Real-Time Scheduling

Real Time Operating Systems and Middleware

Luca Abeni
luca.abeni@unitn.it
Definitions

- Algorithm → logical procedure used to solve a problem
- Program → formal description of an algorithm, using a *programming language*
- Process → instance of a program (program in execution)
 - Program: static entity
 - Process: dynamic entity
- The term *task* is used to indicate a schedulable entity (either a process or a thread)
 - Thread → flow of execution
 - Process → flow of execution + private resources (address space, file table, etc...)
Tasks do not run on bare hardware...

How can multiple tasks execute on one single CPU?

The OS OS kernel creates the illusion of having more CPUs, so that multiple tasks execute in parallel

Tasks have the illusion of executing concurrently

A dedicated CPU per task

Concurrency is implemented by multiplexing tasks on the same CPU...

Tasks are alternated on a real CPU...

...And the task scheduler decides which task executes at a given instant in time

Tasks are associated temporal constraints (deadlines)

The scheduler must allocate the CPU to tasks so that their deadlines are respected
Scheduler: responsible for generating a *schedule* from a set of ready tasks

- Interesting definition: the scheduler is the thing that generates the schedule

Let’s be serious... Start from a mathematical model

- First, consider UP systems (simpler definition)
 - A schedule $\sigma(t)$ is a function mapping time t into an executing task
 \[
 \sigma : t \rightarrow \mathcal{T} \cup \tau_{idle}
 \]
 where \mathcal{T} is the set of tasks in the system
 - τ_{idle} is the *idle task*: when it is scheduled, the CPU becomes idle

- For an SMP system (m CPUs), $\sigma(t)$ can be extended to map t in vectors $\tau \in (\mathcal{T} \cup \tau_{idle})^m$
Scheduler: implements $\sigma(t)$
- The scheduler is responsible for selecting the task to execute at time t

From an algorithmic point of view
- Scheduling algorithm \rightarrow Algorithm used to select for each time instant t a task to be executed on a CPU among the ready task
- Given a task set \mathcal{T}, a scheduling algorithm \mathcal{A} generates the schedule $\sigma_{\mathcal{A}}(t)$

- A task set is schedulable by an algorithm \mathcal{A} if $\sigma_{\mathcal{A}}$ does not contain missed deadlines
- Schedulability test \rightarrow check if \mathcal{T} is schedulable by \mathcal{A}
The task set $\mathcal{T} = \{(1, 3), (4, 8)\}$ is not schedulable by FCFS.

$\mathcal{T} = \{(1, 3), (4, 8)\}$ is schedulable with other algorithms.
Cyclic Executive Scheduling

- Very low overhead (scheduling decisions taken off-line)
- Very simple and well-tested
 - Mainly used in legacy applications and where reliability is fundamental
 - Example: military and avionics systems
 - Air traffic control
 - Space Shuttle
 - Boeing 777
- Also called timeline scheduling or cyclic scheduling
- Originally used for periodic tasks
The idea

- Static scheduling algorithm
- Jobs are not preemptable
 - A scheduled job executes until termination
- The time axis is divided in time slots
- Slots are statically allocated to the tasks (scheduling table)
- A periodic timer activates execution (allocation of a slot)
 - Major Cycle: least common multiple (lcm) of all the tasks’ periods (also called hyperperiod)
 - Minor Cycle: greatest common divisor (gcd) of all the tasks’ periods
 - A timer fires every Minor Cycle Δ
Example

- Consider a taskset \(\Gamma = \{\tau_1, \tau_2, \tau_3\} \)
 - Periodic tasks \(\tau_i = (C_i, D_i, T_i), D_i = T_i \)
 - \(T_1 = 25\text{ms}, T_2 = 50\text{ms}, T_3 = 100\text{ms} \)

