
OMEN: A Probabilistic Ontology Mapping Tool

Prasenjit Mitra1, Natalya F. Noy2, Anuj R. Jaiswal1

1 The Pennsylvania State University, University Park, PA 16802, U.S.A.,
{pmitra,ajaiswal}@ist.psu.edu

2 Stanford University, Stanford, CA 94305, U.S.A.,
noy@smi.stanford.edu

Abstract. Most existing ontology mapping tools do not provide ex-
act mappings. Rather, there is usually some degree of uncertainty. We
describe a framework to improve existing ontology mappings using a
Bayesian Network. Omen, an Ontology Mapping ENhancer uses a set
of meta-rules that capture the influence of the ontology structure and
the semantics of ontology relations and matches nodes that are neigh-
bors of already matched nodes in the two ontologies. We have imple-
mented a protype ontology matcher that can enhance existing matches
between ontology concepts. Preliminary experiments demonstrate that
Omen successfully identifies and enhances ontology mappings.

1 Introduction

Information sources, even those from the same domain, are heterogeneous in na-
ture. The semantics of the information in one source differs from that in another.
In order to enable interoperation among heterogeneous information sources or to
compose information from multiple sources, we often need to establish mappings
between database schemas or between ontologies. These mappings capture the
semantic correspondence between concepts in schemas or ontologies.

In recent years, researchers have developed a number of tools for finding these
mappings in a semi-automated fashion (see Section 7 for a brief overview). In
addition, there are interactive tools that enable experts to specify the mappings
themselves. However, in most cases, the mappings produced are imprecise. For
instance, automatic ontology-mapping tools can rank possible matches, with the
ones that are more likely to be correct getting higher rankings. Most automatic
ontology-mapping tools use heuristics or machine-learning techniques, which are
imprecise by their very nature. Even experts sometimes could be unsure about
the exact match between concepts and typically assign some certainty rating to
a match. Once a particular set of mappings is established (by an expert or a
tool), we can analyze the structure of ontologies in the neighborhood of these
mappings to produce additional mappings.

Our main premise in this work is the following: if we know a mapping be-
tween two concepts from the source ontologies (i.e., they match), we can use the
mapping to infer mappings between related concepts. For example, if two prop-
erties and their domains match, then we can infer (with some certainty) that

2

their ranges may be related as well. We build a Bayesian Net with the concept
mappings. The Bayesian Net uses a set of meta-rules based on the semantics
of the ontology relations that expresses how each mapping affects other related
mappings. We can use existing automatic and semi-automatic tools to come up
with initial probability distributions for mappings. Next, we use this probability
distribution to infer probability distributions for other mappings.

We have implemented a tool called Omen (Ontology Mapping ENhancer).
Omen uses a Bayesian Net and enhances existing ontology mappings by deriving
missed matches and invalidating existing false matches. Our preliminary results
show that by using Omen we can enhance the quality of existing mappings
between concepts across ontologies.

The primary contributions of this paper are as follows:

1. We introduce a probabilistic method of enhancing existing ontology map-
pings by using a Bayesian Net to represent the influences between potential
concept mappings across ontologies.

2. In Omen, we provide an implemented framework where domain knowledge
of mapping influences can be input easily using simple meta-rules.

3. We demonstrate the effectiveness of Omen in our preliminary experiments.

To the best of our knowledge, no existing work has extensively used a proba-
bilistic representation of ontology mapping rules and probabilistic inference to
improve the quality of existing ontology mappings.

2 Knowledge Model

We assume a simple ontology model (similar to RDF Schema). We use the fol-
lowing components to express ontologies:

Classes Classes are concepts in a domain, organized in a subclass–superclass
hierarchy with multiple inheritance.

Properties Properties describe attributes of classes and relationships between
classes. Properties have one or more domains, which are classes to which
the property can be applied; and one or more ranges, which restrict the
classes for the values of property.

We use the following notation conventions through the rest of this paper:

– all concepts from O have no prime (’); all concepts from O′ have a prime (’);
– upper-case C with or without a subscript is a class;
– lower-case q with or without a subscript is a property;
– P (C1 θ C2, x) indicates that the probability of the match (C1 θ C2) is x.

3 Construction of the Bayesian Net

We now discuss how the Bayesian Net is constructed.

