
Contexts for the Semantic Web

R.Guha2, R.McCool1 and R.Fikes1

1 Knowledge Systems Lab., Stanford University, USA
2 IBM Research, USA

Abstract. A central theme of the semantic web is that programs should
be able to easily aggregate data from different sources. Unfortunately,
even if two sites provide their data using the same data model and vo-
cabulary, subtle differences in their use of terms and in the assumptions
they make pose challenges for aggregation. Experiences with the TAP
project reveal some of the phenomena that pose obstacles to a simplis-
tic model of aggregation. Similar experiences have been reported by AI
projects such as Cyc, which has lead to the development and use of
various context mechanisms. In this paper we report on some of the
problems with aggregating independently published data and propose a
context mechanism to handle some of these problems. We briefly survey
the context mechanisms developed in in AI and contrast them with the
requirements of a context mechanism for the semantic web. Finally, we
present a context mechanism for the semantic web that is adequate to
handle the aggregation tasks, yet simple from both computational and
model theoretic perspectives.

1 Introduction

The ease with which web sites could link to each other doubtless contributed to
the rapid adoption of the World Wide Web. It is hoped that as the semantic web
becomes more prevalent, programs will be able to similarly weave together data
from diverse sites. Indeed, the data model behind RDF was significantly moti-
vated by the fact that directed labelled graphs provided a simple, but effective
model for aggregating data from different sources.

Unfortunately, while the languages of the semantic web (RDF, RDFS, OWL,
etc) provide a method for aggregation at the data model level, higher level differ-
ences between data sources sometimes make it inappropriate to directly merge
data from them. Just as with the human readable web, semantic web publish-
ers make assumptions and use the same term in subtly different ways. On the
human readable web, the human consumers of web pages are able to use their
common sense to reconcile these differences. On the semantic web, we need to
develop the mechanisms that allow us to explicitly represent and reason with
these assumptions and differences. This will enable the programs that consume
data from the semantic web to reconcile these differences, or at least, avoid the
problems that arise by applying an overly simple aggregation model to such data
sources.

In the past, AI researchers have encountered similar issues when aggregating
structured knowledge from different people or even the same person at different
times. To handle these, mechanisms such as contexts and micro-theories have
been proposed and implemented in projects such as Cyc [17]. While the kind of
phenomena encountered in those projects are substantially more intricate and
unlikely to be encountered in the near future on the semantic web, the scale and
federated nature of the semantic web pose a new set of challenges. We believe that
a context mechanism that is similar in spirit to the earlier context mechanisms
will be not only useful, but required to achieve the semantic web vision. However,
the differences between AI systems and the semantic web also mean that a
context mechanism for the semantic web will have substantial differences from
the AI context mechanisms. In this paper, we discuss the motivation for some of
the basic requirements and present some possibilities for a context mechanism
for the semantic web.

We begin by recounting some of the problems in aggregating data from dif-
ferent sources that were encountered on the TAP [20] project. These examples
provide the motivation for the capabilities required of a context mechanism for
the semantic web. We then present a simple context mechanism for handling
these problems. After that, we discuss the model theory extensions required
to incorporate this mechanism into RDF. Finally, we discuss related work and
semantic web issues and constructs related to contexts.

2 Overview of TAP

The TAP project [20], [18] has over the last three years attempted to create
platforms for publishing to and consuming data from the Semantic Web. Using
this platform, we have built a number of applications [19] both to validate our
assumptions and to help bootstrap the semantic web.

Building anything more than the simplest toy applications requires a sub-
stantial amount of data. Unfortunately, the semantic web, in its current stage,
has little to offer in this regard. On the other hand, we do have a very large
body of unstructured knowledge in the human readable World Wide Web. So,
both to solve our problem and to bootstrap the semantic web, we have created
a large scale knowledge extraction and aggregation system called onTAP. on-
TAP includes 207 HTML page templates which are able to read and extract
knowledge from 38 different high quality web sites. The HTML template system
has currently read over 150,000 pages, discovering over 1.6 million entities and
asserting over 6 million triples about these entities. The system that aggregates
this data can run in either a dynamic mode, in response to a query from an
application, or in a batch mode. In batch mode, this aggregator is used to create
a classification index for keyword-based queries and for scanning of documents
for referenced entities.

onTAP also includes a system to read political news articles from Yahoo!
News. The articles in this news feed are matched against natural language pat-
terns to extract entities, attributes of and relationships between these entities.

Work is currently underway to expand this system to read more news sources.
This system has read 46,113 articles to discover 6,052 unique entities and 137,082
triples about them.

