
The Timer Resolution
Latency

Real Time Operating Systems and Middleware

Luca Abeni
luca.abeni@unitn.it



Latency

Real-Time Operating Systems and Middleware The Timer Resolution Latency

• Latency: measure of the difference between the
theoretical and actual schedule

• Task τ expects to be scheduled at time t . . .

• . . . but is actually scheduled at time t′

• ⇒ Latency L = t′ − t

• The latency L can be modelled as a blocking time
⇒ affects the guarantee test

• Similar to what done for shared resources

• Blocking time due to latency, not to priority
inversion



Effects of the Latency

Real-Time Operating Systems and Middleware The Timer Resolution Latency

• Upper bound for L? If not known, no schedulability
tests!!!

• The latency must be bounded: ∃Lmax : L < Lmax

• If Lmax is too high, only few task sets result to be
schedulable

• Large blocking time experienced by all tasks!

• The worst-case latency Lmax cannot be too high



Sources of Latency

Real-Time Operating Systems and Middleware The Timer Resolution Latency

• A task τi is a stream of jobs Ji,j arriving at time ri,j

• Job Ji,j is scheduled at time t′ > ri,j

• t′ − ri,j is given by:

1. Ji,j ’s arrival is signalled at time ri,j + L1

2. Such event is served at time ri,j + L1 + L2

3. Ji,j is actually scheduled at ri,j + L1 + L2 + L3

L1 2 L3L



Analysis of the Various Sources

Real-Time Operating Systems and Middleware The Timer Resolution Latency

• L = L1 + L2 + L3

• L3 is the scheduler latency

• Interference from higher priority tasks

• Already accounted by the guarantee tests →

let’s not consider it

• L2 is the non-preemptable section latency (Lnp)

• L1 is due to the delayed interrupt generation



Non-Preemptable Section Latency

Real-Time Operating Systems and Middleware The Timer Resolution Latency

• Delay between time when an event is generated and
when the kernel handles it

• Due to non-preemptable sections in the kernel,
which delay the response to hardware interrupts

• Composed by various parts: interrupt disabling,
bottom halves delaying, . . .

• Depends on how the kernel handles the various
events...

• Will talk about it later!



Interrupt Generation Latency

Real-Time Operating Systems and Middleware The Timer Resolution Latency

• Hardware interrupts: generated by devices

• Sometimes, an interrupt should be generated at
time t . . .

• . . . but it si actually generated at time t′ = t+ Lint

• Lint is the Interrupt Generation Latency

• It is due to hardware issues

• It is generally small compared to Lnp

• Exception: if the device is a timer device, the
interrupt generation latency can be quite high

• Timer Resolution Latency Ltimer



The Timer Resolution Latency

Real-Time Operating Systems and Middleware The Timer Resolution Latency

• Interrupt generation latency for a hw timer device

• Ltimer can often be much larger than the
non-preemptable section latency Lnp

• Where does it come from?

• Kernel timers are generally implemented by
using a hardware device that produces periodic
interrupts

• Can we do anything about it?



Ticks and Timers

Real-Time Operating Systems and Middleware The Timer Resolution Latency

• Periodic timer interrupt → tick

• Example: periodic task (setitimer(), Posix
timers, clock nanosleep(), . . .) τi with period Ti

• Job end → τi sleeps for the next activation

• Activations are triggered by the periodic interrupt

• Periodic tick interrupt, with period T tick

• Every T tick, the kernel checks if the task must be
woken up

• If Ti is not multiple of T tick, τi experiences a timer
resolution latency



The Periodic Tick

Real-Time Operating Systems and Middleware The Timer Resolution Latency

• Traditional operating systems: timer device
programmed to generate a periodic interrupt

• Example: in a PC, the Programmable Interval
Timer (PIT) is programmed in periodic mode

• At every tick the execution enter kernel space

• The kernel executes and can

• Wake up tasks

• Adjust tasks priorities

• Run the scheduler, when returning to user space
→ possible preemption



Tick Tradeoff

Real-Time Operating Systems and Middleware The Timer Resolution Latency

• Timer interrupt period: trade-off between
responsiveness (low latency) and throughput (low
overhead)

• Large T tick → large timer resolution latency

• Small T tick → high number of interrupts

• More switches between US and KS

• Tasks are interrupted more often

• ⇒ Larger overhead



Trade-off Examples

Real-Time Operating Systems and Middleware The Timer Resolution Latency

• For non real-time systems, it is possible to find a
reasonable tradeoff...

• But it still depends on the workload!

• Desktop or server?

• Example: the Linux kernel

• Linux 2.4: 10ms (HZ = 100)

• Linux 2.6: HZ = 100, 250, or 1000

• Other systems: T tick = 1/1024



Timer Resolution Latency

Real-Time Operating Systems and Middleware The Timer Resolution Latency

• Experienced by all tasks that want to sleep for a
specified time T

T tick

timerL timerL

• τi must wake up at time ri,j = jTi

• But is woken up at time t′ =
⌈

ri,j
T tick

⌉

T tick



Timer Resolution Latency - Upper Bound

Real-Time Operating Systems and Middleware The Timer Resolution Latency

• The timer resolution latency is bounded:

• t = ri,j

• t′ =
⌈

ri,j
T tick

⌉

T tick

Ltimer = t′ − ri,j =

⌈

ri,j
T tick

⌉

T tick − ri,j =

=

(⌈

ri,j
T tick

⌉

−
ri,j
T tick

)

T tick ≤ T tick



Problems with Periodic Ticks

Real-Time Operating Systems and Middleware The Timer Resolution Latency

• Reducing T tick below 1ms is generally not
acceptable. . .