3

m(C3, C3')

m(C1, C1')

m(C2, C2')

C3

C1 C1'

C2'C2

C3'

Fig. 1. Subgraphs representing some concepts in ontologies O and O′ (small circles)
and relations between them (thin arrows). The large gray ovals and solid arrows rep-
resent a snippet of the BN graph with nodes corresponding to matches and arrows
corresponding to influences in the BN graph.

3.1 The BN-Graph

Nodes in the BN-graph represent individual pairs of matches. Consider Figure 1.
This figure represents some classes in ontology O in the left-hand tree and some
classes in ontology O′ in the right-hand tree. The thin arrows in the figure are
relationships between classes in the ontology, such as subclass–superclass rela-
tionships. The gray nodes and arrows represent the BN graph superimposed on
the graphs representing ontologies. Nodes in the BN graph are matches between
pairs of classes or properties from different ontologies. Arrows in the BN graph
(the solid gray arrows in Figure 1) represent the influences between the nodes
in the BN graph. The Conditional Probability Tables (CPTs) represent how a
probability distribution in one node in the BN graphs affects the probability
distribution in another node downstream from it. For example, in Figure 1, the
mapping between concepts C1 and C ′

1 affects the mapping between concepts C2

and C ′
2, which in turn affects the mapping between C3 and C ′

3

A Scalable Selection of Nodes If we create a node for all possible pairings of
concepts in two ontologies, the number of nodes in the BN-graph grows quadrat-
ically with respect to the number of nodes in the source ontologies. For example,
if the sizes of the ontologies are 100 nodes each, the BN-graph will have 10,000
nodes. However, most of these nodes will express matches that are extremely
unlikely to hold, because an evidence node will not influence a node that is dis-
tant from an evidence node significantly. Therefore, for performance, reasons, it

4

makes sense to prune the BN-graph. We generate all possible nodes in the BN-
graph that are at a maximum distance of k from an evidence node. The value
of k is tuneable by the expert running the system, but empirically, we found
a small value like k = 1 or k = 2 suffices. Larger values of k make very little
difference to the result but increase the size of the Bayesian Net significantly.

Anther factor that effects the size of the BN-graph is the number of parents
(i.e., nodes that influence the match) that each node has. For example, if a
concept C has 5 parents, and C ′ has 8 parents, the node representing a match
between C and C ′ would have 40 parent nodes in the BN-graph. As we discuss
in the next section, the size of a CPT is exponential with respect to the number
of parents of a node. Therefore, generating the CPT would cost 240 units of
computation. Even if the computation is very small, this number is exceedingly
large and very soon makes the Bayesian Net unweildy. Thus, we restrict the
maximum number of parent nodes for a single node to 10. We choose these 10
parents by selecting the top 5 parents with the maximum a priori probability
and the top 5 parents with the minimum a priori probability.

If the Bayesian Net is constructed by adding edges such that matching an-
cestor nodes in an ontology influence the children nodes, we refer to this method
as the “down-flow” method. A method where the Bayesian Net edges are con-
structe such that matching descendant nodes influence their ancestors, we call
the method a “top-down” method. In case the ontologies contain cycles and this
introduces cycles in the BN-graph, the algorithm breaks cycles in the BN-graph
by rejecting the edges from the parents whose matching information is minimum
(confidence score near 0.5).

3.2 Evidence and CPTs

In order to run a Bayesian Net we need to provide it with two types of infor-
mation: (1) evidence (obtained from the initial probabilities) describing what
we already know with high confidence, and (2) Conditional Probability Tables,
describing how the parent nodes influence the children in the BN-graph.

The input to the Omen algorithm consists not only of the two source on-
tologies to be matched, but also, of the initial probability distributions on the
“root” nodes (nodes with no parents) in the BN graph. Note that our definition
of mapping allows for inputs that are themselves imprecise and contain some
probability values. For instance, if there is an ontology matcher that produces a
set of pairs of matches ordered according to the algorithm’s certainty about the
match we can translate that into specific values for each m(Cn, C ′

k) where the
probability value for “=” is less than 1 and diminishes as we go further down in
the ranked list of the external matcher’s result.

