
RTS-LiKe 2014 Luca Abeni – 1 / 44

Real-Time Scheduling and
Threads: Basics

Luca Abeni
luca.abeni@unitn.it

Real-Time Applications

Introduction

Definitions and Task
Model

Scheduling

Fixed Priorities

Schedulability Analysis

Dynamic Priorities / EDF

Multi-Processor
Scheduling

Real-Time Scheduling in
Linux

Setting the Scheduling
Policy

The Constant
Bandwidth Server

SCHED DEADLINE

RTS-LiKe 2014 Luca Abeni – 2 / 44

� The time when a result is produced matters

� A correct result produced too late is equivalent to a wrong

result (or to no result)

� What does “too late” mean, here?

� Applications characterised by temporal constraints that have to

be respected

� Temporal constraints are modelled using the concept of deadline

� Some activity has to finish before a specified time (deadline)

� Some data has to be generated before a deadline

� Some process/thread must terminate before a deadline

� ...

Processes, Threads, and Tasks

Introduction

Definitions and Task
Model

Scheduling

Fixed Priorities

Schedulability Analysis

Dynamic Priorities / EDF

Multi-Processor
Scheduling

Real-Time Scheduling in
Linux

Setting the Scheduling
Policy

The Constant
Bandwidth Server

SCHED DEADLINE

RTS-LiKe 2014 Luca Abeni – 3 / 44

� Algorithm → logical procedure used to solve a problem

� Program → formal description of an algorithm, using a programming

language

� Process → instance of a program (program in execution)

� Thread → flow of execution

� Task → process or thread

� A task can be seen as a sequence of actions . . .

� . . . and a deadline must be associated to each one of them!

� Some kind of formal model is needed to identify these “actions”

and associate deadlines to them

Mathematical Model of a Task - 1

Introduction

Definitions and Task
Model

Scheduling

Fixed Priorities

Schedulability Analysis

Dynamic Priorities / EDF

Multi-Processor
Scheduling

Real-Time Scheduling in
Linux

Setting the Scheduling
Policy

The Constant
Bandwidth Server

SCHED DEADLINE

RTS-LiKe 2014 Luca Abeni – 4 / 44

� Real-Time task τi: stream of jobs (or instances) Ji,k

� Each job Ji,k = (ri,k, ci,k, di,k):

� Arrives at time ri,k (activation time)

� Executes for a time ci,k

� Finishes at time fi,k

� Should finish within an absolute deadline di,k

ri,k
fi,k

di,k

ci,k

Mathematical Model of a Task - 2

Introduction

Definitions and Task
Model

Scheduling

Fixed Priorities

Schedulability Analysis

Dynamic Priorities / EDF

Multi-Processor
Scheduling

Real-Time Scheduling in
Linux

Setting the Scheduling
Policy

The Constant
Bandwidth Server

SCHED DEADLINE

RTS-LiKe 2014 Luca Abeni – 5 / 44

� Summing up: a job is an abstraction used to associate deadlines

(temporal constraints) to activities

� ri,k is the time when job Ji,k is activated (by an external event,

a timer, an explicit activation, etc...)

� ci,k is the computation time needed by job Ji,k to complete

� di,k is the absolute time instant by which job Ji,k must

complete

� job Ji,k respects its deadline if fi,k ≤ di,k

� Response time of job Ji,k: ρi,k = fi,k − ri,k

Periodic and Sporadic Tasks

Introduction

Definitions and Task
Model

Scheduling

Fixed Priorities

Schedulability Analysis

Dynamic Priorities / EDF

Multi-Processor
Scheduling

Real-Time Scheduling in
Linux

Setting the Scheduling
Policy

The Constant
Bandwidth Server

SCHED DEADLINE

RTS-LiKe 2014 Luca Abeni – 6 / 44

Periodic / Sporadic task τi = (Ci, Di, Ti): stream of jobs Ji,k, with

ri,k+1 = (or ≥) ri,k + Ti

di,k = ri,k +Di

Ci = max
k

{ci,k}

� Ti is the task period (or Minimum Inter-arrival Time)

� Di is the task relative deadline

� Ci is the task worst-case execution time (WCET)

� Ri is the worst-case response time:

Ri = maxk{ρi,k} = maxk{fi,k − ri,k}

� for the task to be correctly scheduled, it must be Ri ≤ Di

Example: Periodic Task Model

Introduction

Definitions and Task
Model

Scheduling

Fixed Priorities

Schedulability Analysis

Dynamic Priorities / EDF

Multi-Processor
Scheduling

Real-Time Scheduling in
Linux

Setting the Scheduling
Policy

The Constant
Bandwidth Server

SCHED DEADLINE

RTS-LiKe 2014 Luca Abeni – 7 / 44

� A periodic task has a regular structure (cycle):

� activate periodically (period Ti)

� execute a computation

� suspend waiting for the next period

void ∗Per iod icTask (void ∗arg)

{
< i n i t i a l i z a t i o n >;

<s t a r t p e r i o d i c t imer , per iod = T>;

while (cond) {
<do something . . . > ;

<wai t next a c t i v a t i o n >;

}
}

Graphical Representation

Introduction

Definitions and Task
Model

Scheduling

Fixed Priorities

Schedulability Analysis

Dynamic Priorities / EDF

Multi-Processor
Scheduling

Real-Time Scheduling in
Linux

Setting the Scheduling
Policy

The Constant
Bandwidth Server

SCHED DEADLINE

RTS-LiKe 2014 Luca Abeni – 8 / 44

Tasks are graphically represented by using a scheduling diagram. For

example, the following picture shows a schedule of a periodic task

τ1 = (3, 6, 8) (with WCET1 = 3, D1 = 6, T1 = 8)

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

Notice that, while job J1,1 and J1,3 execute for 3 units of time (WCET), job

J1,2 executes for only 2 units of time.

