For example, suppose the weights of the Content Learner
and the Name Learner are 0.6 and 0.4, respectively. Suppose
further that for instance s4 of taxonomy O2 (Figure 3.d)
the Content Learner predicts A with probability 0.8 and A



with probability 0.2, and the Name Learner predicts A with
probability 0.3 and A with probability 0.7. Then the Meta-
Learner predicts A with probability 0.8 · 0.6 + 0.3 · 0.4 = 0.6
and A with probability 0.2 · 0.6 + 0.7 · 0.4 = 0.4.

In the current GLUE system, the learner weights are set
manually, based on the characteristics of the base learners
and the taxonomies. However, they can also be set auto-
matically using a machine learning approach called stacking
[37, 34], as we have shown in [12].

5. RELAXATION LABELING
We now describe the Relaxation Labeler, which takes the

similarity matrix from the Similarity Estimator, and searches
for the mapping configuration that best satisfies the given
domain constraints and heuristic knowledge. We first de-
scribe relaxation labeling, then discuss the domain const-
raints and heuristic knowledge employed in our approach.

5.1 Relaxation Labeling
Relaxation labeling is an efficient technique to solve the

problem of assigning labels to nodes of a graph, given a set
of constraints. The key idea behind this approach is that the
label of a node is typically influenced by the features of the
node’s neighborhood in the graph. Examples of such features
are the labels of the neighboring nodes, the percentage of
nodes in the neighborhood that satisfy a certain criterion,
and the fact that a certain constraint is satisfied or not.

Relaxation labeling exploits this observation. The influ-
ence of a node’s neighborhood on its label is quantified using
a formula for the probability of each label as a function of
the neighborhood features. Relaxation labeling assigns ini-
tial labels to nodes based solely on the intrinsic properties
of the nodes. Then it performs iterative local optimization.
In each iteration it uses the formula to change the label of
a node based on the features of its neighborhood. This con-
tinues until labels do not change from one iteration to the
next, or some other convergence criterion is reached.

Relaxation labeling appears promising for our purposes
because it has been applied successfully to similar matching
problems in computer vision, natural language processing,
and hypertext classification [16, 31, 10]. It is relatively ef-
ficient, and can handle a broad range of constraints. Even
though its convergence properties are not yet well under-
stood (except in certain cases) and it is liable to converge
to a local maxima, in practice it has been found to perform
quite well [31, 10].

We now explain how to apply relaxation labeling to the
problem of mapping from taxonomy O1 to taxonomy O2.
We regard nodes (concepts) in O2 as labels, and recast the
problem as finding the best label assignment to nodes (con-
cepts) in O1, given all knowledge we have about the domain
and the two taxonomies.

Our goal is to derive a formula for updating the proba-
bility that a node takes a label based on the features of the
neighborhood. Let X be a node in taxonomy O1, and L
be a label (i.e., a node in O2). Let ∆K represent all that
we know about the domain, namely, the tree structures of
the two taxonomies, the sets of instances, and the set of do-
main constraints. Then we have the following conditional
probability
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Figure 4: The sigmoid function

P (X = L|∆K) =
∑

MX

P (X = L, MX |∆K)

=
∑

MX

P (X = L|MX , ∆K)P (MX |∆K) (4)

where the sum is over all possible label assignments MX to
all nodes other than X in taxonomy O1. Assuming that
the nodes’ label assignments are independent of each other
given ∆K , we have

P (MX |∆K) =
∏

(Xi=Li)∈MX

P (Xi = Li|∆K) (5)

Consider P (X = L|MX , ∆K). MX and ∆K constitutes
all that we know about the neighborhood of X. Suppose
now that the probability of X getting label L depends only
on the values of n features of this neighborhood, where each
feature is a function fi(MX , ∆K , X, L). As we explain later
in this section, each such feature corresponds to one of the
heuristics or domain constraints that we wish to exploit.
Then

P (X = L|MX , ∆K) = P (X = L|f1, . . . , fn) (6)

If we have access to previously-computed mappings be-
tween taxonomies in the same domain, we can use them as
the training data from which to estimate P (X = L|f1, . . . , fn)
(see [10] for an example of this in the context of hypertext
classification). However, here we will assume that such map-
pings are not available. Hence we use alternative methods
to quantify the influence of the features on the label assign-
ment. In particular, we use the sigmoid or logistic function
σ(x) = 1/(1 + e−x), where x is a linear combination of the
features fk, to estimate the above probability. This function
is widely used to combine multiple sources of evidence [5].
The general shape of the sigmoid is as shown in Figure 4.

