
Resolving Terminological Heterogeneity In Ontologies
Prasenjit Mitra and Gio Wiederhold 12

fmitra, giog@db.stanford.edu

Abstract. A system that enables interoperation among information
sources using ontologies needs to resolve the terminological differ-
ences between ontologies. In this work, we present several methods
that we have designed to match terms used in different ontologies.
We have implemented two methods based on linguistic similarities
of terms used in the ontologies. The first looks up a dictionary or se-
mantic network like WordNet and the second determines similarities
of words based on word similarity compuoed from a domain-specific
corpus of documents. We discuss our experiments that indicate that
a method that uses both heuristics produces good results.

1 Introduction

Often, we cannot answer a query from a single source, and need to
compose information from multiple information sources. These in-
formation sources are autonomously created and maintained. Inte-
grating the information in them to create a single source is not an
option where the owners of the information source prefer to main-
tain their autonomy. The merging approach of creating an unified
source is not scalable and is costly. Besides, an integrated informa-
tion source would need to be updated as soon as any information in
any individual source changes [11]. Furthermore, in certain cases a
complete unification of a large number of widely disparate informa-
tion sources into one monolithic information source is not feasible
due to unresolvable inconsistencies between them that are irrelevant
to the application. For a particular application, resolution of incon-
sistencies between a pair of knowledge sources is typically feasible,
but it becomes nearly impossible when the objective is undefined and
the number of sources is large.

Due to the complexity of achieving and maintaining global se-
mantic integration, the merging approach is not scalable. We have
adopted a distributed approach which allows the sources to be up-
dated and maintained independent of each other and enables compo-
sition of information via interoperation.

1.1 The Need for Autonomous Ontologies

Ontologies are increasingly being used to assist the integration of
information. They specify the terminology (and its semantics) used
in information sources. These sources are autonomously created and
maintained.

The alternative to individual ontologies for individual sources is
to use standard ontologies across multiple information sources. Ef-
forts to create and use standardized ontologies have met with limited
success due to the different requirements of the different businesses

1 Infolab, Stanford University, Stanford, CA 94305, USA
2 This work has been supported by the AFOSR New World Vistas program

and the DARPA DAML program.

that construct the information sources. Even if such efforts succeed
in creating a standard ontology, the large size of such an ontology
results in poor performance while using the ontology.

Everyday new discoveries expand our knowledge and change our
views of the universe that we live in. Any ontology representing such
knowledge has to be updated periodically. The maintainers of the in-
formation sources that use the standard ontology will have to agree
on the updates being proposed and on the restructuring of the ontol-
ogy. They may have entirely different applications in mind or may
not subscribe to a newly discovered theory. Furthermore, some par-
ticipants might see the changes required to support the proposed up-
dates as an unnecessary imposition since restructuring the informa-
tion source will require substantial effort on their part. Thus gener-
ating new consensus on updates to the standard ontology is a time-
consuming and tenuous process. For quickly changing fields, arriving
at a consensus within a short period of time is not even feasible.

Besides, even if a standard ontology is devised and widely used
in future, the ontologies that exist today cannot be wished away. To
handle such legacy ontologies, and to allow interoperation among
information systems with autonomous ontologies, we need to inter-
operate among the ontologies themselves.

1.2 Resolving Semantic Heterogeneity

Problems of heterogeneity in hardware, operating systems, and data
structures have been widely addressed, but issues of diverse seman-
tics have been handled mainly in an ad-hoc fashion. While compos-
ing information from information sources, we need to ensure that the
information that we are composing have some semantically meaning-
ful relationship. Semantic heterogeneity among information sources
needs to be resolved to enable meaningful information exchange or
interoperation among them.

The two major sources of heterogeneity among the sources are as
follows: First, different sources use different data formats and model-
ing languages to represent their data and meta-data. Second, sources
using the same data format differ in their structure and semantics
of the terminology they use. Such heterogeneity are a result of the
autonomous nature of the ontologies and the fact that information
sources are constructed by different people with different objectives
in mind.