Real-Time Scheduling

Introduction

Definitions and Task
Model

Scheduling

Fixed Priorities

Schedulability Analysis

Dynamic Priorities / EDF

Multi-Processor
Scheduling

Real-Time Scheduling in
Linux

Setting the Scheduling
Policy

The Constant
Bandwidth Server

SCHED DEADLINE

RTS-LiKe 2014 Luca Abeni – 9 / 44

� A real-time task τi = (Ci, Di, Ti) (or τi = (Ci, Ti) if Di = Ti) is

properly served if all jobs respect their deadline...

� ...Appropriate scheduling is important!

� The scheduler must somehow know the temporal constraints

of the tasks...

� ...In order to schedule them so that such temporal constraints

are respected

� How should real-time tasks be scheduled? (scheduling algorithm?)

� Is it possible to schedule them so that all deadlines are respected?

� Does Linux provide an appropriate scheduling algorithm?

Real-Time Scheduling: Example

Introduction

Definitions and Task
Model

Scheduling

Fixed Priorities

Schedulability Analysis

Dynamic Priorities / EDF

Multi-Processor
Scheduling

Real-Time Scheduling in
Linux

Setting the Scheduling
Policy

The Constant
Bandwidth Server

SCHED DEADLINE

RTS-LiKe 2014 Luca Abeni – 10 / 44

� The task set T = {(1, 3), (4, 8)} is not schedulable by FCFS

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

� T = {(1, 3), (4, 8)} is schedulable using fixed priorities

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

So... Are Fixed Priorities Enough?

Introduction

Definitions and Task
Model

Scheduling

Fixed Priorities

Schedulability Analysis

Dynamic Priorities / EDF

Multi-Processor
Scheduling

Real-Time Scheduling in
Linux

Setting the Scheduling
Policy

The Constant
Bandwidth Server

SCHED DEADLINE

RTS-LiKe 2014 Luca Abeni – 11 / 44

� According to the previous example, a fixed-priority scheduler can be

appropriate for scheduling real-time tasks...

� ...Is this true in general, or only for some (theoretical) examples?

� Given a set of real-time tasks Γ = {τi}, can a fixed priority

scheduler allow to respect all the deadlines?

� Is it possible to know in advance if some deadline will be

missed?

� How to assign the priorities?

� If fixed priorities are enough, the SCHED FIFO and SCHED RR

policies can be used!

Optimal Priority Assignment

Introduction

Definitions and Task
Model

Scheduling

Fixed Priorities

Schedulability Analysis

Dynamic Priorities / EDF

Multi-Processor
Scheduling

Real-Time Scheduling in
Linux

Setting the Scheduling
Policy

The Constant
Bandwidth Server

SCHED DEADLINE

RTS-LiKe 2014 Luca Abeni – 12 / 44

� Given a periodic task set T with all tasks having relative deadline Di

equal to the period Ti (∀i, Di = Ti)

� The best assignment is the Rate Monotonic (RM) assignment

� Shorter period → higher priority

� Given a periodic task set with deadline different from periods:

� The best assignment is the Deadline Monotonic assignment

� Shorter relative deadline → higher priority

� For sporadic tasks, the same rules are valid as for periodic tasks

Utilisation-Based Analysis

Introduction

Definitions and Task
Model

Scheduling

Fixed Priorities

Schedulability Analysis

Dynamic Priorities / EDF

Multi-Processor
Scheduling

Real-Time Scheduling in
Linux

Setting the Scheduling
Policy

The Constant
Bandwidth Server

SCHED DEADLINE

RTS-LiKe 2014 Luca Abeni – 13 / 44

� Given a task set, is it possible to check if it is schedulable of not?

� In many cases it is useful to have a very simple test to see if the task

set is schedulable.

� A sufficient test is based on the Utilisation bound:

� The utilisation least upper bound for scheduling algorithm A is

the smallest possible utilisation Ulub such that, for any task set

T , if the task set’s utilisation U is not greater than Ulub

(U ≤ Ulub), then the task set is schedulable by algorithm A

Utilisation

Introduction

Definitions and Task
Model

Scheduling

Fixed Priorities

Schedulability Analysis

Dynamic Priorities / EDF

Multi-Processor
Scheduling

Real-Time Scheduling in
Linux

Setting the Scheduling
Policy

The Constant
Bandwidth Server

SCHED DEADLINE

RTS-LiKe 2014 Luca Abeni – 14 / 44

� Each task uses the processor for a fraction of time

Ui =
Ci

Ti

� The total processor utilisation is

U =
∑

i

Ci

Ti

� This is a measure of the processor’s load

Necessary Condition

Introduction

Definitions and Task
Model

Scheduling

Fixed Priorities

Schedulability Analysis

Dynamic Priorities / EDF

Multi-Processor
Scheduling

Real-Time Scheduling in
Linux

Setting the Scheduling
Policy

The Constant
Bandwidth Server

SCHED DEADLINE

RTS-LiKe 2014 Luca Abeni – 15 / 44

� If U > 1 the task set is surely not schedulable

� However, if U < 1 the task set may or may not be schedulable . . .