• . . .So, periodic tasks can expect a blocking time due
to Ltimer up to 1ms

• How large is the effect on the schedulability
tests?

• Additional problems:

• Tasks’ periods are rounded to multiples of T tick

• Limit on the minimum task period: ∀i, Ti ≥ T tick

• ...



Useless Timer Interrupts

Real-Time Operating Systems and Middleware The Timer Resolution Latency

• Additional problem: a lot of useless timer interrupts
might be generated

T tick



Timers and Clocks

Real-Time Operating Systems and Middleware The Timer Resolution Latency

• Remember?

• Timer: generate an event at a specified time t

• Clock: keep track of the current system time

• A timer can be used to wake up a periodic task τ , a
clock can be used to read the system time
(gettimeofday())

• Timer Resolution

• Clock Resolution



Timer and Clock Resolution

Real-Time Operating Systems and Middleware The Timer Resolution Latency

• Timer Resolution: minimum interval at which a
periodic timer can fire

• If periodic ticks are used, the timer resolution is
T tick

• Clock Resolution: minimum difference between
two different times returned by the clock

• What’s the expected clock resolution?



Clock Resolution

Real-Time Operating Systems and Middleware The Timer Resolution Latency

• Traditional OSs use a “tick counter”

• Very fast clock: return the number of ticks (jiffies
in Linux) from the system boot

• Clock Resolution: T tick

• Modern PCs have higher resolution time sources...

• On x86, TSC (TimeStamp Counter)

• High-Resolution clock: use the TSCto compute
the time since the last timer tick...

• Summary: High-Resolution clocks are easy!

• Every modern OS kernel provide them



Clock Resolution vs Timer Resolution

Real-Time Operating Systems and Middleware The Timer Resolution Latency

• Even using a “traditional” periodic timer tick, it is
easy to provide high-resolution clocks

• Time can be easily read with a high accuracy

• On the other hand, timer resolution is limited by the
system tick T tick (= 1 / HZ)

• It is impossible to generate events at arbitrary
instants in time, without latencies



Timer Devices

Real-Time Operating Systems and Middleware The Timer Resolution Latency

• Timer devices (ex: PIT - i8254) generally work in 2
modes: periodic and one-shot

• Programmed writing a value C in a counter register

• The counter register is decremented at a fixed rate

• When the counter is 0, an interrupt is generated

• If the device is programmed in periodic mode,
the counter register is automatically reset to the
programmed value

• If the device is programmed in one-shot mode,
the kernel has to explicitly reprogram the device
(setting the counter register to a new value)



Using the One-Shot Mode

Real-Time Operating Systems and Middleware The Timer Resolution Latency

• The periodic mode is easier to use! This is why
most kernels use it

• When using one-shot mode, the timer interrupt
handler must:

1. Acknowledge the interrupt handler, as usual

2. Check if a timer expired, and do its usual stuff...

3. Compute when the next timer must fire

4. Reprogram the timer device to generate an
interrupt at the correct time

• Steps 3 and 4 are particularly critical and difficult



Reprogramming the Timer Device - 1

Real-Time Operating Systems and Middleware The Timer Resolution Latency

• When the kernel reprograms the timer device (step
4), it must know the current time...

• ...But the last known time is the time when the
interrupt fired (before step 1)...

• A timer interrupt fires at time t1

• The interrupt handler starts (enter KS) at time t′
1

• Before returning to US, the timer must be
reprogrammed, at time t′′

1

• Next interrupt must fire at time t2; the counter
register is loaded with t2 − t1

• Next interrupt will fire at t2 + (t′′
1
− t1)



Reprogramming the Timer Device - 2

Real-Time Operating Systems and Middleware The Timer Resolution Latency

• The error described previously accumulates

• ⇒ Risk: drift between real time and system time

• A free run counter (not stopped at t1) is needed

• The counter is synchronised with the timer device ⇒

the value of the counter at time t1 is known

• This permits to know the time t′′
1
⇒ the new counter

register value can be computed correctly

• On a PC, the second PIT counter, or the TSC, or the
APIC timer can be used as a free run counter



High Resolution Timers

Real-Time Operating Systems and Middleware The Timer Resolution Latency

• Serious real-time kernels → High-Resolution Timers
(use hw timer in one-shot mode)

• Already implemented in RT-Mach

• Also implemented in RTLinux, RTAI and others

• General-Purpose kernels are more concerned
about stability and overhead

• Too much overhead for GP kernels?

• Fixed: hrtimers are in Linux since version 2.6.21



HRT and Timer Ticks

Real-Time Operating Systems and Middleware The Timer Resolution Latency

• Compatibility with “traditional” kernels:

• The tick event can be emulated through
high-resolution timers

• ⇒ Timer device programmed to generate
interrupts both:

• When needed to serve a timer, and
• At tick boundaries

• ...But the “tick” concept is now useless

• Tickless (or NO HZ) system

• Good for saving power


	Latency
	Effects of the Latency
	Sources of Latency
	Analysis of the Various Sources
	Non-Preemptable Section Latency
	Interrupt Generation Latency
	The Timer Resolution Latency
	Ticks and Timers
	The Periodic Tick
	Tick Tradeoff
	Trade-off Examples
	Timer Resolution Latency
	Timer Resolution Latency - Upper Bound
	Problems with Periodic Ticks
	Useless Timer Interrupts
	Timers and Clocks
	Timer and Clock Resolution
	Clock Resolution
	Clock Resolution vs Timer Resolution
	Timer Devices
	Using the One-Shot Mode
	Reprogramming the Timer Device - 1
	Reprogramming the Timer Device - 2
	High Resolution Timers
	HRT and Timer Ticks