Often different sources use different terminologies to describe the
objects in the sources. The same term, used in different sources, of-
ten have overlapping or somewhat different semantics, e.g., the term
’́nail” has entirely different semantics in a’́cosmetics” ontology and
the ’́carpentry” ontology. Similarly, different sources, often, use dif-
ferent terms to refer to semantically similar objects, e.g., the terms
”truck” and ”lorry” in two transportation ontologies might refer to
the same class of objects.

In order to enable interoperation, we intend to capture the semantic
bridges between two ontologies usingarticulation rules. These rules
express the relationship between two (or more) concepts belonging
to the ontologies that we seek to interoperate. Since these ontologies
can be fairly large, establishing such rules manually is a very ex-
pensive and laborious task. Fully automating the process is also not
feasible. First, despite the rapid advances made in the field of natural
language processing, the technology still remains inadequate to au-
tomatically resolve semantic heterogeneity among these information
sources using different terminology. Second, even though ontologies
expose some of the semantics of the terms and their relationships,
they often remain incomplete or inadequate if we consider the needs
of the various applications that use them.

The problem of ontology alignment has been studied for some
time. Tools like OntoMorph [4], PROMPT [10], and Chimaera [8]
help significantly automate the process. However, these tools do not
contain a component that identifies concept names that are linguis-
tically similar automatically and use that knowledge as the basis
for furhter alignment of the ontologies. They require manual con-
struction of articulation rules or base their matches on the structure
of the ontologies. A similar problem is that of schema matching in
databases. However, most of the techniques used in matching tools
[14],[7], [5], [9], [12], [3] etc. are not adequate when the primary
differences among sources are due to differences in terminology in
sources with little structural similarity or when instance data is not
available.

In this paper, we propose a semi-automated algorithm for resolv-
ing the terminological heterogeneity among the ontologies and estab-
lishing the articulation rules necessary for meaningful interoperation.
This algorithm forms the basis of thearticulation generatorfor our
ONtology compositION sytesm (ONION). Our experiments show
that basing such matching on structural information is inadequate.
We describe several heuristics to resolve the terminological hetero-
geneity among ontologies. Experimental results show that combining
the information obtained by using multiple heuristics provides a bet-
ter match between semantically related terms in the ontologies.

2 Ontologies and Their Articulations

In this work, we assume that the ontologies we use are represented
as a graph along with a set of logical rules. Formally, an ontology
O = (G;R) is represented as a directed labeled graphG and a
set of rulesR. The graphG = (V;E) comprises a finite set of
nodesV and a finite set of edgesE. The label of a node is given
by a non-null string that is often a noun-phrase that represents a
concept name. The label of an edge is the name of a semantic re-
lationship among the concepts and can be null if the relationship
is not known. The label of an edge can be any user-defined re-
lationship. The set of relationships with pre-defined semantics is
fSubClassOf; PartOf;AttributeOf; InstanceOf;
V alueOfg. All other relationships are not interpreted by the articu-
lation generator in ONION.

Articulation rules are of two types -
ones that are simple statements of the form
(Match"DepartmentofDefence""DefenseMinistry")
expressing matches between equivalent concepts and the more
complex rules expressed in datalog that are mostly supplied by the
expert.

In Figure 1, we show an example articulation. On the left hand
side, is a portion of the United Airlines Ontology and on the right
a portion of the TRANSOM Ontology. These ontologies were con-

<flight>|

<DepCity>Washington

D.C.</DepCity>

<ArrCity>Frankfurt</ArrCity>

</flight>

<sortie><from>Rhein Main

AFB</from>

<to>al-Jaber AB</to>

</sortie>

Inference Engine

FORALL X,Y,Z

connection(X,Z)<-

connection(X,Y) and

connection(Y,Z).

<connection>|

<from>Washington D.C.</from>

<to>al-Jaber</to>

</connection>

Declaratively

Specified Rules

Using articulation rule:

<Equ> <Airport>Frankfurt</Airport>

<AFB>Rhein Main AFB </AFB>

</Equ>

<Impl> <Sortie><Connection></Impl>

<Impl><Flight><Connection></Impl>

<Equ><DepCity><From></Equ> ….