The final missing piece are the CPTs. The CPTs describe how a match
between two classes affects other matches (these are the solid gray arrows in
Figure 1). For example, a match between two classes from the source ontologies
affects the match between their superclasses. Or a match between properties
affects the match between their domains. These rules depend on the knowledge
model and semantics of the relationships (such as subclass or domain) defined

5

in the knowledge model. Therefore, we have developed a set of generic meta-
rules that enable us to generate CPTs for each particular pair of ontologies
automatically. In fact, our implementation is parameterized with respect to the
meta-rules, and we can add or remove meta-rules to evaluate which ones work
best for a particular knowledge model.

We present some of the meta-rules that we used in the next Section.
The following summarizes the Omen algorithm:

– Input: source ontologies O and O′, initial probability distribution for matches
– Steps:

1. If initial probability of a match is above a given threshold, create a node
representing the match and mark it as evidence node.

2. Create nodes in the BN graph representing each pair of concepts (C,C ′)
, such that C ∈ O and C ′ ∈ O′ as a node in the graph and the nodes are
within a distance k of an evidence node

3. Create edges between the added nodes
4. Use the meta-rules to generate CPTs for the BN
5. Run the BN

– Output: a new set of matches

In the next section we discuss how Step 1 above can be modified to prune
out unnecessary nodes.

4 Meta-rules for Generating New Probability
Distributions

In this section, we show examples of meta-rules that are used to match the
ontologies and discuss how the algorithm generates new probability distributions
depending upon the existing ones.

4.1 Examples of Meta-rules

The following is one of the basic meta-rules we used in our implementation: if
two concepts C1 and C ′

1 match, and there is a relationship q between C1 and
C2 in O and a matching relationship q′ between C ′

1 and C ′
2 in O′, then we

can increase the probability of match between C2 and C ′
2. Informally, if two

nodes in an ontology graph match and so do two arrows coming out of these
nodes, then the probability that nodes at the other end of the arrows match as
well is increased. In the formal rule below we generalize this meta-rule to any
relationship θ between C1 and C ′

1, not just match.

P (C1 θ C ′
1, x)∧P (q = q′, 1)∧ q(C1, C2)∧ q′(C ′

1, C
′
2) ⇒ P (C2 θ C ′

2,min(1, x+ δ)
(1)

6

where δ is an expert-provided constant less than 1. We use a similar meta-rule
for the case where relationships q and q′ do not match (i.e., for arbitrary pair of
outgoing edges), but subtract delta from x in the consequent.

While not in our initial implementation, other meta-rules rely more heavily
on the semantics of the components in the ontology language. Below are some
informal examples of such rules.

Mappings between properties and ranges of properties: If two properties match,
and each of them has a single range, we can increase the probability of match
between the classes representing the range. Similarly if two properties q and q′

match and the range of q is a union of classes C1 and C2, and the range of q′ is
a class C ′, then the tool can increase the probability that C1 is a specialization
of C ′ and C2 is a specialization of C ′.

Mappings between superclasses and all but one sibling: In this case, we say that
the existing matches between the superclasses and the matched siblings result
in the remaining siblings matching with high probability.

We experimented with three different ways of generating the CPTs for the
nodes in a BN graph:

1. Fixed Influence Method (FI): The meta-rules state that the probability of
the children matching depends upon whether the parents match and is given
by a set of constants. An example of such a rule is:

P [Cp = C ′
p, x] ∧ x > tmax ∧ q(Cp, Cc) ∧ q(C ′

p, C
′
c) ⇒ P [Cc = C ′

c, 0.9] (2)

where tmax is an expert-defined threshold value. There are similar rules for
the other cases.

2. Initial Probability Method (AP): The meta-rules state that the probability
distribution of a child node is affected depending upon the probability dis-
tribution of the parent node by a set of constants. An example of this class
of meta-rules is:

P (C1 θ C ′
1, x)∧P (q = q′, 1)∧q(C2, C1)∧q′(C ′

2, C
′
1)∧P [C2 θC ′

2, y]∧(y > tmax)
⇒ P (C1 θ C ′

1,min(1, (x + δ))

where tmax and δ are expert-provided constants less than 1.
3. Parent Probability Method (PP): The meta-rules state that the probability

distribution of the child node is derived from the probability distribution of
the parent node using a set of constants. Rule 1 is an example of a meta-rule
used in this method.