Thus:

P (X = L|f1, . . . , fn) ∝ σ(α1 · f1 + · · · + αn · fn) (7)

where ∝ denotes “proportional to”, and the weight αk indi-
cates the importance of feature fk.

The sigmoid is essentially a smoothed threshold function,
which makes it a good candidate for use in combining ev-
idence from the different features. If the total evidence is
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Neighborhood
 

Two nodes match if their children also match.
 

Two nodes match if their parents match and at least x% of their children also match.
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Union
 
 If all children of node X match node Y, then X also matches Y.
 


Subsumption
 

If node Y is a descendant of node X, and Y matches PROFESSOR, then it 
is unlikely that X matches ASST 
 
PROFESSOR
.
 

If node Y is NOT a des
cendant of node X, and Y matches PROFESSOR, then it is unlikely that X matches FACULTY.
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Nearby
 

If a node in the neigh
borhood of node X matches ASSOC 
 
PROFESSOR, then the chance that 
X matches PROFESSOR is 

increased.
 


 


 


Table 1: Examples of constraints that can be exploited to improve matching accuracy.

below a certain value, it is unlikely that the nodes match;
above this threshold, they probably do.

By substituting Equations 5-7 into Equation 4, we obtain

P (X = L|∆K) ∝
∑

MX

σ

(

n
∑

k=1

αkfk(MX , ∆K , X, L)

)

×

∏

(Xi=Li)∈MX

P (Xi = Li|∆K) (8)

The proportionality constant is found by renormalizing
the probabilities of all the labels to sum to one. Notice that
this equation expresses the probabilities P (X = L|∆K) for
the various nodes in terms of each other. This is the iterative
equation that we use for relaxation labeling.

In our implementation, we optimized relaxation labeling
for efficiency in a number of ways that take advantage of the
specific structure of the ontology matching problem. Space
limitations preclude discussing these optimizations here, but
see Section 6 for a discussion on the running time of the
Relaxation Labeler.

5.2 Constraints
Table 1 shows examples of the constraints currently used

in our approach and their characteristics. We distinguish
between two types of constraints: domain-independent and -
dependent constraints. Domain-independent constraints con-
vey our general knowledge about the interaction between re-
lated nodes. Perhaps the most widely used such constraint
is the Neighborhood Constraint: “two nodes match if nodes
in their neighborhood also match”, where the neighborhood
is defined to be the children, the parents, or both [29, 21, 26]
(see Table 1). Another example is the Union Constraint: “if
all children of a node A match node B, then A also matches
B”. This constraint is specific to the taxonomy context.
It exploits the fact that A is the union of all its children.
Domain-dependent constraints convey our knowledge about
the interaction between specific nodes in the taxonomies.
Table 1 shows examples of three types of domain-dependent
constraints.

To incorporate the constraints into the relaxation labeling
process, we model each constraint ci as a feature fi of the
neighborhood of node X. For example, consider the con-
straint c1: “two nodes are likely to match if their children
match”. To model this constraint, we introduce the feature

f1(MX , ∆K , X, L) that is the percentage of X’s children that
match a child of L, under the given MX mapping. Thus f1

is a numeric feature that takes values from 0 to 1. Next,
we assign to fi a positive weight αi. This has the intuitive
effect that, all other things being equal, the higher the value
fi (i.e., the percentage of matching children), the higher the
probability of X matching L is.

As another example, consider the constraint c2: “if node
Y is a descendant of node X, and Y matches PROFESSOR,
then it is unlikely that X matches ASST-PROFESSOR”. The
corresponding feature, f2(MX , ∆K , X, L), is 1 if the condi-
tion “there exists a descendant of X that matches PRO-
FESSOR” is satisfied, given the MX mapping configuration,
and 0 otherwise. Clearly, when this feature takes value 1, we
want to substantially reduce the probability that X matches
ASST-PROFESSOR. We model this effect by assigning to f2

a negative weight α2.

6. EMPIRICAL EVALUATION
We have evaluated GLUE on several real-world domains.

Our goals were to evaluate the matching accuracy of GLUE,
to measure the relative contribution of the different compo-
nents of the system, and to verify that GLUE can work well
with a variety of similarity measures.