Figure 1. An application using an articulation between the United Airlines
Ontology and the TRANSCOM Ontology

structed manually for experimentation. The objective of the applica-
tion is to transport military men and materiel from Washington D.C.
to Al Jabar Airbase in Kuwait. A combination of commercial flights
and special purpose sorties is to be used to meet the transport objec-
tive.

The United Airlines source hasflight, whose DepCity is
Washington D: C: andArrity is Frankfurt. This corresponds
to a flight from Washington D. C. to Frankfurt. There exists an ar-
ticulation rule, supplied by the domain expert, that says that the con-
nection relation is transitive.

The TRANSCOM source has asortie that runs from
RheinMainAFB in Frankfurt, Germany toAlJabar airbase in
Kuwait.

We establish the articulation rules semi-automatically. They in-
dicate that theFrankfurt airport is the co-located with the
RheinMainAFB. It tells us that if there is asortie or a flight
between two cities, then there is aconnection between them. It
also indicates thatDepCity in the United ontology is the same as
From in the TRANSCOM ontology. Due to lack of space in the
figure, the rule that states thatUnited:ArrCity is equivalent to
TRANSCOM:To is not shown.

Using these rules, an inference engine can easily establish
that there is a connection betweenWashington D: C: and
AlJabarAirbase;Kuwait.

The tool generates and suggests the simpler articulation rules to
indicate the terms in the two ontologies that are related. The expert
then validates these suggestions and the final set of articulation rules
are stored to be used during query rewriting and execution.

3 Generation of Ontology Articulations

ONION has an automated articulation generator (ArtGen) that sug-
gests articulations based on a library of heuristic matchers. Each
matcher matches terms in the two ontologies. A human expert,
knowledgeable about the semantics of concepts in both ontologies,
validates the suggested matches generated by ArtGen using a GUI
tool. The expert can either accept the match, keep the match but mod-
ify the suggested relationship between the matched terms, delete a
suggested match or say that the match is irrelevant for the application
at hand. The expert can also indicate new matches that the articula-
tion generator might have missed.

The process of constructing an articulation is an iterative process
and after the expert is satisfied with the rules generated, they are
stored and used when information needs to be composed from the
two ontologies. The response of the expert is also logged and the
articulation generator uses the expert’s feedback to generate better
articulations in future while articulating similar ontologies for simi-
lar applications. This learning process improves the quality of future
generation of articulations from similar information sources.

The heuristic matchers used by the automated articulation genera-
tor can be classified into two broad types - iterative and non-iterative.
Since the articulation generator is modular in nature, any application-
specific matching algorithm can be plugged in. However, we believe
that a set of basic matching algorithms will be useful in a wide vari-
ety of applications and we experimented to determine such a set.

3.1 Non-iterative Algorithms

Non-iterative algorithms are ones that identify the matching concepts
in the two ontologies in one pass. Our linguistic matcher employs
only non-iterative algorithms.

3.1.1 Linguistic Matching

The linguistic matcher looks at all possible pairs of terms from the
two ontologies it is matching and assigns a similarity score to each
pair. If the similarity score is above a threshold, then the match is
accepted and an articulation rule is generated. The threshold can be
modified by the expert performing the articulation to increase or de-
crease the number of matches generated.

We expect that a concept name is represented as a string of words.
The matcher constructs all possible pairs of words where the two
words in a pair come from different strings. The matcher uses a word-
similarity table generated by aword relator which we describe be-
low. It looks up a word-similarity table to determine the similarity
between all such pairs of words. Finally, it computes the similarity
of the strings based on the similarity of the pairs of words.

� match(String s1, String s2, WordSimilarityTable wst)

– List similarityList;

– for each word w1 in s1:

� for each word w2 in s2:
similarityScore wst.lookup(w1, w2);
Add (w1, w2, similarityScore) to similarityList;

– Sort similarityList on the similarity score of the tuples;

– Set matchedWords null;

– floatingPointNumber matchingScore 0.0;

– for each tuple (w1, w2, ss) in similarityList:

� if either w1 or w2 is in matchedWords continue;

� else
matchingScore matchingScore + ss;
add w1, and w2 to matchedWords;

– similarityScore similarityScore / min(size(s1), size(s2));

– return similarityScore;

For example, given the strings ”Department of Defence” and
”Defense Ministry”, we see thatmatch(Defence;Defense) =
1:0. Similarly, we havematch(Department;Ministry) = 0:4.
Therefore, we calculate the similarity between the two strings as:

match("Department of Defence",
"Defense Ministry") = (1 + 0.4)/2 = 0.7.