The algorithm must combine probabilitic influences of different rules and
determine the probability distribution of a mappings. For example, consider a
pair of classes, C and C ′ (Figure 2). In the example in the figure, the following
mappings can affect the probability that they match (depending on a specific
set of meta-rules used):

7

Cd

C

C0

C1

Cd'

C'

C0'

C1'

subclass subclass
q subclass

subclass

q'

Fig. 2. The probability distribution for the mapping between C and C′ is affected by
the mappings between their superclasses, siblings, and domains of the properties q and
q′ for which C and C′ are ranges.

– A mapping between superclasses of C and C ′

– Mappings between the siblings of C and C ′

– A mapping between properties q and q′ (P (q = q′, 1)) for which C and C ′

are ranges respectively, and mappings between domains of q and q′ (P (Cd =
C ′

d, z)).

In this work, we combine probabilitistic influences as follows. If a child in the
Bayesian Net (not the ontologies) has two parents, we combine the conditional
probability distributions of the child on each parent using the assumption that
the two parents are independent. That is,

P [C|A,B] = P [C|A]× P [C|B] (3)

In cases, where the match of two parents influence each other, this assump-
tion is not true. However, empirically, even with this simplifying assumption we
have obtained encouraging results. A more sophisticated method of combining
influences is left for future work.

5 Experimentation and Results

Omen uses BNJ, Version 3.0 pre-Alpha 3 [1] as its probabilistic inference engine.
We used two ontologies obtained from the Knowledge Representation and

Reasoning group at the Vrije University.3 The ontologies are expressed in RDF
using RDF-Schema. They contain concepts related to university departments
and students, staff and faculty of the departments.

3 http://wbkr.cs.vu.nl/

8

For our experiments, we extracted portions of the ontologies manually to
make sure that they have at least some overlap. Because matching predicates
is beyond the scope of this tool, we matched predicates across the ontologies
by manual examination. When we decided that two predicates represented the
same relationship, the names of one predicate was replaced by the names of the
matching predicate in the other.

If the generated Bayesian Net contained a cycle, we manually weeded out
one edge choosing one at random from those edges that are between nodes that
are farthest from the root.

For this preliminiary experimentation, instead of using several values as cited
in Section 2 that a node in the Bayesian Net can have, we just assigned two values
“true” and “false” to the nodes. A value of “true” represents that the concepts
represented by the node match and vice-versa.

We generated initial probability distribution for matches using a simple script
using string-edit distance. Recall that in practice these probability distributions
can come from any other tool. To generate probability distributions for the
experiment, we manually identified i) the nodes across the ontolgies that the
matched and ii) the nodes that surely did not match. The matching nodes were
assigned a random probability between 0.7 to 0.9 and the nodes that did not
match assigned a random number between 0.1 to 0.4 with the rest of the nodes
lying in between 0.4 to 0.7.

We fixed the threshold values to 0.85 and 0.15. That is, if the probability of
a match is determined by our methods or by the previous method to be greater
than 0.85, then we determine that the concepts match and if the probability is
less than 0.15, then we declare that the concepts do not match. Such matches
and mismatches are used as evidence to the Bayesian NetḞurthermore, the same
threshold value is used to determine a match from the posterier probability
generated by Omen. In some cases, the threshold was taken to be too stringent
and resulted in lower recall. As future work, we intend to look into dynamically
selecting proper thresholds by clustering.

We experimented with two sets of ontology graphs. In the first set, both
graphs had 11 nodes each and in the second case both had 19 nodes. The pre-
liminary results that we obtained are given in the two tables below:

Table 1. Summary of results for the smaller ontologies

Case No. CPT-Method Precision Recall F-measure

1 FI 0.75 0.375 0.5
AP 1.0 0.5 0.67

2 FI 1.0 0.5 0.67
AP 1.0 0.875 0.933

3 AP 1.0 0.75 0.85
4 AP 1.0 0.125 0.22

9

Precision Recall F-measure

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7

Fig. 3. Results for the ontologies of size 19 nodes

Table 1 lists the results for the case where the source ontologies were of size 11
nodes each. In this case, we specified three matching nodes as positive evidence
and four pairs of nodes that do not match as negative evidence. The precision,
recall and f-measure are calculated in the usual Information Retrieval (IR) sense
using both the positive match and the negative match results together. In case
1, the evidence was introduced at random points. In case 2, the evidence was
introduced at or very near the leaf nodes. The results show that introducing the
evidence at or near the leaf nodes increased the performance of the algorithm.
Case 3 is very similar to Case 2, but with false evidence introduced. Case 4 shows
the effect of introducing drastic errors in the initial probabilities. Since the CPTs
in the AP method depend directly on the quality of the initial probabilities, when
we assigned the initial probabilities at random intentionally, the quality of the
results deteroriate.