Domains and Taxonomies: We evaluated GLUE on
three domains, whose characteristics are shown in Table 2.
The domains Course Catalog I and II describe courses at
Cornell University and the University of Washington. The
taxonomies of Course Catalog I have 34 - 39 nodes, and
are fairly similar to each other. The taxonomies of Course
Catalog II are much larger (166 - 176 nodes) and much less
similar to each other. Courses are organized into schools
and colleges, then into departments and centers within each
college. The Company Profile domain uses ontologies from
Yahoo.com and TheStandard.com and describes the current
business status of companies. Companies are organized into
sectors, then into industries within each sector4.

In each domain we downloaded two taxonomies. For each
taxonomy, we downloaded the entire set of data instances,

4Many ontologies are also available from research resources
(e.g., DAML.org, semanticweb.org, OntoBroker [1], SHOE,
OntoAgents). However, they currently have no or very few
data instances.
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Table 2: Domains and taxonomies for our experiments.
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Figure 5: Matching accuracy of GLUE.

and performed some trivial data cleaning such as removing
HTML tags and phrases such as “course not offered” from
the instances. We also removed instances of size less than
130 bytes, because they tend to be empty or vacuous, and
thus do not contribute to the matching process. We then
removed all nodes with fewer than 5 instances, because such
nodes cannot be matched reliably due to lack of data.

Similarity Measure & Manual Mappings: We chose
to evaluate GLUE using the Jaccard similarity measure (Sec-
tion 3), because it corresponds well to our intuitive under-
standing of similarity. Given the similarity measure, we
manually created the correct 1-1 mappings between the tax-
onomies in the same domain, for evaluation purposes. The
rightmost column of Table 2 shows the number of manual
mappings created for each taxonomy. For example, we cre-
ated 236 one-to-one mappings from Standard to Yahoo!, and
104 mappings in the reverse direction. Note that in some
cases there were nodes in a taxonomy for which we could
not find a 1-1 match. This was either because there was
no equivalent node (e.g., School of Hotel Administration at
Cornell has no equivalent counterpart at the University of
Washington), or when it is impossible to determine an ac-
curate match without additional domain expertise.

Domain Constraints: We specified domain constraints
for the relaxation labeler. For the taxonomies in Course Cat-
alog I, we specified all applicable subsumption constraints
(see Table 1). For the other two domains, because their
sheer size makes specifying all constraints difficult, we spec-
ified only the most obvious subsumption constraints (about
10 constraints for each taxonomy). For the taxonomies in
Company Profiles we also used several frequency constraints.

Experiments: For each domain, we performed two ex-
periments. In each experiment, we applied GLUE to find
the mappings from one taxonomy to the other. The match-
ing accuracy of a taxonomy is then the percentage of the
manual mappings (for that taxonomy) that GLUE predicted
correctly.

6.1 Matching Accuracy
Figure 5 shows the matching accuracy for different do-

mains and configurations of GLUE. In each domain, we show
the matching accuracy of two scenarios: mapping from the
first taxonomy to the second, and vice versa. The four bars
in each scenario (from left to right) represent the accuracy
produced by: (1) the name learner alone, (2) the content
learner alone, (3) the meta-learner using the previous two
learners, and (4) the relaxation labeler on top of the meta-
learner (i.e., the complete GLUE system).

The results show that GLUE achieves high accuracy across
all three domains, ranging from 66 to 97%. In contrast, the
best matching results of the base learners, achieved by the
content learner, are only 52 - 83%. It is interesting that the
name learner achieves very low accuracy, 12 - 15% in four out
of six scenarios. This is because all instances of a concept,
say B, have very similar full names (see the description of the
name learner in Section 4.2). Hence, when the name learner
for a concept A is applied to B, it will classify all instances
of B as A or A. In cases when this classfication is incorrect,
which might be quite often, using the name learner alone
leads to poor estimates of the joint distributions. The poor
performance of the name learner underscores the importance
of data instances and multi-strategy learning in ontology
matching.