Most of the content of TAP is obtained via these templates that draw on
HTML pages that are targeted at humans. However, we believe that obser-
vations regarding the contextual phenomena associated with this data can be
extrapolated to the case where the data is directly published by the sites in
a structured form. Most of the sites that TAP uses do have their content in
a structured form in a database. Front end processors query the database and
format the data into HTML. When a site such as Amazon makes its data avail-
able in a structured form, they publish the same data. That is, the format and
markup language used are different, but the assumptions, approximations and
other contextual phenomena that are in their HTML pages are also present in
the structured data that they publish.

3 Contextual Phenomena

In this section we discuss some of the contextual phenomena that we observed
in the process of building the TAP knowledge base that cause problems in data
aggregation. The examples of contextual phenomena we observed can be classi-
fied into a small number of varieties of contexts. Here we describe each of these
varieties along with some examples that we encountered. We also discuss how
we would like to handle each of these cases during aggregation.

Class Differences Different sites often use a particular class in slightly differ-
ent ways. Sites may differ on the meaning of seemingly unambiguous concepts
such as Person. For example, the site Who2 classifies C3PO (the robot in
Star Wars) as a person, whereas most other sites classify it as a robot. During
aggregation, we should map Who2’s use of Person to something more gen-
eral. Alternately, we can believe what Who2 has to say about some resource,
unless what it says contradicts what some other site says.

Propositional Attitude A related phenomenon is that of a site having an
implicit propositional attitude. For example, many sites providing reviews of
television shows specify that Josiah Bartlet (a character who plays the role of
the President of the US in the television series ‘West Wing’) is the President
of the United States. During aggregation, the propositional attitude of these
statements should be made explicit.

Property Type Differences A common source of differences between sites is
that property types such as capacity and price are used differently. An exam-
ple is the capacity of nuclear power plants. These plants have two different
kinds of capacities: a design capacity and an actual capacity. Some sites
specify the design capacity while others specify the actual capacity, but in
most cases they just refer to it as the capacity. When aggregating, we need
to either create a generalization of the two capacities or determine which
capacity a particular site is referring to and map the capacity on that site
to the appropriate version of capacity in the aggregate.

Point of View More substantial differences occur when there are conflicting
points of view. Is Taiwan a country of its own, or a province of China? The
answer depends very strongly on which site is queried. Similarly, different
sites classify Hamas as a terrorist organization, a freedom fighting organiza-
tion and a humanitarian organization. This kind of subjective data is often
mixed in with more objective data (like the head of Hamas or the capital
of Taiwan). When aggregating data from these sites, we would like to either
make the subjectivity explicit (through the use of propositional attitudes)
or only selectively import those facts that are not contentious.

Implicit Time Sites often publish a piece of data that is true at the time
of publication, with the temporal qualification being left implicit. Equally
often, this data does not get updated when it no longer holds. There are a
number of sites that list Bill Clinton as the President of the US, that refer
to Yugoslavia as a country, etc. Unfortunately, such implicitly temporally
qualified data is often mixed in with data that is not temporally qualified.
For example, it is still true that Bill Clinton graduated from Yale and the
latitude and longitude of Sarajevo have not changed. When aggregating data
from these sites, we would like to either make the time explicit or only
selectively import those facts that are not likely to have changed.
A similar phenomenon is that of a site leaving the unit of measure associated
with an attribute value implicit. So, instead of specifying the price as US$40,
they might simply say 40. In such cases, we need to either make the unit of
measure explicit or perform the appropriate conversion.

Approximations Approximations are another source of differences between
sites. For example, the CIA World Factbook provides approximate values
for the population, area, etc. of all countries. More accurate numbers are
typically available from the governments of each of these countries, only
some of which are online. We like to be able to combine data from the CIA
World Factbook and data from the governments, preferring the government
data when it is available.

We recognize that these differences could be because the TAP data was ob-
tained by extracting structured data from HTML pages that were intended for
human consumption. However, these phenomena are not an artifact of the infor-
mation being published in an unstructured format. Most of the information on
these sites is drawn from structured databases and these phenomena manifest
themselves in these databases as well. Consequently, we believe that these prob-
lems will persist even when the data is made available in a machine readable
form.