Overall, we see that the AP method outperforms the FI method in both
cases. We also see that by giving only 3 matches out of 11, we could generate
upto 7 of the missing matches. This implies that the method can be very useful
even when the results of the previous matcher is not very good as not as it is
totally random.

We show the results for the case where the source ontologies contained 19
nodes each in Figure 3. The figure shows 7 different test cases for the three
different CPT-generating methods. The FI method is shown first, followed by
the AP method, followed by the PP method for each test case.

The evidence provided in the cases above were as follows: For case 1, we
provided positive evidence of 4 matches at or near the leaf nodes. For cases 2,
3, and 4, we provided positive evidence of 5 matches and negative evidence of 4
matches. For cases 5, 6, and 7 we provided positive evidence of 6 matches and
negative evidence of 4 matches. In cases 2, and 3 the evidence was also provided

10

at or near the leaf nodes. In cases 4, and 5, the evidence was provided at or near
the root nodes. In cases 6 and 7, the evidence was provided at randomly selected
nodes. In cases 3, 5, and 7, wrong evidence was introduced.

Not surprisingly, we see that both the AP and the PP methods outperforms
the FI method of constructing CPTs and provide good precision and recall val-
ues. The AP method slightly outperforms the PP method in general. However,
the PP method is more stable, that is, it recovers from a few wrong evidences
better than the AP method. In this case, the place where the evidence was
introduced did not matter much for the AP and PP methods.

6 Future Work

In the future, we intend to perform experiments to determine whether a system
based on up-flow rules outperform one based on down-flow rules and to identify
the scenarios when one outperforms the other. Furthermore, we will extend our
algorithm to perform multiple iterations on the data. For example, we can employ
alternate iterations using down-flow and up-flow rules for a fixed number of
iterations or until the results converge. Designing better CPTs using more of
the semantics of the ontology relationships, and emperically evaluating them
and experimenting with large ontologies and coupling our matcher with various
external matchers are charted for as future work.

7 Related Work

Two research directions are related to our work: automatic or semi-automatic
discovery of ontology mappings and the use of uncertainty in knowledge-based
systems.

7.1 Automatic ontology mapping

Over the past decade, researchers have actively worked on developing methods
for discovering mappings between ontologies or database schemas. These method
employ a slew of different techniques. For example, Similarity Flooding [8] and
AnchorPrompt [10] algorithms compare graphs representing the ontologies or
schemas, looking for similarities in the graph structure. GLUE [3] is an exam-
ple of a system that employs machine-learning techniques to find mappings.
GLUE uses multiple learners exploiting information in concept instances and
taxonomic structure of ontologies. GLUE uses a probabilistic model to combine
results of different learners. Hovy [5] describes a set of heuristics that researcher-
sat ISI/USC used for semi-automatic alignment of domain ontologiesto a large
central ontology. Their techniques are based mainly onlinguistic analysis of con-
cept names and natural-languagedefinitions of concepts. A number of researchers
propose similarity metrics between concepts in different ontologies based on their
relations to other concepts. For example, a similarity metric between concepts in

11

OWL ontologies developed by Euzenat and Volchev [4] is a weighted combina-
tion of similarities of various features in OWL concept definitions: their labels,
domains and ranges of properties, restrictions on properties (such as cardinality
restrictions), types of concepts, subclasses and superclasses, and so on. Finally,
approaches such as ONION [9] and Prompt [11] use a combination of interactive
specifications of mappings and heuristics to propose potential mappings.

The approach that we describe in this paper is complementary to the tech-
niques for automatic or semi-automatic ontology mapping. Many of the methods
above produced pairs of matching terms with some degree of certainty. We can
use these results as input to our network and run our algorithm to improve the
matches produced by others or to suggest additional matches. In other words,
our work complements and extends the work by other researchers in this area.