1. Minor Cycle \(\Delta = \gcd(25, 50, 100) = 25\text{ms} \)
2. Major Cycle \(T = \lcm(25, 50, 100) = 100\text{ms} \)
3. Compute a schedule that respects the task periods
 - Allocate tasks in slots of size \(\Delta = 25\text{ms} \)
 - The schedule repeats every \(T = 100\text{ms} \)
 - \(\tau_1 \) must be scheduled every \(25\text{ms} \), \(\tau_2 \) must be scheduled every \(50\text{ms} \), \(\tau_3 \) must be scheduled every \(100\text{ms} \)
 - In every minor cycle, the tasks must execute for less than \(25\text{ms} \)
Example - The Schedule

- The schedule repeats every 4 minor cycles
 - \(\tau_1 \) must be scheduled every 25\(ms \) \(\Rightarrow \) scheduled in every minor cycle
 - \(\tau_2 \) must be scheduled every 50\(ms \) \(\Rightarrow \) scheduled every 2 minor cycles
 - \(\tau_3 \) must be scheduled every 100\(ms \) \(\Rightarrow \) scheduled every 4 minor cycles

- First minor cycle: \(C_1 + C_3 \leq 25ms \)
- Second minor cycle: \(C_1 + C_2 \leq 25ms \)
• Periodic timer firing every minor cycle
• Every time the timer fires...
• ...Read the scheduling table and execute the appropriate tasks
• Then, sleep until next minor cycle
Advantages

- Simple implementation (no real-time operating system is required)
 - No real task exist: just function calls
 - One single stack for all the “tasks”
- Non-preemptable scheduling ⇒ no need to protect data
 - No need for semaphores, pipes, mutexes, mailboxes, etc.
- Low run-time overhead
- Jitter can be explicitly controlled
Drawbacks

- Not robust during overloads
- Difficult to expand the schedule (static schedule)
 - New task \Rightarrow the whole schedule must be recomputed
- Not easy to handle aperiodic/sporadic tasks
- All task periods must be a multiple of the minor cycle time
- Difficult to incorporate processes with long periods (big tables)
- Variable computation time \Rightarrow it might be necessary to split tasks into a fixed number of fixed size procedures
Fixed Priority Scheduling

- Very simple preemptive scheduling algorithm
 - Every task τ_i is assigned a fixed priority p_i
 - The active task with the highest priority is scheduled
- Priorities are integer numbers: the higher the number, the higher the priority
 - In the research literature, sometimes authors use the opposite convention: the lowest the number, the highest the priority
- In the following we show some examples, considering periodic tasks, constant execution times, and deadlines equal to the period
Example of Schedule

- Consider the following task set: $\tau_1 = (2, 6, 6)$, $\tau_2 = (2, 9, 9)$, $\tau_3 = (3, 12, 12)$. Task τ_1 has priority $p_1 = 3$ (highest), task τ_2 has priority $p_2 = 2$, task τ_3 has priority $p_3 = 1$ (lowest)
Example of Schedule

- Consider the following task set: $\tau_1 = (2, 6, 6)$, $\tau_2 = (2, 9, 9)$, $\tau_3 = (3, 12, 12)$. Task τ_1 has priority $p_1 = 3$ (highest), task τ_2 has priority $p_2 = 2$, task τ_3 has priority $p_3 = 1$ (lowest)
Consider the following task set: \(\tau_1 = (2, 6, 6) \), \(\tau_2 = (2, 9, 9) \), \(\tau_3 = (3, 12, 12) \). Task \(\tau_1 \) has priority \(p_1 = 3 \) (highest), task \(\tau_2 \) has priority \(p_2 = 2 \), task \(\tau_3 \) has priority \(p_3 = 1 \) (lowest).
Example of Schedule