These kinds of differences between sites pose problems when data from these
sites is aggregated. The problem is not that some of these sites are not trust-
worthy or that all of their data is bad. In fact, sources of data such as the CIA
Factbook and Who2 are rich and useful repositories that should part of the se-
mantic web. What we need is a mechanism to factor the kinds of differences
listed above as part of the data aggregation process. Various formalizations of
context mechanisms have been proposed in the AI literature to handle this pro-

cess of factoring differences in representations between knowledge bases. In the
next section we first briefly review some of the context related concepts from
AI, note the differences between those and our requirements for the semantic
web and then, in the following section, propose a simplified version to solve our
problem for the semantic web.

4 Contexts in AI

Contexts as first class objects in knowledge representation systems have been
the subject of much study in AI. KR systems as early as KRL [2] incorporated a
notion of contexts. The first steps towards introducing contexts as formal objects
were taken by McCarthy ([14], [15]) and Guha [10] in the early 1990s. This was
followed by a number of alternate formulations and improvements by Buvac [6]
[4], Fikes [5], Giunchiglia [8], Nayak [16] and others. Contexts/Microtheories
are an important part of many current KR systems such as Cyc [17]. Contexts
remain an active area of research in AI and Philosophy.

Contexts have been used in AI to handle a wide range of phenomena, a cate-
gorization of which can be found in [9]. They have been used in natural language
understanding to model indexicals and other issues that arise at the semantic
and pragmatic processing layers. They have found extensive use in common-
sense reasoning systems where they are used to circumscribe the scope of naive
theories. These systems use nested contexts, with the system being able to tran-
scend the outermost context to create a new outer context. Both common sense
and natural language systems also have a class of contexts that are ephemeral,
that might correspond to a particular utterance or to a particular problem solv-
ing task. The ability to easily introduce a new context and infer attributes of
that context adds substantial complexity to these context mechanisms. Contexts
have also been used in model based reasoning [16] to partition models at different
levels of abstraction.

The scope and complexity of the AI problems that contexts have been em-
ployed for is substantially more than anything we expect to encounter on the
semantic web. The primary role for contexts on the semantic web is to factor the
differences (like the ones described earlier) between data sources when aggregat-
ing data from them. Consequently, we do not need nested contexts, ephemeral
contexts and the ability to transcend contexts.

On the other hand, the expected scale and highly distributed nature of the
semantic web is in contrast to AI systems, most of which are much smaller and
centralized. So, while we don’t need the level of functionality provided by the AI
formulations of contexts, we do place stronger constraints on the computational
complexity and ease of use of the context mechanism.

In the next section, we develop a context mechanism for the semantic web.
In the following section, we discuss the model theory extensions required for this
mechanism.

5 Contexts for the SW

We present our context mechanism in the following setting. We have semantic
web content (in RDFS or one of the OWL dialects) from a number of different
URLs. The content from each URL is assumed to be uniform, but there may be
differences like the ones described earlier between the content from the different
URLs. We would like to create an internally consistent aggregate of the data
from these different sites. The aggregate should be maximal in the sense that it
should incorporate as much of the data from the different URLs as possible.

Each data source (or collection of data sources) is abstracted into a context.
Contexts are first class resources that are instances of the class Context3. We
define a PropertyType (contextURL) whose domain is Context that specifies the
location(s) of the data source(s) corresponding to the context. The contents of
the data source(s) are said to be true in that context. For the sake of keeping the
description simple, for the remainder of this paper, unless otherwise specified,
we will assume that the context has a single data source and that the URL of the
context is that of the data source. So, for example, if a chunk of RDF is available
at the URL tap.stanford.edu/People.rdf, we can have a context corresponding to
this URL and the contents of this URL are said to be true in that context. Since
the context is a resource, like any other resource on the semantic web, other
chunks of RDFS/OWL can refer to it.

We are interested in defining contexts that aggregate data from other con-
texts. In keeping with the spirit of the semantic web, we would like to do this by
declaratively specifying these new Aggregate Contexts. The different mechanisms
that may be used in specifying these aggregate contexts define our design space.
We start by examining the very general mechanism used in [10], [15] which has
been followed by others in the AI community. We then present a much simpler,
though less expressive variant that might be adequate for the semantic web.

Guha [10] and McCarthy [15] introduced a special symbol ist and the nota-
tion ist(ci, ϕ) to state that a proposition ϕ is true in the context ci. Further,
these statements can be nested, so that statements like ist(ci, ist(cj , ϕ)) can be
used to contextualize the interpretation of contexts themselves. The system is
always in some context. The system can enter and exit contexts. At any point in
time, there is an outermost context, which can be transcended by creating a new
outer context. A symbol can denote different objects in different contexts and
the domains associated with different contexts can be different. Since contexts
are first class objects in the domain, one can quantify over them, have functions
whose range is a context, etc. All this allows one to write very expressive formu-
lae that lift axioms from one context to another. While this is very convenient, it
also makes it quite difficult to provide an adequate model theory and extremely
difficult to compute with.