The results clearly show the utility of the meta-learner and



relaxation labeler. Even though in half of the cases the meta-
learner only minimally improves the accuracy, in the other
half it makes substantial gains, between 6 and 15%. And
in all but one case, the relaxation labeler further improves
accuracy by 3 - 18%, confirming that it is able to exploit
the domain constraints and general heuristics. In one case
(from Standard to Yahoo), the relaxation labeler decreased
accuracy by 2%. The performance of the relaxation labeler is
discussed in more detail below. In Section 6.4 we identify the
reasons that prevent GLUE from identifying the remaining
mappings.

In the current experiments, GLUE utilized on average only
30 to 90 data instances per leaf node (see Table 2). The high
accuracy in these experiments suggests that GLUE can work
well with only a modest amount of data.

6.2 Performance of the Relaxation Labeler
In our experiments, when the relaxation labeler was ap-

plied, the accuracy typically improved substantially in the
first few iterations, then gradually dropped. This phenomenon
has also been observed in many previous works on relaxation
labeling [16, 20, 31]. Because of this, finding the right stop-
ping criterion for relaxation labeling is of crucial importance.
Many stopping criteria have been proposed, but no general
effective criterion has been found.

We considered three stopping criteria: (1) stopping when
the mappings in two consecutive iterations do not change
(the mapping criterion), (2) when the probabilities do not
change, or (3) when a fixed number of iterations has been
reached.

We observed that when using the last two criteria the ac-
curacy sometimes improved by as much as 10%, but most of
the time it decreased. In contrast, when using the mapping
criterion, in all but one of our experiments the accuracy sub-
stantially improved, by 3 - 18%, and hence, our results are
reported using this criterion. We note that with the map-
ping criterion, we observed that relaxation labeling always
stopped in the first few iterations.

In all of our experiments, relaxation labeling was also very
fast. It took only a few seconds in Catalog I and under 20
seconds in the other two domains to finish ten iterations.
This observation shows that relaxation labeling can be im-
plemented efficiently in the ontology-matching context. It
also suggests that we can efficiently incorporate user feed-
back into the relaxation labeling process in the form of ad-
ditional domain constraints.

We also experimented with different values for the con-
straint weights (see Section 5), and found that the relax-
ation labeler was quite robust with respect to such parame-
ter changes.

6.3 Most-Specific-Parent Similarity Measure
So far we have experimented only with the Jaccard simi-

larity measure. We wanted to know whether GLUE can work
well with other similarity measures. Hence we conducted an
experiment in which we used GLUE to find mappings for tax-
onomies in the Course Catalog I domain, using the following
similarity measure:

MSP (A, B) =

{

P (A|B) if P (B|A) ≥ 1 − ε
0 otherwise

This measure is the same as the the most-specific-parent
similarity measure described in Section 3, except that we
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Figure 6: The accuracy of GLUE in the Course Cat-

alog I domain, using the most-specific-parent simi-

larity measure.

added an ε factor to account for the error in approximating
P (B|A).

Figure 6 shows the matching accuracy, plotted against ε.
As can be seen, GLUE performed quite well on a broad range
of ε. This illustrates how GLUE can be effective with more
than one similarity measure.

6.4 Discussion
The accuracy of GLUE is quite impressive as is, but it is

natural to ask what limits GLUE from obtaining even higher
accuracy. There are several reasons that prevent GLUE from
correctly matching the remaining nodes. First, some nodes
cannot be matched because of insufficient training data. For
example, many course descriptions in Course Catalog II con-
tain only vacuous phrases such as “3 credits”. While there
is clearly no general solution to this problem, in many cases
it can be mitigated by adding base learners that can exploit
domain characteristics to improve matching accuracy. And
second, the relaxation labeler performed local optimizations,
and sometimes converged to only a local maxima, thereby
not finding correct mappings for all nodes. Here, the chal-
lenge will be in developing search techniques that work bet-
ter by taking a more “global perspective”, but still retain
the runtime efficiency of local optimization. Further, the
two base learners we used in our implementation are rather
simple general-purpose text classifiers. Using other leaners
that perform domain-specific feature selection and compar-
ison can also improve the accuracy.

We note that some nodes cannot be matched automati-
cally because they are simply ambiguous. For example, it
is not clear whether “networking and communication de-
vices” should match “communication equipment” or “com-
puter networks”. A solution to this problem is to incorpo-
rate user interaction into the matching process [28, 12, 38].

GLUE currently tries to predict the best match for every
node in the taxonomy. However, in some cases, such a match
simply does not exist (e.g., unlike Cornell, the University of



Washington does not have a School of Hotel Administra-
tion). Hence, an additional extension to GLUE is to make it
be aware of such cases, and not predict an incorrect match
when this occurs.