- Consider the following task set: $\tau_1 = (2, 6, 6)$, $\tau_2 = (2, 9, 9)$, $\tau_3 = (3, 12, 12)$. Task τ_1 has priority $p_1 = 3$ (highest), task τ_2 has priority $p_2 = 2$, task τ_3 has priority $p_3 = 1$ (lowest)
Consider the following task set: \(\tau_1 = (2, 6, 6) \), \(\tau_2 = (2, 9, 9) \), \(\tau_3 = (3, 12, 12) \). Task \(\tau_1 \) has priority \(p_1 = 3 \) (highest), task \(\tau_2 \) has priority \(p_2 = 2 \), task \(\tau_3 \) has priority \(p_3 = 1 \) (lowest).
Consider the following task set: \(\tau_1 = (2, 6, 6) \), \(\tau_2 = (2, 9, 9) \), \(\tau_3 = (3, 12, 12) \). Task \(\tau_1 \) has priority \(p_1 = 3 \) (highest), task \(\tau_2 \) has priority \(p_2 = 2 \), task \(\tau_3 \) has priority \(p_3 = 1 \) (lowest).
Consider the following task set: $\tau_1 = (2, 6, 6)$, $\tau_2 = (2, 9, 9)$, $\tau_3 = (3, 12, 12)$. Task τ_1 has priority $p_1 = 3$ (highest), task τ_2 has priority $p_2 = 2$, task τ_3 has priority $p_3 = 1$ (lowest).
Consider the following task set: $\tau_1 = (2, 6, 6), \tau_2 = (2, 9, 9), \tau_3 = (3, 12, 12)$. Task τ_1 has priority $p_1 = 3$ (highest), task τ_2 has priority $p_2 = 2$, task τ_3 has priority $p_3 = 1$ (lowest)
Consider the following task set: $\tau_1 = (2, 6, 6)$, $\tau_2 = (2, 9, 9)$, $\tau_3 = (3, 12, 12)$. Task τ_1 has priority $p_1 = 3$ (highest), task τ_2 has priority $p_2 = 2$, task τ_3 has priority $p_3 = 1$ (lowest).
Consider the following task set: $\tau_1 = (2, 6, 6)$, $\tau_2 = (2, 9, 9)$, $\tau_3 = (3, 12, 12)$. Task τ_1 has priority $p_1 = 3$ (highest), task τ_2 has priority $p_2 = 2$, task τ_3 has priority $p_3 = 1$ (lowest).
Consider the following task set: $\tau_1 = (2, 6, 6)$, $\tau_2 = (2, 9, 9)$, $\tau_3 = (3, 12, 12)$. Task τ_1 has priority $p_1 = 3$ (highest), task τ_2 has priority $p_2 = 2$, task τ_3 has priority $p_3 = 1$ (lowest).
Consider the following task set: \(\tau_1 = (2, 6, 6), \tau_2 = (2, 9, 9), \tau_3 = (3, 12, 12) \). Task \(\tau_1 \) has priority \(p_1 = 3 \) (highest), task \(\tau_2 \) has priority \(p_2 = 2 \), task \(\tau_3 \) has priority \(p_3 = 1 \) (lowest).
Consider the following task set: $\tau_1 = (2, 6, 6)$, $\tau_2 = (2, 9, 9)$, $\tau_3 = (3, 12, 12)$. Task τ_1 has priority $p_1 = 3$ (highest), task τ_2 has priority $p_2 = 2$, task τ_3 has priority $p_3 = 1$ (lowest)
Example of Schedule

- Consider the following task set: $\tau_1 = (2, 6, 6)$, $\tau_2 = (2, 9, 9)$, $\tau_3 = (3, 12, 12)$. Task τ_1 has priority $p_1 = 3$ (highest), task τ_2 has priority $p_2 = 2$, task τ_3 has priority $p_3 = 1$ (lowest)
Consider the following task set: $\tau_1 = (2, 6, 6)$, $\tau_2 = (2, 9, 9)$, $\tau_3 = (3, 12, 12)$. Task τ_1 has priority $p_1 = 3$ (highest), task τ_2 has priority $p_2 = 2$, task τ_3 has priority $p_3 = 1$ (lowest).
Another Example (non-schedulable)