� If U < Ulub, the task set is schedulable !!!

� “Gray Area” between Ulub and 1

� We would like to have Ulub near to 1

� Ulub = 1 would be optimal!!!

Utilisation Bound for RM

Introduction

Definitions and Task
Model

Scheduling

Fixed Priorities

Schedulability Analysis

Dynamic Priorities / EDF

Multi-Processor
Scheduling

Real-Time Scheduling in
Linux

Setting the Scheduling
Policy

The Constant
Bandwidth Server

SCHED DEADLINE

RTS-LiKe 2014 Luca Abeni – 16 / 44

� We consider n periodic (or sporadic) tasks with relative deadline

equal to periods.

� Priorities are assigned with Rate Monotonic;

� Ulub = n(21/n − 1)

� Ulub is a decreasing function of n;

� For large n: Ulub ≈ 0.69

n Ulub n Ulub

2 0.828 7 0.728

3 0.779 8 0.724

4 0.756 9 0.720

5 0.743 10 0.717

6 0.734 11 . . .

Utilisation Bound for DM

Introduction

Definitions and Task
Model

Scheduling

Fixed Priorities

Schedulability Analysis

Dynamic Priorities / EDF

Multi-Processor
Scheduling

Real-Time Scheduling in
Linux

Setting the Scheduling
Policy

The Constant
Bandwidth Server

SCHED DEADLINE

RTS-LiKe 2014 Luca Abeni – 17 / 44

� If relative deadlines are less than or equal to periods, instead of

considering U =
∑n

i=1

Ci

Ti
, we can consider:

U ′ =

n∑

i=1

Ci

Di

� Then the test is the same as the one for RM (or DM), except that we

must use U ′ instead of U .

� Idea: τ = (C,D, T) → τ ′ = (C,D,D)

� τ ′ is a “worst case” for τ

� If τ ′ can be guaranteed, τ can be guaranteed too

Pessimism of the Analysis: Example

Introduction

Definitions and Task
Model

Scheduling

Fixed Priorities

Schedulability Analysis

Dynamic Priorities / EDF

Multi-Processor
Scheduling

Real-Time Scheduling in
Linux

Setting the Scheduling
Policy

The Constant
Bandwidth Server

SCHED DEADLINE

RTS-LiKe 2014 Luca Abeni – 18 / 44

τ1 = (3, 6), τ2 = (3, 12), τ3 = (6, 24);

U = 1 ;

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

Dynamic Priorities - Earliest Deadline First

Introduction

Definitions and Task
Model

Scheduling

Fixed Priorities

Schedulability Analysis

Dynamic Priorities / EDF

Multi-Processor
Scheduling

Real-Time Scheduling in
Linux

Setting the Scheduling
Policy

The Constant
Bandwidth Server

SCHED DEADLINE

RTS-LiKe 2014 Luca Abeni – 19 / 44

� RM and DM are optimal fixed priority assignments

� Maybe we can improve schedulability by using dynamic priorities?

� Fixed priority scheduling: a task τ always has the same priority

� Dynamic priority scheduling: τ ’s priority can change during

time...

� Let’s assume that the priority changes from job to job (a job

Ji,j always has the same priority ph,k)

� Simplest idea: give priority to tasks with the earliest absolute

deadline: di,j < dh,k ⇒ pi,j > ph,k

� Earliest Deadline First (EDF)

� DM → relative deadlines; EDF → absolute deadlines

Can We Do any Better than RM?

Introduction

Definitions and Task
Model

Scheduling

Fixed Priorities

Schedulability Analysis

Dynamic Priorities / EDF

Multi-Processor
Scheduling

Real-Time Scheduling in
Linux

Setting the Scheduling
Policy

The Constant
Bandwidth Server

SCHED DEADLINE

RTS-LiKe 2014 Luca Abeni – 20 / 44

� Yes (of course!): EDF can get full processor utilisation

� Consider a system of periodic tasks with relative deadline equal to

the period.

� The system is schedulable by EDF if and only if

∑

i

Ci

Ti
≤ 1

� Ulub = 1 !!!

� If Di 6= Ti:

� Processor demand approach or response time analysis can be

applied to EDF too

� But it is not obvious!