7. RELATED WORK
GLUE is related to our previous work on LSD [12], whose

goal was to semi-automatically find schema mappings for
data integration. There, we had a mediated schema, and
our goal was to find mappings from the schemas of a multi-
tude of data sources to the mediated schema. The observa-
tion was that we can use a set of manually given mappings
on several sources as training examples for a learner that
predicts mappings for subsequent sources. LSD illustrated
the effectiveness of multi-strategy learning for this problem.
In GLUE since our problem is to match a pair of ontologies,
there are no manual mappings for training, and we need to
obtain the training examples for the learner automatically.
Further, since GLUE deals with a more expressive formalism
(ontologies versus schemas), the role of constraints is much
more important, and we innovate by using relaxation label-
ing for this purpose. Finally, LSD did not consider in depth
the semantics of a mapping, as we do here.

We now describe other related work to GLUE from several
perspectives.

Ontology Matching: Many works have addressed on-
tology matching in the context of ontology design and in-
tegration (e.g., [11, 24, 28, 27]). These works do not deal
with explicit notions of similarity. They use a variety of
heuristics to match ontology elements. They do not use ma-
chine learning and do not exploit information in the data
instances. However, many of them [24, 28] have powerful
features that allow for efficient user interaction, or expres-
sive rule languages [11] for specifying mappings. Such fea-
tures are important components of a comprehensive solution
to ontology matching, and hence should be added to GLUE
in the future.

Several recent works have attempted to further automate
the ontology matching process. The Anchor-PROMPT sys-
tem [29] exploits the general heuristic that paths (in the
taxonomies or ontology graphs) between matching elements
tend to contain other matching elements. The HICAL sys-
tem [17] exploits the data instances in the overlap between
the two taxonomies to infer mappings. [18] computes the
similarity between two taxonomic nodes based on their sig-
nature TF/IDF vectors, which are computed from the data
instances.

Schema Matching: Schemas can be viewed as ontologies
with restricted relationship types. The problem of schema
matching has been studied in the context of data integra-
tion and data translation (see [33] for a survey). Several
works [26, 21, 25] have exploited variations of the general
heuristic “two nodes match if nodes in their neighborhood
also match”, but in an isolated fashion, and not in the same
general framework we have in GLUE.

Notions of Similarity: The similarity measure in [17] is
based on κ statistics, and can be thought of as being defined
over the joint probability distribution of the concepts in-
volved. In [19] the authors propose an information-theoretic
notion of similarity that is based on the joint distribution.
These works argue for a single best universal similarity mea-

sure, whereas GLUE allows for application-dependent simi-
larity measures.

Ontology Learning: Machine learning has been applied
to other ontology-related tasks, most notably learning to
construct ontologies from data and other ontologies, and
extracting ontology instances from data [30, 23, 32]. Our
work here provides techniques to help in the ontology con-
struction process [23]. [22] gives a comprehensive summary
of the role of machine learning in the Semantic Web effort.

8. CONCLUSION AND FUTURE WORK
The vision of the Semantic Web is grand. With the prolif-

eration of ontologies on the Semantic Web, the development
of automated techniques for ontology matching will be cru-
cial to its success.

We have described an approach that applies machine learn-
ing techniques to propose such semantic mappings. Our
approach is based on well-founded notions of semantic sim-
ilarity, expressed in terms of the joint probability distribu-
tion of the concepts involved. We described the use of ma-
chine learning, and in particular, of multi-strategy learning,
for computing concept similarities. This learning technique
makes our approach easily extensible to additional learn-
ers, and hence to exploiting additional kinds of knowledge
about instances. Finally, we introduced relaxation labeling
to the ontology-matching context, and showed that it can be
adapted to efficiently exploit a variety of heuristic knowledge
and domain-specific constraints to further improve matching
accuracy. Our experiments showed that we can accurately
match 66 - 97% of the nodes on several real-world domains.

Aside from striving to improve the accuracy of our meth-
ods, our main line of future research involves extending our
techniques to handle more sophisticated mappings between
ontologies (i.e., non 1-1 mappings), and exploiting more of
the constraints that are expressed in the ontologies (via
attributes and relationships, and constraints expressed on
them).
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