- Consider the following task set: \(\tau_1 = (3, 6, 6), p_1 = 3, \)
 \(\tau_2 = (2, 4, 8), p_2 = 2, \tau_3 = (2, 12, 12), p_3 = 1 \)

In this case, task \(\tau_2 \) misses its deadline!
Another Example (non-schedulable)

- Consider the following task set: \(\tau_1 = (3, 6, 6), p_1 = 3, \)
 \(\tau_2 = (2, 4, 8), p_2 = 2, \)
 \(\tau_3 = (2, 12, 12), p_3 = 1 \)

In this case, task \(\tau_2 \) misses its deadline!
Another Example (non-schedulable)

- Consider the following task set: \(\tau_1 = (3, 6, 6), p_1 = 3, \)
 \(\tau_2 = (2, 4, 8), p_2 = 2, \tau_3 = (2, 12, 12), p_3 = 1 \)

In this case, task \(\tau_2 \) misses its deadline!
Some considerations about the schedule shown before:

- The response time of the task with the highest priority is minimum and equal to its WCET.
- The response time of the other tasks depends on the interference of the higher priority tasks.
- The priority assignment may influence the schedulability of a task set.

Problem: how to assign tasks’ priorities so that a task set is schedulable?
Priority Assignment

- Given a task set, how to assign priorities?
- There are two possible objectives:
 - Schedulability (i.e. find the priority assignment that makes all tasks schedulable)
 - Response time (i.e. find the priority assignment that minimise the response time of a subset of tasks)
- By now we consider the first objective only
- An *optimal* priority assignment Opt is such that:
 - If the task set is schedulable with another priority assignment, then it is schedulable with priority assignment Opt
 - If the task set is not schedulable with Opt, then it is not schedulable by any other assignment
Optimal Priority Assignment

- Given a periodic task set T with all tasks having relative deadline D_i equal to the period T_i ($\forall i, D_i = T_i$), and with all offsets equal to 0 ($\forall i, r_{i,0} = 0$):
 - The best assignment is the *Rate Monotonic* (RM) assignment
 - Shorter period \rightarrow higher priority
- Given a periodic task set with deadline different from periods, and with all offsets equal to 0 ($\forall i, r_{i,0} = 0$):
 - The best assignment is the *Deadline Monotonic* assignment
 - Shorter relative deadline \rightarrow higher priority
- For sporadic tasks, the same rules are valid as for periodic tasks with offsets equal to 0
Consider the example shown before with deadline monotonic:

\[\tau_1 = (3, 6, 6), \ p_1 = 2, \ \tau_2 = (2, 4, 8), \ p_2 = 3, \ \tau_3 = (2, 12, 12), \ p_3 = 1 \]
Consider the example shown before with deadline monotonic:
\[\tau_1 = (3, 6, 6), \ p_1 = 2, \ \tau_2 = (2, 4, 8), \ p_2 = 3, \ \tau_3 = (2, 12, 12), \ p_3 = 1\]
Example revised

- Consider the example shown before with deadline monotonic:
 \(\tau_1 = (3, 6, 6), \ p_1 = 2, \ \tau_2 = (2, 4, 8), \ p_2 = 3, \ \tau_3 = (2, 12, 12), \ p_3 = 1 \)
Consider the example shown before with deadline monotonic:

\(\tau_1 = (3, 6, 6), \ p_1 = 2, \ \tau_2 = (2, 4, 8), \ p_2 = 3, \ \tau_3 = (2, 12, 12), \ p_3 = 1 \)
Consider the example shown before with deadline monotonic:

\[\tau_1 = (3, 6, 6), \quad p_1 = 2, \quad \tau_2 = (2, 4, 8), \quad p_2 = 3, \quad \tau_3 = (2, 12, 12), \quad p_3 = 1 \]
Consider the example shown before with deadline monotonic:

\(\tau_1 = (3, 6, 6), p_1 = 2, \tau_2 = (2, 4, 8), p_2 = 3, \tau_3 = (2, 12, 12), p_3 = 1 \)
Example revised

- Consider the example shown before with deadline monotonic:
 \[\tau_1 = (3, 6, 6), \quad p_1 = 2, \quad \tau_2 = (2, 4, 8), \quad p_2 = 3, \quad \tau_3 = (2, 12, 12), \quad p_3 = 1 \]
Consider the example shown before with deadline monotonic:

\[\tau_1 = (3, 6, 6), \ p_1 = 2, \ \tau_2 = (2, 4, 8), \ p_2 = 3, \ \tau_3 = (2, 12, 12), \ p_3 = 1 \]
Consider the example shown before with deadline monotonic:
\[\tau_1 = (3, 6, 6), \ p_1 = 2, \ \tau_2 = (2, 4, 8), \ p_2 = 3, \ \tau_3 = (2, 12, 12), \ p_3 = 1 \]
Consider the example shown before with deadline monotonic:
\[\tau_1 = (3, 6, 6), \ p_1 = 2, \ \tau_2 = (2, 4, 8), \ p_2 = 3, \ \tau_3 = (2, 12, 12), \ p_3 = 1 \]
Consider the example shown before with deadline monotonic:

\[\tau_1 = (3, 6, 6), \ p_1 = 2, \ \tau_2 = (2, 4, 8), \ p_2 = 3, \ \tau_3 = (2, 12, 12), \ p_3 = 1 \]
Consider the example shown before with deadline monotonic:
\[\tau_1 = (3, 6, 6), \ p_1 = 2, \ \tau_2 = (2, 4, 8), \ p_2 = 3, \ \tau_3 = (2, 12, 12), \ p_3 = 1 \]
Consider the example shown before with deadline monotonic:
\[\tau_1 = (3, 6, 6), \ p_1 = 2, \ \tau_2 = (2, 4, 8), \ p_2 = 3, \ \tau_3 = (2, 12, 12), \ p_3 = 1 \]
Consider the example shown before with deadline monotonic:
\[\tau_1 = (3, 6, 6), \ p_1 = 2, \ \tau_2 = (2, 4, 8), \ p_2 = 3, \ \tau_3 = (2, 12, 12), \ p_3 = 1 \]
Consider the example shown before with deadline monotonic:

\[\tau_1 = (3, 6, 6), \quad p_1 = 2, \quad \tau_2 = (2, 4, 8), \quad p_2 = 3, \quad \tau_3 = (2, 12, 12), \quad p_3 = 1 \]
Consider the example shown before with deadline monotonic:
\[\tau_1 = (3, 6, 6), \ p_1 = 2, \ \tau_2 = (2, 4, 8), \ p_2 = 3, \ \tau_3 = (2, 12, 12), \ p_3 = 1 \]
Consider the example shown before with deadline monotonic:

\[\tau_1 = (3, 6, 6), \ p_1 = 2, \ \tau_2 = (2, 4, 8), \ p_2 = 3, \ \tau_3 = (2, 12, 12), \ p_3 = 1 \]
Consider the example shown before with deadline monotonic:

\[\tau_1 = (3, 6, 6), \quad p_1 = 2, \quad \tau_2 = (2, 4, 8), \quad p_2 = 3, \quad \tau_3 = (2, 12, 12), \quad p_3 = 1\]
Given a task set, how can we guarantee if it is schedulable or not?
The first possibility is to simulate the system to check that no deadline is missed;
The execution time of every job is set equal to the WCET of the corresponding task;
- Periodic tasks with no offsets \(\Rightarrow \) sufficient to simulate the schedule until the hyperperiod \((H = \text{lcm}\{T_i\})\).
- Offsets \(\phi_i = r_{i,0} \Rightarrow \) simulate until \(2H + \phi_{\text{max}}\).
- If tasks periods are prime numbers the hyperperiod can be very large!
- Note: RM \(\rightarrow\) hyperperiod; Cyclic Executive \(\rightarrow\) Major Cycle
Example