Nayak [16], Buvac [3] and others have tried to simplify this general formu-
lation by introducing restrictions. Nayak considers the case where no nesting is

3 We will drop namespace qualifiers, etc. for the sake of readability. Terms in this font
refer to RDF resources.

allowed, contexts may only appear as the first argument to ist and are not first
class objects (i.e., cannot be quantified over, etc.). Under these constraints, a
classical modal logic like S5 can be used to provide a model theory for contexts.
Buvac considers the case where a symbol is restricted to denote the same object
in all contexts. For the purposes of the semantic web, Nayak’s restrictions seem
rather severe, but Buvac’s may be acceptable. Both assume the Barcan formula:

∀(x)ist(c, ϕ(x)) ↔ ist(c,∀(x)ϕ(x)) (1)

While these restrictions allow them to define a clean model theory, they are not
enough to give us computational tractability. In fact, it is easy to show that all
of these logics are not even semi-decidable.

Giunchiglia [8] and other researchers at Trento have used the notion of a
bridge rule to formalize contexts. Much of their work is in the propositional
realm and hence not directly relevant to the semantic web.

A general theme behind all these approaches is the introduction of the single
interpreted symbol ist. ist is the only new symbol for which the underlying
logic provides an interpretation. This is in contrast with RDF, RDFS, etc. in
which a number of symbols (e.g., Class, PropertyType, subClassOf , ...) are all
interpreted by the logic. We now extend this approach to handle contexts.

An aggregate context is a context whose contents (i.e., the statements that
are true in that context) are lifted from other contexts. That is, they are im-
ported into the aggregate context from other contexts after appropriate normal-
ization/factoring. We now introduce a number of vocabulary elements that can
be used to specify this lifting. This list is not exhaustive, but is adequate to cover
the most common types of contextual differences that we discussed in section 3.
We give informal descriptions and axiomatic definitions of these terms here and
in the next section, outline the approach for defining the model theory for these
constructs. We will use ist as a predicate in the meta-theory for the axiomatic
definitions, even though it is not part of the base language.

– AggregateContext: This subclass of contexts corresponds to aggregate
contexts. Since the semantic web allows anyone to make statements about
any resource, there can be complications when different sites provide differ-
ent definitions for a particular aggregate context. More specifically, allowing
other contexts to specify what should be imported into a context, while safe
in simple languages like RDF/S, opens the doors to paradoxes in more ex-
pressive languages like OWL. Even with RDF/S, it is important that the
lifting process be simple to execute. To achieve this, we constrain the URL
of an aggregate context to contain the full specification of what it imports. In
other words, a lifting rule for importing into a particular context is true only
in that context. We will later consider a semantic constraint for enforcing
this.

– importsFrom: This is a property type whose domain is AggregateContext
and whose range is Context. If c1 importsFrom c2, then everything that is
true in c2 is also true in c1.

ist(c2, p) ∧ ist(c1, importsFrom(c1, c2)) → ist(c1, p) (2)

We do not allow cycles in the graph defined by importsFrom. importsFrom
is the simplest form of lifting and corresponds to the inclusion of one context
into another. The more sophisticated forms of lifting require us to create a
resource for the lifting rule.

– LiftingRule: This class has all the lifting rules as its instances. Each LiftingRule
must have a single AggregateContext as the value for targetContext and
single Context for sourceContext. We have subclasses of LiftingRule for
the different kinds of lifting we would like to perform. An AggregateContext
may have any number of lifting rules that lift into it.
Lifting rules generally ignore some of the triples in the source context, import
some of the triples without any modification, transform and then import
some other set of triples and optionally add some new set of triples into
the aggregate context. The specification of a lifting rule involves specifying
which triples to import or which triples to add and how to perform the
necessary transformations. Some lifting rules may also specify a preference
for one source over another for some class of triples. Our goal here is not
to specify an exhaustive set of transformations, but to cover some of the
important ones and provide a flavor for the general approach.
An important factor that impacts the representation of these LiftingRules is
whether the aggregation process is restricted to be monotonic. If the process
is allowed to be non-monotonic, the addition of a new LiftingRule to an
aggregate context may cause certain triples to no longer hold. Non-monotonic
lifting rules have the ability to say that everything not explicitly specified
to be ignored or modified is to be imported. Consequently, they are easier
to write, but do have the disadvantages of non-monotonicity. We describe
the monotonic version and then suggest how it might be made more terse
by introducing a non-monotonic construct.