An Example – RM

Introduction

Definitions and Task
Model

Scheduling

Fixed Priorities

Schedulability Analysis

Dynamic Priorities / EDF

Multi-Processor
Scheduling

Real-Time Scheduling in
Linux

Setting the Scheduling
Policy

The Constant
Bandwidth Server

SCHED DEADLINE

RTS-LiKe 2014 Luca Abeni – 21 / 44

� τ1 = (3, 8, 8), τ2 = (6, 11, 11) ⇒ U = 0.92

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

An Example – RM

Introduction

Definitions and Task
Model

Scheduling

Fixed Priorities

Schedulability Analysis

Dynamic Priorities / EDF

Multi-Processor
Scheduling

Real-Time Scheduling in
Linux

Setting the Scheduling
Policy

The Constant
Bandwidth Server

SCHED DEADLINE

RTS-LiKe 2014 Luca Abeni – 21 / 44

� τ1 = (3, 8, 8), τ2 = (6, 11, 11) ⇒ U = 0.92

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

An Example – RM

Introduction

Definitions and Task
Model

Scheduling

Fixed Priorities

Schedulability Analysis

Dynamic Priorities / EDF

Multi-Processor
Scheduling

Real-Time Scheduling in
Linux

Setting the Scheduling
Policy

The Constant
Bandwidth Server

SCHED DEADLINE

RTS-LiKe 2014 Luca Abeni – 21 / 44

� τ1 = (3, 8, 8), τ2 = (6, 11, 11) ⇒ U = 0.92

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

An Example – RM

Introduction

Definitions and Task
Model

Scheduling

Fixed Priorities

Schedulability Analysis

Dynamic Priorities / EDF

Multi-Processor
Scheduling

Real-Time Scheduling in
Linux

Setting the Scheduling
Policy

The Constant
Bandwidth Server

SCHED DEADLINE

RTS-LiKe 2014 Luca Abeni – 21 / 44

� τ1 = (3, 8, 8), τ2 = (6, 11, 11) ⇒ U = 0.92

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

An Example – RM

Introduction

Definitions and Task
Model

Scheduling

Fixed Priorities

Schedulability Analysis

Dynamic Priorities / EDF

Multi-Processor
Scheduling

Real-Time Scheduling in
Linux

Setting the Scheduling
Policy

The Constant
Bandwidth Server

SCHED DEADLINE

RTS-LiKe 2014 Luca Abeni – 21 / 44

� τ1 = (3, 8, 8), τ2 = (6, 11, 11) ⇒ U = 0.92

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

The Same Example – EDF

Introduction

Definitions and Task
Model

Scheduling

Fixed Priorities

Schedulability Analysis

Dynamic Priorities / EDF

Multi-Processor
Scheduling

Real-Time Scheduling in
Linux

Setting the Scheduling
Policy

The Constant
Bandwidth Server

SCHED DEADLINE

RTS-LiKe 2014 Luca Abeni – 22 / 44

� τ1 = (3, 8, 8), τ2 = (6, 11, 11) ⇒ U = 0.92

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

The Same Example – EDF

Introduction

Definitions and Task
Model

Scheduling

Fixed Priorities

Schedulability Analysis

Dynamic Priorities / EDF

Multi-Processor
Scheduling

Real-Time Scheduling in
Linux

Setting the Scheduling
Policy

The Constant
Bandwidth Server

SCHED DEADLINE

RTS-LiKe 2014 Luca Abeni – 22 / 44

� τ1 = (3, 8, 8), τ2 = (6, 11, 11) ⇒ U = 0.92

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

The Same Example – EDF

Introduction

Definitions and Task
Model

Scheduling

Fixed Priorities

Schedulability Analysis

Dynamic Priorities / EDF

Multi-Processor
Scheduling

Real-Time Scheduling in
Linux

Setting the Scheduling
Policy

The Constant
Bandwidth Server

SCHED DEADLINE

RTS-LiKe 2014 Luca Abeni – 22 / 44

� τ1 = (3, 8, 8), τ2 = (6, 11, 11) ⇒ U = 0.92

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

The Same Example – EDF

Introduction

Definitions and Task
Model

Scheduling

Fixed Priorities

Schedulability Analysis

Dynamic Priorities / EDF

Multi-Processor
Scheduling

Real-Time Scheduling in
Linux

Setting the Scheduling
Policy

The Constant
Bandwidth Server

SCHED DEADLINE

RTS-LiKe 2014 Luca Abeni – 22 / 44

� τ1 = (3, 8, 8), τ2 = (6, 11, 11) ⇒ U = 0.92

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

The Same Example – EDF

Introduction

Definitions and Task
Model

Scheduling

Fixed Priorities

Schedulability Analysis

Dynamic Priorities / EDF

Multi-Processor
Scheduling

Real-Time Scheduling in
Linux

Setting the Scheduling
Policy

The Constant
Bandwidth Server

SCHED DEADLINE

RTS-LiKe 2014 Luca Abeni – 22 / 44

� τ1 = (3, 8, 8), τ2 = (6, 11, 11) ⇒ U = 0.92

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

The Same Example – EDF

Introduction

Definitions and Task
Model

Scheduling

Fixed Priorities

Schedulability Analysis

Dynamic Priorities / EDF

Multi-Processor
Scheduling

Real-Time Scheduling in
Linux

Setting the Scheduling
Policy

The Constant
Bandwidth Server

SCHED DEADLINE

RTS-LiKe 2014 Luca Abeni – 22 / 44

� τ1 = (3, 8, 8), τ2 = (6, 11, 11) ⇒ U = 0.92

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

The Same Example – EDF

Introduction

Definitions and Task
Model

Scheduling

Fixed Priorities

Schedulability Analysis

Dynamic Priorities / EDF

Multi-Processor
Scheduling

Real-Time Scheduling in
Linux

Setting the Scheduling
Policy

The Constant
Bandwidth Server

SCHED DEADLINE

RTS-LiKe 2014 Luca Abeni – 22 / 44

� τ1 = (3, 8, 8), τ2 = (6, 11, 11) ⇒ U = 0.92

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

What About Multiple CPUs?