The denominator is the number of words in the string with less num-
ber of words.

This similarity score of two strings is then normalized with
respect to the highest generated score in the application. The
normalization step removes the bias of word-relators that give
very low similarity scores for all pairs of words or those that
give very high scores to all pairs of words. If the generated
similarity score is above the threshold, then the two con-
cepts are said to match, and we generate an articulation rule,
(Match"DepartmentofDefence""DefenseMinistry"); 0:7,
the last number gives the confidence measure with which the
articulation generator generated this match. The confidence measure
varies betwen 0 and 1.

Constructing the Word-Similarity Table:
We have experimented with several ways to generate the table con-
taining the similarity between all pairs of words. After checking if
the words are spelt similarly, we derive word similarity using meth-
ods that can be differented into two main groups: a) thesaurus based,
b) corpus-based.

Thesaurus-Based Word-Relator:We have devised matching al-
gorithms based on dictionaries or semantic networks, like Nexus [6]
and WordNet [1]. WordNet gives us a list of synonyms for each word.
If the two words are found to be synonyms, then we return a similar-
ity score of 1.0. If the two words are not synonyms, we look at the
the number of words that are ”similar” in the defnitions of each word.
This process of looking into the definitions of words to find their sim-
ilarity can be repeated recursively until a fixed-point is reached or
uptil a specified depth is reached at which point we require ”similar”
to be ”same”.

� GenerateSimilarity(word w1,word w2,dictionary dict,depth dep)

– if (w1 == w2) return 1;

– if (dep == 0) return 0;

– else

� def1 dict.lookup(w1);

� def2 dict.lookup(w2);

� List similarityList new List;

� for each word wd1 in def1:

� for each word wd2 in def2:
Add (w1, w2, GenerateSimilarity(wd1, wd2, dep-1))

to similarityList;

� Sort similarityList on the similarity score of the tuples;

� Set matchedWords null;

� floatingPointNumber matchingScore 0.0;

� for each tuple (w1, w2, ss) in similarityList:

� if either w1 or w2 is in matchedWords continue;
� else

matchingScore matchingScore + ss;
add w1, and w2 to matchedWords;

� similarityScore similarityScore / min(size(def1),
size(def2));

� return similarityScore;

For example, the definitions of ”truck” and ”boat” are ”an automo-
tive vehicle suitable for hauling”,and ”a vessel for water transporta-
tion”. If the specified depth is 1, we do not look into the definitions
of ”vehicle” and ”vessel” to determine their similarity. Since they
are not exactly the same, we say their similarity is 0. If however, the
depth were set to 2 (or more), we would look up the definitions of
”vehicle” and ”vessel”, discover their definitions both have ”trans-
portation” in common, and generate a similarity measure and prop-
agate that similarity up to generate a non-zero similarity for ”truck”
and ”boat”.

Corpus-Based Word Relator:Word similarities used by the lin-
guistic matcher can also be generated using a corpus-based matching
algorithm. The word relator uses a corpus of documents belonging
to the domain of the ontologies that are being matched. The terms
that appear in the ontology should also appear in the documents. The
word relator calculates word-similarity scores based on the similarity
of the contexts in which the words appear in the documents [13].

We identify the context in which a word,w, appears by looking
at words that appear in a 1000-character neighbourhood of all oc-
currences ofw in documents in the corpus. For example, the words
”in”, ”the”, ”For”, and ”example” constitute the 30-character neigh-
bourhood of the word ”corpus” at the end of the last sentence. In the
example, we looked at a 15-character window ahead of the word and
15 characters behind the word and chose all words that are complete
in these windows. Therefore, even though part of the word ”docu-
ments” appears in the 15-character window before the word ”corpus”
in that sentence it is ignored.