– Selective Importing: These lifting rules explicitly specify the triples that
should be directly imported from the source to the destination. Each triple
may be specified by the property type or the first argument or the second
argument. Optionally, these importing rules can specify the constraints on
the first/second argument or combinations of property type and constraints
on first/second argument etc. Examples: import capitalCity and area from
the CIA Factbook. Import everything for instances of Book and AudioCD
from Amazon. Import manufacturer for instances of ElectronicsProduct
from Amazon.

ist(ci, targetContext(lr, ci) ∧ sourceContext(lr, cj) ∧ sourceF ilter(lr, sc)∧
targetF ilter(lr, tc) ∧ propF ilter(lr, p) ∧ type(lr, SelectiveImportLiftingRule))

ist(cj , type(x, sc) ∧ type(y, tc) ∧ p(x, y)) →
ist(ci, p(x, y))

(3)
– Preference Rules: In many cases, a number of sources have sparse data

about a set of entities, i.e., each of them might be missing some of the
attributes for some of the entities they refer to and we might want to mitigate

this sparcity by combining the data from the different sources. However, we
might a preference for one source over another, if the preferred source has the
data. A preference rule can either specify a total preference ordering on list
of sources or simply that one particular source is preferred over another. As
with Selective Importing lifting rules, a preference rule can be constrained
to apply to only a particular category of triples. Example: Who2 has more
detailed information about more celebrities than IMDB, but IMDB’s data
is more accurate. This class of lifting rule allows us to combine Who2 with
IMDB, preferring IMDB over Who2 if both have values for a particular
property type for the same individual.
A more sophisticated (but substantially more computationally complex) ver-
sion of preference lifting rules is in terms of consistency, i.e., if an inconsis-
tency is detected in the target context, triples from the less preferred context
are to be eliminated first (to try and restore consistency).
Preference Lifting rules are non-monotonic across contexts in the sense that
the addition of a new triple in one of the source contexts can cause another
triple in the target context to be removed. However, they do not induce
non-monotonicity within a context.

ist(ci, targetContext(lr, ci) ∧ sourceContext(lr, cj) ∧ sourceContext(lr, ck)∧
propF ilter(lr, p) ∧ sourceF ilter(lr, sc) ∧ targetF ilter(lr, tc)∧
preferred(lr, cj) ∧ type(lr, PreferenceLiftingRule))∧

ist(cj , p(x, y) ∧ type(x, sc) ∧ type(y, tc))∧
¬ist(ck, (∃(z)p(x, z) ∧ type(x, sc) ∧ type(z, tc) ∧ (z 6= x)) →

ist(ci, p(x, y))
(4)

– Mapping Constants: One of the most common transformations required is
to distinguish between slightly different uses of the same term or to normalize
the use of different terms for the same concept. These lifting rules specify the
source term and the target term. As with selective importing lifting rules,
we can constrain the application of these mappings to specific categories of
triples. Example: Many different sites use the term price, some referring to
price with tax, some to price with tax and shipping, etc. This class of lifting
rules can be used to distinguish between them in the aggregate context. The
earlier example of nuclear power plant capacity also falls into this category.

ist(ci, targetContext(lr, ci) ∧ sourceContext(lr, cj)∧
propMapTo(lr, p2) ∧ sourceF ilter(lr, sc)∧
propMapFrom(lr, p1) ∧ type(lr, T ermMappingLiftingRule))∧

ist(cj , p1(x, y) ∧ type(x, sc) ∧ type(y, tc)) → ist(ci, p2(x, y))
(5)

– Mapping more complex graph patterns: All the above lifting rules deal
with cases where the target graph is isomorphic to (portions of) the source
graph. Sometimes, this constraint cannot be satisfied. For example, if the

source leaves time implicit and the target has an explicit model of time, the
source and target graphs are not likely to be isomorphic.
Assuming we don’t use an explicit ist in the base language, we can introduce
a special construct for each phenomenon, such as making implicit time ex-
plicit. With this approach, we would introduce a property type (contextTemporalModel)
to specify the model of time used by a context (implicit, Situation Calculus,
Histories, etc.). In the case where the context used implicit time, we use
another property type (contextImplicitT ime) to specify the implicit time.
Using a reified version of the Situation Calculus to represent time, the fol-
lowing axiom defines these property types.