Introduction

Definitions and Task
Model

Scheduling

Fixed Priorities

Schedulability Analysis

Dynamic Priorities / EDF

Multi-Processor
Scheduling

Real-Time Scheduling in
Linux

Setting the Scheduling
Policy

The Constant
Bandwidth Server

SCHED DEADLINE

RTS-LiKe 2014 Luca Abeni – 23 / 44

� UniProcessor Systems

� A schedule σ(t) is a function mapping time t into an executing

task σ : t → T ∪ {τidle} where T is the set of tasks running

in the system

� τidle is the idle task: when it is scheduled, the CPU becomes

idle

� For a multiprocessor system with M CPUs, σ(t) is extended to map

t in vectors τ ∈ (T ∪ {τidle})
M

� How to implement a Real-Time scheduler for M > 1 processors?

� Partitioned scheduling

� Global scheduling

The Quest for Optimality

Introduction

Definitions and Task
Model

Scheduling

Fixed Priorities

Schedulability Analysis

Dynamic Priorities / EDF

Multi-Processor
Scheduling

Real-Time Scheduling in
Linux

Setting the Scheduling
Policy

The Constant
Bandwidth Server

SCHED DEADLINE

RTS-LiKe 2014 Luca Abeni – 24 / 44

� UP Scheduling:

� N periodic tasks with Di = Ti: (Ci, Ti, Ti)

� Optimal scheduler: if
∑ Ci

Ti
≤ 1, then the task set is

schedulable

� EDF is optimal

� Multiprocessor scheduling:

� Goal: schedule periodic task sets with
∑ Ci

Ti
≤ M

� Is this possible?

� Optimal algorithms

Partitioned Scheduling - 1

Introduction

Definitions and Task
Model

Scheduling

Fixed Priorities

Schedulability Analysis

Dynamic Priorities / EDF

Multi-Processor
Scheduling

Real-Time Scheduling in
Linux

Setting the Scheduling
Policy

The Constant
Bandwidth Server

SCHED DEADLINE

RTS-LiKe 2014 Luca Abeni – 25 / 44

� Reduce σ : t → (T ∪ {τidle})
M to M uniprocessor schedules

σp : t → T ∪ {τidle}, 0 ≤ p < M

� Statically assign tasks to CPUs

� Reduce the problem of scheduling on M CPUs to M
instances of uniprocessor scheduling

� Problem: system underutilisation

CPU CPU CPU CPU

M

Partitioned Scheduling - 2

Introduction

Definitions and Task
Model

Scheduling

Fixed Priorities

Schedulability Analysis

Dynamic Priorities / EDF

Multi-Processor
Scheduling

Real-Time Scheduling in
Linux

Setting the Scheduling
Policy

The Constant
Bandwidth Server

SCHED DEADLINE

RTS-LiKe 2014 Luca Abeni – 26 / 44

� Reduce an M CPUs scheduling problem to M single CPU

scheduling problems and a bin-packing problem

� CPU schedulers: uni-processor, EDF can be used

� Bin-packing: assign tasks to CPUs so that every CPU has load ≤ 1

� Is this possible?

� Think about 2 CPUs with {(6, 10, 10), (6, 10, 10), (6, 10, 10)}

Global Scheduling

Introduction

Definitions and Task
Model

Scheduling

Fixed Priorities

Schedulability Analysis

Dynamic Priorities / EDF

Multi-Processor
Scheduling

Real-Time Scheduling in
Linux

Setting the Scheduling
Policy

The Constant
Bandwidth Server

SCHED DEADLINE

RTS-LiKe 2014 Luca Abeni – 27 / 44

� One single task queue, shared by M CPUs

� The first M ready tasks from the queue are selected

� What happens using fixed priorities (or EDF)?

� Tasks are not bound to specific CPUs

� Tasks can often migrate between different CPUs

� Problem: schedulers designed for UP do not work well
M

CPU CPU CPU CPU

{M

Global Scheduling - Problems

Introduction

Definitions and Task
Model

Scheduling

Fixed Priorities

Schedulability Analysis

Dynamic Priorities / EDF

Multi-Processor
Scheduling

Real-Time Scheduling in
Linux

Setting the Scheduling
Policy

The Constant
Bandwidth Server

SCHED DEADLINE

RTS-LiKe 2014 Luca Abeni – 28 / 44

� Dhall’s effect: U lub for global multiprocessor scheduling can be

quite low (for RM or EDF, converges to 1)

� Pathological case: M CPUs, M + 1 tasks. M tasks

(ǫ, T − 1, T − 1), a task (T, T, T).

� U = M ǫ
T−1

+ 1. ǫ → 0 ⇒ U → 1

� However, global EDF guarantees an upper bound for the tardiness!

� Deadlines can be missed, but by a limited amount of time

� Global scheduling can cause a lot of useless migrations

� Migrations are overhead!

� Decrease in the throughput

� Migrations are not accounted in admission tests...