7.2 Probabilistic knowledge-base systems

Several researchers have explored the benefits of bringing together Nayes Nets
an knowledge-based systems and ontologies. For instance, Koller and Pfeffer
[7] developed a “probabilistic frame-based system,” which allows annotation of
frames in a knowledge base with a probability model. This probability model is
a Bayesian Net representing a distribution over the possible values of slots in a
frame. In another example, Koller and colleagues [6] have proposed probabilistic
extensions to description logics based on Bayesean Networks.

In the context of the Semantic Web, Ding and Peng [2] have proposed prob-
abilistic extensions for OWL. In this model, the OWL language is extended to
allow probabilistic specification of class descriptions. The authors then build a
Bayesean Network based on this specification, which models whether or not an
individual matches a class description and hence belongs to a particular class in
the ontology.

Researchers in machine learning have employed probabilistic techniques to
find ontology mappings. For example, the GLUE system mentioned earlier [3],
uses a Bayes classifier as part of its integrated approach. Similarly, Prasad and
colleagues [12] use a Bayesean approach to find mappings between classes based
on text documents classified as exemplars of these classes. These approaches,
however, consider instances of classes in their analysis and not relations between
classes, as we do. As with other approaches to ontology mapping, our work can
be viewed as complementary to the work done by others.

8 Conclusion

We have outlined the design and implementation of Omen, an ontology match
enhancer tool, that improves existing ontology matches based on a probabilistic
inference. This tool is dependent upon a set of meta-rules which express the
influences of matching nodes on the existence of other matches across concepts
in source ontologies that are located in the proximity of the matching nodes. We
described how we implemented a simple first version of the matching tool and

12

discussed our preliminary results. We have also outlined several improvements
that can be made to the tool and identified several open questions that if resolved
can make the performance of the tool even better.

References

1. Bayesian network tools in java(bnj), version 2.0, July 2004.
2. Z. Ding and Y. Peng. A probabilistic extension to ontology language owl. In

37th Hawaii International Conference On System Sciences (HICSS-37), Big Island,
Hawai, 2004.

3. A. Doan, J. Madhavan, P. Domingos, and A. Halevy. Learning to map between
ontologies on the semantic web. In The Eleventh International WWW Conference,
Hawaii, US, 2002.

4. J. Euzenat and P. Valtchev. Similarity-based ontology alignment in OWL-Lite.
In The 16th European Conference on Artificial Intelligence (ECAI-04), Valencia,
Spain, 2004.

5. E. Hovy. Combining and standardizing largescale, practical ontologies for machine
translation and other uses. In The First International Conference on Language
Resources and Evaluation (LREC), pages 535–542, Granada, Spain, 1998.

6. D. Koller, A. Levy, and A. Pfeffer. P-Classic: a tractable probabilistic description
logic. In 14th National Conference on Artificial Intelligence (AAAI-97), 1997.

7. D. Koller and A. Pfeffer. Probabilistic frame-based systems. In Fifteenth National
Conference on Artificial Intelligence (AAAI-98), Madison, Wisconsin, 1998. AAAI
Press.

8. S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity flooding: A versatile graph
matching algorithm and its application to schema matching. In 18th International
Conference on Data Engineering (ICDE-2002), San Jose, California, 2002. IEEE
Computing Society.

9. P. Mitra, G. Wiederhold, and S. Decker. A scalable framework for interoperation of
information sources. In The 1st International Semantic Web Working Symposium
(SWWS’01), Stanford University, Stanford, CA, 2001.

10. N. F. Noy and M. A. Musen. Anchor-PROMPT: Using non-local context for se-
mantic matching. In Workshop on Ontologies and Information Sharing at the Sev-
enteenth International Joint Conference on Artificial Intelligence (IJCAI-2001),
Seattle, WA, 2001.

11. N. F. Noy and M. A. Musen. The PROMPT suite: Interactive tools for ontol-
ogy merging and mapping. International Journal of Human-Computer Studies,
59(6):983–1024, 2003.

12. S. Prasad, Y. Peng, and T. Finin. A tool for mapping between two ontologies
using explicit information. In AAMAS 2002 Workshop on Ontologies and Agent
Systems, Bologna, Italy, 2002.