ist(ci, contextTemporalModel(ci, ImplicitStaticT ime) ∧ contextImplicitT ime(ci, ti))∧
ist(cj, targetF ilter(lr, tc) ∧ contextTemporalModel(cj , SitCatModel)∧

type(lr, SitCalLiftingRule) ∧ propF ilter(lr, p) ∧ sourceF ilter(lr, sc)∧
ist(cj , type(x, sc) ∧ type(y, tc) ∧ p(x, y)) →
ist(ci, (∃z)type(z, SitProp) ∧ time(z, ti)∧

sitProp(z, p) ∧ sitSource(z, x) ∧ sitTarget(z, y))
(6)

A more general solution is to identify common transformation patterns (as
opposed to particular phenomenon) and introduce vocabulary to handle
these. For example, a common pattern involves reifying a particular triple to
make something explicit. Examples of this include making time and propo-
sitional attitudes. Another common pattern involves transforming a literal
into a resource. A common example of this is to make the unit of measure
or language explicit.

– Default Lifting: The constructs described above are monotonic. In practice,
it is often convenient to be able to say that all of the contents of one context
should be included in the aggregate context without any modification unless
one of the other lifting rules applies. To do this, we introduce a property
type analogous to importsFrom, called defaultImportsFrom that specifies
this.

While not exhaustive, we believe this vocabulary and associated set of lifting
rules are sufficient to solve current and many future issues that arise in data
aggregation on the semantic web. More importantly, this functionality can be
incorporated into the semantic web with fairly small and simple additions to the
existing standards.

6 Model Theory

In the last section we discussed some potential alternatives for introducing con-
texts into the semantic web. In this section, we discuss issues related to the model
theory. Of course, the particular alternative used has significant impact on the
model theory. But there are some basic changes that are required, independent

of the approach used. We discuss these first and then consider the impact on the
model theory corresponding to the different approaches.

We restrict our attention to the model theory for RDFS. It should be possible
to provide a similar treatment for at least the simpler versions of OWL.

The most basic change introduced by the addition of contexts is that the
denotation of a resource is not just a function of the term and the interpretation
(or structure), but also of the context in which that term occurs. We will as-
sume that the denotation of literals is not affected by the context. This context
dependence can be incorporated as follows. The definitions of interpretation and
satisfaction (as given in the RDF Model Theory [11]) are changed as follows.

A simple interpretation I of a vocabulary V is defined by:

1. A non-empty set IR of resources, called the domain or universe of I. C is a
subset of IR corresponding contexts.

2. A set IP, called the set of properties of I.
3. A mapping IEXT from IP into the powerset of IR x IR i.e. the set of sets of

pairs < x, y > with x and y in IR .
4. A mapping IS from the power set URI x URI in V into (IR union IP). The

power set URI x URI corresponds to resource, context pairs. So, under this
modified definition, IS maps resources to objects in the domain in a context.
This is the only non-trivial change.

5. A mapping IL from typed literals in V into IR.
6. A distinguished subset LV of IR, called the set of literal values, which con-

tains all the plain literals in V

The denotation of a ground graph is now with respect to the context it occurs
in, which manifests itself as the second URI in the argument to IS in (4) above.
We update and extend the definition of satisfaction so that instead of defining
satisfaction for a graph, we define it for a set of graphs, each in a context. The
updated definition of satisfaction is as follows:

1. if E is a plain literal ”aaa” occurring in c in V then I(E,c) = aaa
2. if E is a plain literal ”aaa”@ttt in V occurring in c then I(E,c) = < aaa, ttt >
3. if E is a typed literal in V occurring in c then I(E,c) = IL(E)
4. if E is a URI reference in V occurring in the context c, then I(E,c) = IS(E,c)
5. If E is a ground triple s p o in the context c then I(E,c) = true if c, s, p and

o are in V, IS(p,c) is in IP and < IS(s, c), IS(o, c) > is in IEXT(IS(p,c)).
Otherwise I(E,c)= false.

6. if E is a ground RDF graph in the context c then I(E,c) = false if I(E’,c) =
false for some triple E’ in E, otherwise I(E,c) =true.

7. if < Ei, ci > are a set of ground graphs occuring each occurring in the
corresponding context, then I(< Ei, ci >) = false if I(Ei, ci) = false for some
grap Ei associated with the context ci, otherwise I(< Ei, ci >) =true.

Finally, the definition of entailment is updated so that a ground graph G1 in
a context C1 is entailed by a set of graph-context pairs < Gi, Ci > if < G1, C1 >
is true under every interpretation under which (< Gi, Ci >) is true.