Using Fixed Priorities in Linux

Introduction

Definitions and Task
Model

Scheduling

Fixed Priorities

Schedulability Analysis

Dynamic Priorities / EDF

Multi-Processor
Scheduling

Real-Time Scheduling in
Linux

Setting the Scheduling
Policy

The Constant
Bandwidth Server

SCHED DEADLINE

RTS-LiKe 2014 Luca Abeni – 29 / 44

� SCHED FIFO and SCHED RR use fixed priorities

� They can be used for real-time tasks, to implement RM and

DM

� Real-time tasks have priority over non real-time

(SCHED OTHER) tasks

� The difference between the two policies is visible when more tasks

have the same priority

� In real-time applications, try to avoid multiple tasks with the

same priority

Setting the Scheduling Policy

Introduction

Definitions and Task
Model

Scheduling

Fixed Priorities

Schedulability Analysis

Dynamic Priorities / EDF

Multi-Processor
Scheduling

Real-Time Scheduling in
Linux

Setting the Scheduling
Policy

The Constant
Bandwidth Server

SCHED DEADLINE

RTS-LiKe 2014 Luca Abeni – 30 / 44

int sched_get_priority_max(int policy);

int sched_get_priority_min(int policy);

int sched_setscheduler(pid_t pid , int policy ,

const struct sched_param *param);

int sched_setparam(pid_t pid ,

const struct sched_param *param);

� If pid == 0, then the parameters of the running task are changed

� The only meaningful field of struct sched param is

sched priority

Problems with Real-Time Priorities

Introduction

Definitions and Task
Model

Scheduling

Fixed Priorities

Schedulability Analysis

Dynamic Priorities / EDF

Multi-Processor
Scheduling

Real-Time Scheduling in
Linux

Setting the Scheduling
Policy

The Constant
Bandwidth Server

SCHED DEADLINE

RTS-LiKe 2014 Luca Abeni – 31 / 44

� In general, “regular” (SCHED OTHER) tasks are scheduled in

background respect to real-time ones

� Real-time tasks can preempt / starve other applications

� Example: the following task scheduled at high priority can make a

CPU / core unusable

vo id bad bad task ()

{
whi le (1) ;

}

� Real-time computation have to be limited (use real-time

priorities only when really needed !)

� On sane systems, running applications with real-time priorities

requires root privileges (or part of them!)

Real-Time Throttling

Introduction

Definitions and Task
Model

Scheduling

Fixed Priorities

Schedulability Analysis

Dynamic Priorities / EDF

Multi-Processor
Scheduling

Real-Time Scheduling in
Linux

Setting the Scheduling
Policy

The Constant
Bandwidth Server

SCHED DEADLINE

RTS-LiKe 2014 Luca Abeni – 32 / 44

� A “bad” high-priority task can make a CPU / core unusable...

� ...Linux provides the real-time throttling mechanism to address this

problem

� How does real-time throttling interfere with real-time

guarantees?

� Given a priority assignment, a taskset is guaranteed all the

deadlines if no throttling mechanism is used...

� ...But, what happens in case of throttling?

� Very useful idea, but something more “theoretically founded” might

be needed...

What About EDF?

Introduction

Definitions and Task
Model

Scheduling

Fixed Priorities

Schedulability Analysis

Dynamic Priorities / EDF

Multi-Processor
Scheduling

Real-Time Scheduling in
Linux

Setting the Scheduling
Policy

The Constant
Bandwidth Server

SCHED DEADLINE

RTS-LiKe 2014 Luca Abeni – 33 / 44

� Can EDF (or something similar) be supported in Linux?

� Problem: the kernel is (was?) not aware of tasks deadlines...

� ...But deadlines are needed in order to schedule the tasks

� EDF assigns dynamic priorities based on absolute deadlines

� So, a more advanced API for the scheduler is needed...

� Assign at least a relative deadline Di to the task...

� We will see that we need a runtime and a period too

� Moreover, di,j = ri,j +Di...

� ...However, how can the scheduler know ri,j?

� The scheduler is not aware of jobs...

Tasks and Jobs... And Scheduling Deadlines!

Introduction

Definitions and Task
Model

Scheduling

Fixed Priorities

Schedulability Analysis

Dynamic Priorities / EDF

Multi-Processor
Scheduling

Real-Time Scheduling in
Linux

Setting the Scheduling
Policy

The Constant
Bandwidth Server

SCHED DEADLINE

RTS-LiKe 2014 Luca Abeni – 34 / 44

� To use EDF, the scheduler must know when a job starts / finishes

� Applications must be modified to signal the beginning / end of

a job (some kind of startjob() / endjob() system call)...

� ...Or the scheduler can assume that a new job arrives each

time a task wakes up!

� Or, some other algorithm can be used to assign dynamic scheduling

deadlines to tasks

� Scheduling deadline dsi : assigned by the kernel to task τi

� If the scheduling deadline dsi matches the absolute deadline

di,j of a job, then the scheduler can respect di,j !!!

