
Using EDF in Linux:
SCHED DEADLINE

Luca Abeni
luca.abeni@unitn.it



Using Fixed Priorities in Linux

Real-Time Operating Systems and Middleware SCHED DEADLINE

• SCHED FIFO and SCHED RR use fixed priorities

• They can be used for real-time tasks, to
implement RM and DM

• Real-time tasks have priority over non real-time
(SCHED OTHER) tasks

• The difference between the two policies is visible
when more tasks have the same priority

• In real-time applications, try to avoid multiple
tasks with the same priority



Setting the Scheduling Policy

Real-Time Operating Systems and Middleware SCHED DEADLINE

int sched_get_priority_max(int policy);
int sched_get_priority_min(int policy);

int sched_setscheduler(pid_t pid, int policy,
const struct sched_param *param);

int sched_setparam(pid_t pid,
const struct sched_param *param);

• If pid == 0, then the parameters of the running
task are changed

• The only meaningful field of struct sched param
is sched priority



Problems with Real-Time Priorities

Real-Time Operating Systems and Middleware SCHED DEADLINE

• In general, “regular” (SCHED OTHER) tasks are
scheduled in background respect to real-time ones

• Real-time tasks can / starve other applications

• Example: the following task scheduled at high
priority can make a CPU / core unusable
void bad_bad_task()
{

while(1);
}

• Real-time computation have to be limited (use
real-time priorities only when really needed!)

• Using real-time priorities requires root privileges
(or part of them!)



Real-Time Throttling

Real-Time Operating Systems and Middleware SCHED DEADLINE

• A “bad” rt task can make a CPU / core unusable...

• ...Linux provides the real-time throttling mechanism

• How does real-time throttling interfere with
real-time guarantees?

• Given a priority assignment, a taskset is
guaranteed all the deadlines if no throttling
mechanism is used...

• ...But, what happens in case of throttling?

• Very useful idea, but something more “theoretically
founded” might be needed...



What About EDF?

Real-Time Operating Systems and Middleware SCHED DEADLINE

• Can EDF (or similar) be supported in Linux?

• Problem: the kernel is not aware of tasks
deadlines...

• ...But deadlines are needed to schedule the tasks

• EDF schedules tasks based on absolute
deadlines

• So, a more advanced API is needed...



EDF on a real OS

Real-Time Operating Systems and Middleware SCHED DEADLINE

• More advanced API:

• Assign relative deadlines Di to the tasks...

• A runtime and a period are also needed

• Moreover, di,j = ri,j +Di...

• ...However, how can the scheduler know ri,j?

• The scheduler is not aware of jobs...

• To use EDF, the scheduler must know when a job
starts / finishes

• Modify applications, or guess...



Tasks and Jobs... And Scheduling Deadlines!

Real-Time Operating Systems and Middleware SCHED DEADLINE

• Applications must be modified to signal the
beginning / end of a job (some kind of startjob()
/ endjob() system call)...

• ...Or the scheduler can assume that a new job
arrives each time a task wakes up!

• Alternative:assign dynamic scheduling deadlines

• Scheduling deadline dsi : assigned by the kernel

• If the scheduling deadline dsi matches the
absolute deadline di,j of a job, then the
scheduler can respect di,j!!!



CBS: The Basic Idea

Real-Time Operating Systems and Middleware SCHED DEADLINE

• Constant Bandwidth Server (CBS): algorithm to
assign a dynamic scheduling deadline dsi to a task τi

• Based on the Resource Reservation paradigm

• Task τi is periodically reserved a maximum
runtime Qi every reservation period Pi

• Temporal isolation between tasks

• The worst case finishing time for a task does not
depend on the other tasks...

• ...Because the task is guaranteed to receive its
reserved time

Solves the issue with “bad tasks” trying to consume



CBS: Some More Details

Real-Time Operating Systems and Middleware SCHED DEADLINE

• Based on CPU reservations (Qi, Pi)

• If τi tries to execute for more than Qi every Pi,
the algorithm decreases its priority, or throttles it

• τi has the same CPU utilisation of a task with
WCET Qi and period Pi

• Qi/Pi: fraction of CPU time reserved to τi

• EDF on the scheduling deadlines ⇒ τi is guaranteed
to receive Qi time units every Pi if

∑
j Qj/Pj ≤ 1!!!



CBS: Schedulability

Real-Time Operating Systems and Middleware SCHED DEADLINE

• EDF → easy to guarantee the respect of scheduling
deadlines

• Only on uni-processor / partitioned systems...