It is easy to see that the only significant change is the addition of the context
argument to the interpretation. The change in the definition of statisfaction is
that we can no longer simply merge graphs without regard to where they occur.
This is of course the the point of this whole exercise.

The other changes to the model theory depend on whether we have a pred-
icate/modal like ist in the vocabulary and the constraints we impose on quan-
tifying over contexts, quantifying into contexts, whether we want the Barcan
formula, etc. Since this approach has been discussed quite exhaustively in the
literature ([3], [16], Giunchiglia [8], [7]) and since the use of an explicit ist is not
very appropriate for the semantic web, we will not go into the details of that
approach here.

The less expressive approach which eschews the use of an explicit symbol like
ist in favour of a suite of specialized interpreted symbols (such as importsFrom)
involves a less substantial, though more cumbersome change to the model theory.
Following the pattern of sections 3 and 4 of [11], we can provide interpretations
for the different context specific vocabulary items introduced in the last section.
For example, the interpretation for the term importsFrom is: if I(c1 imports-
From c2, c1) is true and I(E,c2) is true then I(E, c1) is true. The interpretations
for the other vocabulary terms, though more verbose, are still straightforward
model theoretic equivalents of the axiomatic definitions given earlier.

Finally, we need to add a semantic constraint so that a LiftingRule for
specifying what to lift into a particular context is true only in that context. So,
if I(c1, c2) 6= I(c2, c2) then I(c2 targetContext lr, c1) is false.

It is important to note that all the theorems and lemmas of [11] continue to
hold. Overall, it appears that a restricted context mechanism that does not use
an explicit ist can be accommodated into the model theory without substantial
perturbations.

7 Related Work and Discussion

The issue of contextuality and contexts as first class objects has been a topic of
much discussion since the early days of RDF. In this section, we first discuss the
relation between the context mechanism presented in this paper and reification
(and related proposals). We then discuss the issue of non-monotonicity that is
raised by contexts.

7.1 Reification

RDF provides reification as a mechanism for making statements about state-
ments. There are significant differences between reification and contexts both
in what they are intended for and in their structure. Reification is intended to
enable statements about potential statements (which may or may not be true).
They can be useful for making statements about provenance. Since they have no
coupling with the truth of the triple that has been reified, they cannot be used

to relate the truth of a triple in one graph to its truth in another graph. Conse-
quently, it is hard to see how reification can be used to mediate aggregation.

In contrast, the primary goal of the context mechanism presented here is to
enable the aggregation while factoring in the differences between the data sources
being aggregated. It is only incidental that the context mechanism may be used
to make other kinds of statements about graphs. Since the goal is to aggregate
triples that are true in the graphs being aggregated, contexts and truth are very
closely related. Contexts and reification are also very different in their structure
and in where they appear in the model theory. Because of the close coupling
between truth and contexts, they cannot be a posteriori introduced at the RDF
Vocabulary level. They appear in the guts of the model theory, in the definition
of an interpretation. This is in contrast to the reification which does not play
any significant role in the model theory.

In addition to the reification mechanism in RDF, the system/language CWM/N3
supports a construct called contexts. As far as we can make out, this notion of
context is not substantially different from reification.

The shortcomings of reification have lead to numerous alternative proposals,
the most substantial of which are those by Klyne [13], [12]. Indeed some of the
constructs presented there, drawn from earlier work by Guha [10] and McCarthy
[15], are very similar in spirit to those presented here. The extension to the
model theory presented here is simpler. Unlike that work we avoid the use of
an ist construct and significantly reduce the complexity. Further, our focus in
this paper is on data aggregation, not on introducing contexts as a general
piece of functionality into the semantic web. The general problem of contextual
dependence is much too complex to tackle head-on (at least for the semantic
web). We believe that we need to be driven by concrete tasks such as data
aggregation to achieve progress.

7.2 Non-monotonicity

The context mechanism discussed in this paper leads to non-monotonic aggrega-
tion in the following sense. A graph G1 might imply ϕ, but because of of selective
lifting, preferential lifting or transformation during lifting, the aggregation of this
graph with zero or more other graphs might not imply ϕ. It has been argued [1]
that the semantic web should be based purely on classical monotonic logics for
reasons of scalability. While monotonicity might be desirable at the local level,
it is neither desirable nor feasible at the level of the semantic web as a whole.
Further, the computational intractability associated with non-monotonic logics
in AI are not because of non-monotonicity itself, but because of the particular
mechanisms used to introduce it.