CBS: The Basic Idea

Introduction

Definitions and Task
Model

Scheduling

Fixed Priorities

Schedulability Analysis

Dynamic Priorities / EDF

Multi-Processor
Scheduling

Real-Time Scheduling in
Linux

Setting the Scheduling
Policy

The Constant
Bandwidth Server

SCHED DEADLINE

RTS-LiKe 2014 Luca Abeni – 35 / 44

� Constant Bandwidth Server (CBS): algorithm used to assign a

dynamic scheduling deadline dsi to a task τi

� Based on the Resource Reservation paradigm

� Task τi is periodically reserved a maximum runtime Qi every

reservation period Pi

� Temporal isolation between tasks

� The worst case finishing time for a task does not depend on

the other tasks running in the system...

� ...Because the task is guaranteed to receive its reserved time

� Solves the issue with “bad tasks” trying to consume too much

execution time

CBS: Some More Details

Introduction

Definitions and Task
Model

Scheduling

Fixed Priorities

Schedulability Analysis

Dynamic Priorities / EDF

Multi-Processor
Scheduling

Real-Time Scheduling in
Linux

Setting the Scheduling
Policy

The Constant
Bandwidth Server

SCHED DEADLINE

RTS-LiKe 2014 Luca Abeni – 36 / 44

� Based on CPU reservations (Qi, Pi)

� If τi tries to execute for more than Qi every Pi, the algorithm

decreases its priority, or throttles it

� τi consumes the same amount of CPU time consumed by a

periodic task with WCET Qi and period Pi

� Qi/Pi: fraction of CPU time reserved to τi

� If EDF is used (based on the scheduling deadlines assigned by the

CBS), then τi is guaranteed to receive Qi time units every Pi if∑
j Qj/Pj ≤ 1!!!

� Only on uni-processor / partitioned systems...

� M CPUs/cores with global scheduling: if
∑

j Qj/Pj ≤ M
each task is guaranteed to receive Qi every Pi with a

maximum delay

CBS vs Other Reservation Algorithms

Introduction

Definitions and Task
Model

Scheduling

Fixed Priorities

Schedulability Analysis

Dynamic Priorities / EDF

Multi-Processor
Scheduling

Real-Time Scheduling in
Linux

Setting the Scheduling
Policy

The Constant
Bandwidth Server

SCHED DEADLINE

RTS-LiKe 2014 Luca Abeni – 37 / 44

� The CBS is based on EDF

� Assigns scheduling deadlines dsi

� EDF on dsi ⇒ good CPU utilisation (optimal on UP!)

� The CBS allows to serve non periodic tasks

� Some reservation-based schedulers have problems with

aperiodic job arrivals - due to the (in)famous “deferrable server

problem”

� The CBS explicitly supports aperiodic arrivals (see the rule for

assigning deadlines when a task wakes up)

� Allows to support “self-suspending” tasks

� No need to strictly respect the Liu&Layland task model

� No need to explicitly signal job arrivals / terminations

CBS: the Algorithm

Introduction

Definitions and Task
Model

Scheduling

Fixed Priorities

Schedulability Analysis

Dynamic Priorities / EDF

Multi-Processor
Scheduling

Real-Time Scheduling in
Linux

Setting the Scheduling
Policy

The Constant
Bandwidth Server

SCHED DEADLINE

RTS-LiKe 2014 Luca Abeni – 38 / 44

� Each task τi is associated a scheduling deadline dsi and a current

runtime qi

� Both initialised to 0 when the task is created

� When a job arrives:

� If the previous job is not finished yet, queue the activation

� Otherwise, check if the current scheduling deadline can be

used (dsi > t and qi/(d
s
i − t) < Qi/Pi)

� If not, dsi = t+ Pi, qi = Qi

� When τi executes for a time δ, qi = qi − δ

� When qi = 0, τi cannot be scheduled (until time dsi)

� At time dsi , dsi = dsi + Pi and qi = qi +Qi

SCHED DEADLINE

Introduction

Definitions and Task
Model

Scheduling

Fixed Priorities

Schedulability Analysis

Dynamic Priorities / EDF

Multi-Processor
Scheduling

Real-Time Scheduling in
Linux

Setting the Scheduling
Policy

The Constant
Bandwidth Server

SCHED DEADLINE

RTS-LiKe 2014 Luca Abeni – 39 / 44

� New SCHED DEADLINE scheduling policy

� Foreground respect to all of the other policies

� Uses the CBS to assign scheduling deadline to SCHED DEADLINE

tasks

� Assign a (maximum) runtime Qi and a (reservation) period Pi

to SCHED DEADLINE tasks

� Additional parameter: relative deadline Di

� The “check if the current scheduling deadline can be used” rule

is used at task wake-up

� Then uses EDF to schedule them

� Both global EDF and partitioned EDF are possible

� Configurable through the cpuset mechanism

Using SCHED DEADLINE

Introduction

Definitions and Task
Model

Scheduling

Fixed Priorities

Schedulability Analysis

Dynamic Priorities / EDF

Multi-Processor
Scheduling

Real-Time Scheduling in
Linux

Setting the Scheduling
Policy

The Constant
Bandwidth Server

SCHED DEADLINE

RTS-LiKe 2014 Luca Abeni – 40 / 44

� Juri will talk about the API, but...

� ...How to dimension the scheduling parameters?

� (Maximum) runtime Qi

� (Reservation) period Pi

� SCHED DEADLINE also provides a (relative) deadline Di

� Obviously, it must be ∑

i

Qi

Pi
≤ M

� The kernel can do this admission control

� Better to use a limit smaller than M (so that other tasks are

not starved!)