We look at all words that appear in the corpus. For each occurrence
of a word, we identify the words in its context. The number of rows
in the context vector,Vw, of a wordw is equal the number of words
in the corpus. LetVw[i] = c. This implies that theith word in the
corpus occurs with a frequencyc in the 1000-character neighbour-
hood of the wordw. The cosine of such normalized context vectors
of two words gives a measure of the similarity of contexts in which
the two words appear. We use this similarity measure to generate a
table of word similarities that is then used by the linguistic matcher.

Ideally, we would have one corpus associated with one ontology,
where the documents in the corpus use the terms in the exact sense
as it is used in the ontology. However, for our experiments we did
not have such a domain-specific corpus. We generated a corpus by
searching the web(google) using 5 keywords each from the two on-
tologies that we were seeking to articulate. Typically, a corpus of 200
pages proved adequate to produce good matches.

3.1.2 Instance-based Heuristics

Instance-based matching heuristics have been used to successfuly
match schemas in databases [14]. Such matchers look at data types,
and extract other features like lengths of attributes, numerical or lex-
ical statistics of attributes, and match classes based on such feature
vectors. Though, we can handle ontologies, whose concepts also

have instances associated with them, oftentimes, businesses are re-
luctant to make instances available. Thus, we have designed our algo-
rithms assuming that no instance data is available. However, if such
information is available, the matcher can be extended to use instance
information.

3.2 Iterative Algorithms

Iterative algorithms are algorithms that depend upon existing articu-
lation rules to generate further articulation rules. They require mul-
tiple iterations over the two source ontologies in order to generate
semantic matches between them.

3.2.1 Structure-based Heuristics

These algorithms look for structural isomorphism between subgraphs
of the ontologies to find matching concepts. For the ontologies we
have experimented with, we see that a purely structural matcher -
one that simply looks for isomorphism between subgraphs in the on-
tologies without considering concept names- performs very poorly
and is inadequate.

Therefore, we propose a structure-based matcher that is called af-
ter the matches generated by a linguistic matcher is available. If the
linguistic matcher has matched nodes, ”A” and ”B” in the ontology-
graphs, the structural matcher looks to match their children (also
parents), ”C”, and ”D”, if they have not already been matched. If
a substantial percentage (above the threshold supplied) of the parents
of ”C” have been matched with those of ”D”, and the children of
”C” have been matched with those of ”D”, then an articulation rule
matching ”C” and ”D” is generated.

3.2.2 Inference-based Heuristics

An inference engine can reason with the rules available with the on-
tologies and any seed rules provided by an expert ontologies to gen-
erate matches between the ontologies. For example, a rule:

(=> (InstanceOf X O1.LuxuryCar)
((InstanceOf X O2.Car) AND

(O2.PriceOf Y X) AND
(O2.UnitOf X "$") AND
(ValueOf X Z) AND
(> Z 40,000)))

which says that any instance ofO1:LuxuryCar is an instance of
O2:Car, that has a price greater than$40; 000.

4 Experiments & Results

We have implemented the linguistic methods and the structural meth-
ods in our articulation generator (using Java as the programming lan-
guage). We experimented with three sets of ontologies represented in
RDF[2]:

1. Ontologies (avg. 30 nodes) constructed manually to represent a
domestic airlines (terminology used on United Airlines website)
and a airforce ontology (terminology used in the US Air Force).

2. Ontologies (avg. 50 nodes) constructed manually from the NATO
government web-sites representing each web-page associated with
an department of the government as a node. The edges in the on-
tology graph were derived from the links between the pages.

We measured the accuracy of the generated match by comparing
the results generated by the automated matcher with those expected
by the expert. Any match deleted by the expert was taken to be a false
positive and lowered the precision figures, and a match added by the
expert that the automated generator failed to find lowered the recall.
We summarize the results of the several experiments below:

� A purely structural method which requires exact concept-name
match, like that has been used in existing tools, fails to generate
even 50% of the matches expected by the expert. This result is not
surprising since despite having useful information, the structure
of the ontologies used hardly encode sufficient semantics to use
them solely for ontology alignment.