What we need is the ability to say that a particular theory T1 implies ϕ
without the fear that additions to T1 cause ϕ to no longer be true. However, T1,
when aggregated with other theories T2, T3, ... might lead to a superior theory
which does not imply ϕ. The examples given in section 3, especially the example
of the CIA factbook combined with census data from particular countries is a
good example of why this is desirable. The issue is not that of the CIA factbook

not being trustworthy. It has a lot of good data that we would like to be able
to use. It would be undesirable if we had to choose between it and data from
the census bureaus. In the past, lacking a proper context mechanism, we have
been unable to associate a granularity with the monotonicity. With the context
mechanism, we are able to control the points of non-monotonicity. With the
context mechanism, we are able to distinguish between non-monotonicity within
a context versus non-monotonicity across contexts. We remain monotonic within
contexts, but can be non-monotonic across contexts.

8 Conclusions

As shown by the experience with TAP and many other projects that aggregate
independently created data, differences in assumptions, use of terms, etc. lead
to problems during aggregation. In this paper, we present an adaptation of the
context mechanism from AI to solve these problems. We avoid the general ist
construct and the associated complexity but provide enough support to solve
the contextual problems that arise in aggregation.

References

1. Tim Berners-Lee. Semantic Web Architecture. http://www.w3.org/

DesignIssues/ Rules.html.

2. Daniel G. Bobrow and Terry Winograd. On overview of krl, a knowledge repre-
sentation language. Cognitive Science, 1:3–46, 1997.

3. Sasa Buvač. Quantificational logic of context. In Howard Shrobe and Ted Senator,
editors, AAAI 1996, pages 600–606, Menlo Park, California, 1996. AAAI Press.

4. Saša Buvač, Vanja Buvač, and Ian Mason. Metamathematics of con-
texts. Fundamenta Mathematicae, 23(3), 1995. Available from http:// www-
formal.stanford.edu/ buvac.

5. Saša Buvač and Richard Fikes. A declarative formalization of knowledge trans-
lation. In Proceedings of the ACM CIKM: the Fourth International Conference
in Information and Knowledge Management, 1995. Available from http:// www-
formal.stanford.edu/ buvac.

6. Saša Buvač and Ian Mason. Propositional logic of context. In AAAI, pages 412–
419, 1993.

7. Valeria de Paiva. Natural deduction and context as (constructive) modality. In
CONTEXT 2003, pages 116–129, 2003.

8. Fausto Giunchiglia and Chiara Ghidini. Local models semantics, or contextual
reasoning = locality + compatibility. In Anthony G. Cohn, Lenhart Schubert, and
Stuart C. Shapiro, editors, KR’98: Principles of Knowledge Representation and
Reasoning, pages 282–289. Morgan Kaufmann, San Francisco, California, 1998.

9. R. Guha and John McCarthy. Varieties of contexts. In CONTEXT 2003, pages
164–177, 2003.

10. Ramanathan V. Guha. Contexts: a formalization and some applications. Technical
Report STAN-CS-91-1399, Stanford CS Dept., Stanford, CA, 1991.

11. Pat Hayes. RDF Semantics. http://www.w3.org/TR/rdf-mt/.

12. Graham Klyne. Contexts and the semantic web. http://public.

research.mimesweeper. com/RDF/ RDFContexts.html.
13. Graham Klyne. Contexts for the semantic web. http://www.ninebynine.org/

RDFNotes/ UsingContextsWithRDF.html.
14. John McCarthy. Generality in artificial intelligence. In Vladimir Lifschitz, editor,

Formalizing Common Sense: Papers by John McCarthy, pages 226–236. Ablex
Publishing Corporation, Norwood, New Jersey, 1990.

15. John McCarthy. Notes on formalizing contexts. In Ruzena Bajcsy, editor, Pro-
ceedings of the Thirteenth International Joint Conference on Artificial Intelligence,
pages 555–560, San Mateo, California, 1993. Morgan Kaufmann.

16. P. Pandurang Nayak. Representing multiple theories. In B. Hayes-Roth and
R. Korf, editors, AAAI-94, pages 1154–1160, Menlo Park, CA, 1994.

17. R.Guha and D. Lenat. Context dependence of representations in cyc. In Colloque
ICO, 1993.

18. R.Guha and R. McCool. Tap: A semantic web platform. Computer Networks,
42:557 – 577, 2003.

19. R.Guha, R. McCool, and E. Miller. Semantic search. In WWW 2004, Budapest,
Hungary, 2003.

20. R.Guha and Rob McCool. Tap: Towards a web of data.
http://tap.stanford.edu/.