Assigning Runtime and Period

Introduction

Definitions and Task
Model

Scheduling

Fixed Priorities

Schedulability Analysis

Dynamic Priorities / EDF

Multi-Processor
Scheduling

Real-Time Scheduling in
Linux

Setting the Scheduling
Policy

The Constant
Bandwidth Server

SCHED DEADLINE

RTS-LiKe 2014 Luca Abeni – 41 / 44

� Temporal isolation

� Each task can be guaranteed independently from the others

� Hard Schedulability property

� If Qi ≥ Ci and Pi ≤ Ti (maximum runtime larger than WCET,

and server period smaller than task period)...

� ...Then the scheduling deadlines are equal to the jobs’

deadlines!!!

� All deadlines are guaranteed to be respected (on UP /

partitioned systems), or an upper bound for the tardiness is

provided (if global scheduling is used)!!!

� So, SCHED DEADLINE can be used to serve hard real-time tasks!

What About Soft Real-Time?

Introduction

Definitions and Task
Model

Scheduling

Fixed Priorities

Schedulability Analysis

Dynamic Priorities / EDF

Multi-Processor
Scheduling

Real-Time Scheduling in
Linux

Setting the Scheduling
Policy

The Constant
Bandwidth Server

SCHED DEADLINE

RTS-LiKe 2014 Luca Abeni – 42 / 44

� What happens if Qi < Ci, or Pi > Ti?

�
Qi

Pi
must be larger than the ratio between average execution

time ci and average inter-arrival time ti...

� ...Otherwise, dsi → ∞ and there will be no control on the

task’s response times

� Possible to do some stochastic analysis (Markov chains, etc...)

� Given ci < Qi < Ci, Ti = nPi, and the probability

distributions of execution and inter-arrival times...

� ...It is possible to find the probability distribution of the

response times (and the probability to miss a deadline)!

Changing Parameters...

Introduction

Definitions and Task
Model

Scheduling

Fixed Priorities

Schedulability Analysis

Dynamic Priorities / EDF

Multi-Processor
Scheduling

Real-Time Scheduling in
Linux

Setting the Scheduling
Policy

The Constant
Bandwidth Server

SCHED DEADLINE

RTS-LiKe 2014 Luca Abeni – 43 / 44

� Tasks’ parameters (execution and inter-arrival times) can change

during the tasks lifetime... So, how to dimension Qi and Pi?

� Short-term variations: CPU reclaiming mechanisms (GRUB, ...)

� If a job does not consume all of the runtime Qi, maybe the

residual runtime can be used by other tasks...

� Long-term variations: adaptive reservations

� Generally “slower”, can be implemented by a user-space

daemon

� Monitor the difference between dsi and di,j

� If dsi − di,j increases, Qi needs to be increased

� If dsi − di,j ≤ 0, Qi can be decreased

� Lot of literature for both of these approaches

Things I did not Mention...

Introduction

Definitions and Task
Model

Scheduling

Fixed Priorities

Schedulability Analysis

Dynamic Priorities / EDF

Multi-Processor
Scheduling

Real-Time Scheduling in
Linux

Setting the Scheduling
Policy

The Constant
Bandwidth Server

SCHED DEADLINE

RTS-LiKe 2014 Luca Abeni – 44 / 44

� What about interacting tasks (shared resources, IPC, ...)?

� Inheritance (priority inheritance, deadline inheritance,

BandWidth Inheritance)

� Juri will probably say something about this...

� Is the kernel able to respect the theoretical schedule?

� What happens if a task is scheduled later than expected?

� Kernel Latency!!!

� This is what Preempt-RT is for...

� Preempt-RT and SCHED DEADLINE: two orthogonal

approaches that can (and must) be combined

� Optimality with multiple CPUs?

	Real-Time Applications
	Processes, Threads, and Tasks
	Mathematical Model of a Task - 1
	Mathematical Model of a Task - 2
	Periodic and Sporadic Tasks
	Example: Periodic Task Model
	Graphical Representation
	Real-Time Scheduling
	Real-Time Scheduling: Example
	So... Are Fixed Priorities Enough?
	Optimal Priority Assignment
	Utilisation-Based Analysis
	Utilisation
	Necessary Condition
	Utilisation Bound for RM
	Utilisation Bound for DM
	Pessimism of the Analysis: Example
	Dynamic Priorities - Earliest Deadline First
	Can We Do any Better than RM?
	An Example – RM
	The Same Example – EDF
	What About Multiple CPUs?
	The Quest for Optimality
	Partitioned Scheduling - 1
	Partitioned Scheduling - 2
	Global Scheduling
	Global Scheduling - Problems
	Using Fixed Priorities in Linux
	Setting the Scheduling Policy
	Problems with Real-Time Priorities
	Real-Time Throttling
	What About EDF?
	Tasks and Jobs... And Scheduling Deadlines!
	CBS: The Basic Idea
	CBS: Some More Details
	CBS vs Other Reservation Algorithms
	CBS: the Algorithm
	SCHED_DEADLINE
	Using SCHED_DEADLINE
	Assigning Runtime and Period
	What About Soft Real-Time?
	Changing Parameters...
	Things I did not Mention...