� Adding linguistic heuristics gave significantly better results, es-
pecially, the corpus-based heuristic provided we supplied the
matcher with a good representative set corpus of documents from
the applicable domain.

� However, a multi-strategy approach works best. On the average
about 75% of the matches were generated, with less than 5% false
positives that the expert indicated was not correct. The linguistic
method generates on the average about 60-70% of the matches
(recall with 95% precision). Adding the structural matcher, boosts
the matches by 5-10%. The human expert provided us with the
other 30% of the rules that were not generated automatically.

The performance of the algorithm depends upon several parame-
ters:

� Thesaurus-based Method: A general purpose thesaurus results in
very poor results. Domain-specific thesauri produce better results
but might not be available.

� Corpus-based Method: A corpus-based method produced better
results than the thesaurus-based method. In the aircraft example,
solely employing the thesaurus-based method produced a 30% re-
call (at 90% precision). A corpus-based method, where we ob-
tained a corpus by searching the web with a few key-words from
the domains, boosted the match to 60%. Combining the two, we
obtained a recall of 70%.

� Scalability: Initially, we tried the corpus-based method with a pre-
processing step of collecting the corpus and building up the word-
context vectors. The linguistic matcher, while matching the on-
tologies, constructed the word similarities as needed. However, for
a test case with 300 nodes in each ontology took an hour to run on
a Pentium III machine with 256M memory. It becomes clear that
for larger ontologies, the algorithm does not scale well if we com-
pute the word similarities while matching the ontologies. For the
algorithm to scale, not only, do we need to build the corpus and
construct the word-context vectors a priori, but also pre-compute
the similarity of all pairs of words in the corpus. The corpus-based
method can then be thought of as equivalent to a lookup based
method, where the word-similarity matrix is constructed from the
words in the corpus. This variation of the corpus-based method
scaled well and for our ontologies finished within a couple of min-
utes at worst.

� Quality: The quality of the matches were very dependent on the
quality of the corpus available. We experimented with corpuses of
size 50 pages, 100 pages, 200 pages and 1000 pages. Corpuses of
size 50-100 pages resulted in low recall figures for the matches. A
size of 200 webpages often proved adequate to generate a recall
of 70%, although in most cases having a corpus of 1000 matches
increased the recall, it was less than a few percentages.

Graph matcher for Articulation- creating Expert

Airline

Passenger Cargo

Flight Orders

Route

Wing

Materiel Passenger

Sortie

Arrival

City

Departure

City

FlightInfo Schedule

Arr.Time

FlightNumber

Dep.Time

Airport

Name

DestinationOrigin

Equipment

Payload

AFB

GEOLOC

EstCost

Date

Location Name

Time

Code

Transcom

ontology

United

ontology

Figure 2. Example of an articulation of United Airlines Ontology with
TRANSCOM Ontology

In Figure 2, we show two ontologies - the United Ontology
and the TRANSCOM Ontology and the matches generated. We
used a hybrid method that uses WordNet as a thesaurus, and
a corpus generated by searching google. For example, the page
”http://www.etrackcargo.com/Help/Agents/Fieldwas part of the cor-
pus. The confidence scores of the matches are as follows when the
threshold was set to 0.7:

Table 1. The matches between the United and TRANSCOM Ontologies

Term in United.ont Term in TRANSCOM.ont Confidence Score
Passenger Passenger 1.0
Cargo Payload 1.0
Departure Time Time 0.90
Arrival Time Time 0.88
Arrival City Destination 0.79
Name Location Name 0.75
Departure City Origin 0.72
Airport Airforce Base 0.71
Flight Sortie 0.70

If the threshold was set to a lower value 0.60, we intro-
duced false positives like(Match Airline Destination 0:61).
Further lowering the threshold to 0.50 introduces more
false matches (Match F lightNumber Sortie 0:52),
(Match Equipment Materiel 0:54). Only the first two matches
were generated using a word-relator that consults WordNet. We
ran the word-relator with a depth value of 1. That is, the relator
looks into the definition of the two words for similar words but does
not proceed any further recursively. The match betweenCargo

and Payload was not higher than 0.7 using the corpus-based

word-relator and would not have been suggested. Thus, we see that a
hybrid method gives us a better accuracy than any one method alone.