• M CPUs/cores with global scheduling: if
∑

j Qj/Pj ≤ M each task is guaranteed to receive Qi

every Pi with a maximum delay



CBS vs Other Reservation Algorithms

Real-Time Operating Systems and Middleware SCHED DEADLINE

• The CBS is based on EDF

• Assigns scheduling deadlines dsi

• EDF on dsi ⇒ optimal on UP

• The CBS allows to serve non periodic tasks

• Some reservation-based schedulers have
problems with aperiodic job arrivals - due to the
(in)famous “deferrable server problem”

• Explicit support for aperiodic tasks (see the rule
for assigning deadlines when a task wakes up)

• Allows to support “self-suspending” tasks



CBS: the Algorithm - 1

Real-Time Operating Systems and Middleware SCHED DEADLINE

• Each task τi is associated a scheduling deadline dsi
and a current runtime qi

• Both initialised to 0 when the task is created

• When a task wakes up:

• Check if the current scheduling deadline can be
used (dsi > t and qi/(d

s
i − t) < Qi/Pi)

• If not, dsi = t+ Pi, qi = Qi



CBS: the Algorithm - 2

Real-Time Operating Systems and Middleware SCHED DEADLINE

• When τi executes for a time δ, qi = qi − δ

• When qi = 0, τi cannot be scheduled (until time dsi )

• At time dsi , d
s
i = dsi + Pi and qi = qi +Qi



SCHED DEADLINE - 1

Real-Time Operating Systems and Middleware SCHED DEADLINE

• New SCHED DEADLINE scheduling policy

• Foreground respect to all of the other policies

• Uses the CBS to assign scheduling deadline to
SCHED DEADLINE tasks

• Assign a (maximum) runtime Qi and a
(reservation) period Pi to every
SCHED DEADLINE task

• Additional parameter: relative deadline Di

• The “check if the current scheduling deadline
can be used” rule is used at task wake-up



SCHED DEADLINE - 2

Real-Time Operating Systems and Middleware SCHED DEADLINE

• Once the CBS has been used to assign scheduling
deadlines to tasks...

• ...Use EDF (based on scheduling deadlines) to
schedule them

• What about multiple CPUs?

• Both global EDF and partitioned EDF are
possible

• Configurable through the cpuset mechanism



Using SCHED DEADLINE

Real-Time Operating Systems and Middleware SCHED DEADLINE

• Linux provides a (non standard) API for using
SCHED DEADLINE, but...

• ...How to dimension the scheduling parameters?

• (Maximum) runtime Qi

• (Reservation) period Pi

• Obviously, it must be

∑

i

Qi

Pi

≤ M

• The kernel can do this admission control



Assigning Runtime and Period

Real-Time Operating Systems and Middleware SCHED DEADLINE

• Temporal isolation

• Each task can be guaranteed independently
from the others

• SCHED DEADLINE can be used to serve both hard
real-time and soft real-time tasks!

• The scheduling parameters must be assigned
according to the kind of task

• Hard schedulability property or stochastic
analysis



Assigning Parameters to Hard Tasks

Real-Time Operating Systems and Middleware SCHED DEADLINE

• Hard Schedulability property

• If Qi ≥ Ci and Pi ≤ Ti (maximum runtime larger
than WCET, and server period smaller than task
period)...

• ...Then the scheduling deadlines are equal to the
jobs’ deadlines!!!

• All deadlines are guaranteed to be respected (on
UP / partitioned systems), or an upper bound for the
tardiness is provided (if global scheduling is used)!!!

• Hard real-time tasks need partitioned scheduling!



What About Soft Real-Time?

Real-Time Operating Systems and Middleware SCHED DEADLINE

• What happens if Qi < Ci, or Pi > Ti?

•
Qi

Pi

must be larger than ci/ti

• ...Otherwise, dsi → ∞ and there will be no control
on the task’s response times

• Possible to do some stochastic analysis

• Given ci < Qi < Ci, Ti = nPi, and the probability
distributions of execution and inter-arrival times

• ...It is possible to find the probability distribution
of the response times (and the probability to
miss a deadline)!



Changing Parameters...

Real-Time Operating Systems and Middleware SCHED DEADLINE

• Tasks’ parameters (execution and inter-arrival times)
can change during the tasks lifetime... So, how to
dimension Qi and Pi?

• Short-term variations: CPU reclaiming mechanisms
(GRUB, ...)

• If a job does not consume all of the runtime Qi,
maybe the residual runtime can be used by other
tasks...

• Long-term variations: adaptive reservations

• Generally “slower”, can be implemented by a
user-space daemon

• Monitor the difference between ds and d


	Using Fixed Priorities in Linux
	Setting the Scheduling Policy
	Problems with Real-Time Priorities
	Real-Time Throttling
	What About EDF?
	EDF on a real OS
	Tasks and Jobs... And Scheduling Deadlines!
	CBS: The Basic Idea
	CBS: Some More Details
	CBS: Schedulability
	CBS vs Other Reservation Algorithms
	CBS: the Algorithm - 1
	CBS: the Algorithm - 2
	SCHED_DEADLINE - 1
	SCHED_DEADLINE - 2
	Using SCHED_DEADLINE
	Assigning Runtime and Period
	Assigning Parameters to Hard Tasks
	What About Soft Real-Time?
	Changing Parameters...