In this example, we see that with a threshold value of 0.7, we gen-
erate all the desired matches and no false matches - the ideal solution.
However, acheiving a 100all cases. From our experiments, we see
that setting a threshold of 0.7 gives the most number of matches with
the a 95the matches are false positives. Therefore, we suggest that
for an unknown application or an unknown corpus, when running the
first time, the matching threshold be set to 0.7. If not satisfied with
the results the expert can then increase or decrease the threshold to
get better matches.

5 Conclusion

We discussed several heuristic methods to produce simple matching
rules between concepts in ontologies that are being aligned. We see
that a multi-strategy method based on intial linguistic-similarity fol-
lowed by structural matching generates matches between ontologies
with reliable accuracy. The work of an expert who then validates the
suggested rules or supplies new rules is substantially reduced by the
automated component.

REFERENCES
[1] ‘Wordnet - a lexical database for english.

http://www.cogsci.princeton.edu/ wn/’, Technical report, Prince-
ton University.

[2] ‘Resource description framework(rdf) model and syntax specification,
w3c recommendation http://www.w3.org/tr/rec-rdf-syntax’, (1999).

[3] M. D. Siegel C. H. Goh, S. E. Madnick. Semantic inter-
operability through context interchange: Representing and reason-
ing about data conflicts in heterogeneous and autonomous systems
http://citeseer.nj.nec.com/191060.html.

[4] H. Chalupsky, ‘Ontomorph: A translation system for symbolic knowl-
edge’, inKR 2000, pp. 471–482. Morgan Kaufmann Publishers, (Apr
2000).

[5] A. Doan, P. Domingos, and A. Y. Halevy, ‘Reconciling schemas of dis-
parate data sources: A machine-learning approach’, inSIGMOD 2002,
(2001).

[6] J. Jannink,A Word Nexus for Systematic Interoperation of Semantically
Heterogeneous Data Sources, Ph.D. dissertation, Stanford University,
2000.

[7] J. Madhavan, P. A. Bernstein, and E. Rahm, ‘Generic schema matching
with cupid’, in VLDB 2001, Proceedings of 27th International Confer-
ence on Very Large Data Bases, September 11-14, 2001, Roma, Italy,
pp. 49–58. Morgan Kaufmann, (2001).

[8] D.L. McGuiness, R.Fikes, J. Rice, and S. Wilder., ‘The chimaera ontol-
ogy environment’, inSeventh National Conference on Artificial Intelli-
gence (AAAI-2000), (2000).

[9] Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm, inProceed-
ings of the Twelfth International Conference on Data Engineering, San
Jose, CA. IEEE Computer Society, (February 2002).

[10] N.F. Noy and M.A. Musen, ‘Prompt: Algorithm and tool for automated
ontology mergin and alignment’, inSeventh National Conference on
Artificial Intelligence (AAAI-2000), (2000).

[11] D.E. Oliver, Y. Shahar, E.H. Shortliffe, and M.A. Musen, ‘Represen-
tation of change on controlled medical terminologies’, inProc. AMIA
Conference, (Oct. 1998).

[12] Yannis Papakonstantinou, Hector Garcia-Molina, and Jeffrey D. Ull-
man, ‘Medmaker: A mediation system based on declarative specifica-
tions’, in Proceedings of the Twelfth International Conference on Data
Engineering, February 26 - March 1, 1996, New Orleans, Louisiana,
ed., Stanley Y. W. Su, pp. 132–141. IEEE Computer Society, (1996).

[13] Hinrich Schuetze, ‘Dimensions of meaning’, inSupercomputing, pp.
787–796, (1992).

[14] L. L. Yan, R. J. Miller, L. M. Haas, and R. Fagin, ‘Data-driven un-
derstanding and refinement of schema mappings’, inACM SIGMOD,
(2001).