- Exercise: Compare the hyperperiods of this two task sets:
 - $T_1 = 8$, $T_2 = 12$, $T_3 = 24$
 - $T_1 = 7$, $T_2 = 12$, $T_3 = 25$
- In case of sporadic tasks, we can assume them to arrive at the highest possible rate, so we fall back to the case of periodic tasks with no offsets!
Utilisation-Based Analysis

- In many cases it is useful to have a very simple test to see if the task set is schedulable.
- A sufficient test is based on the *Utilisation bound*:
 - The *utilisation least upper bound* for scheduling algorithm A is the smallest possible utilisation U_{lub} such that, for any task set \mathcal{T}, if the task set’s utilisation U is not greater than U_{lub} ($U \leq U_{lub}$), then the task set is schedulable by algorithm A.
Utilisation

- Each task uses the processor for a fraction of time

\[U_i = \frac{C_i}{T_i} \]

- The total processor utilisation is

\[U = \sum_i \frac{C_i}{T_i} \]

- This is a measure of the processor’s load
Necessary Condition

- If $U > 1$ the task set is surely not schedulable
- However, if $U < 1$ the task set may or may not be schedulable
- If $U < U_{lub}$, the task set is schedulable!!
 - “Gray Area” between U_{lub} and 1
 - We would like to have U_{lub} near to 1
 - $U_{lub} = 1$ would be optimal!!!
Utilisation Bound for RM

- We consider n periodic (or sporadic) tasks with relative deadline equal to periods.
- Priorities are assigned with Rate Monotonic;
- $U_{lub} = n(2^{1/n} - 1)$
 - U_{lub} is a decreasing function of n;
 - For large n: $U_{lub} \approx 0.69$

<table>
<thead>
<tr>
<th>n</th>
<th>U_{lub}</th>
<th>n</th>
<th>U_{lub}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.828</td>
<td>7</td>
<td>0.728</td>
</tr>
<tr>
<td>3</td>
<td>0.779</td>
<td>8</td>
<td>0.724</td>
</tr>
<tr>
<td>4</td>
<td>0.756</td>
<td>9</td>
<td>0.720</td>
</tr>
<tr>
<td>5</td>
<td>0.743</td>
<td>10</td>
<td>0.717</td>
</tr>
<tr>
<td>6</td>
<td>0.734</td>
<td>11</td>
<td>...</td>
</tr>
</tbody>
</table>
Schedulability Test

- Therefore the schedulability test consist in:
 - Computing $U = \sum_{i=1}^{n} \frac{C_i}{T_i}$
 - if $U \leq U_{lub}$, the task set is schedulable
 - if $U > 1$ the task set is not schedulable
 - if $U_{lub} < U \leq 1$, the task set may or may not be schedulable
Task set \mathcal{T} composed by 3 periodic tasks with $U < U_{lb}$: the system is schedulable.

$\tau_1 = (2, 8), \tau_2 = (3, 12), \tau_3 = (4, 16)$;

$U = 0.75 < U_{lb} = 0.77$
Task set \mathcal{T} composed by 3 periodic tasks with $U < U_{lub}$: the system is schedulable.

$\tau_1 = (2, 8), \tau_2 = (3, 12), \tau_3 = (4, 16);

U = 0.75 < U_{lub} = 0.77$
Task set \mathcal{T} composed by 3 periodic tasks with $U < U_{lub}$: the system is schedulable.

\[\tau_1 = (2, 8), \tau_2 = (3, 12), \tau_3 = (4, 16); \]

\[U = 0.75 < U_{lub} = 0.77 \]
Task set \mathcal{T} composed by 3 periodic tasks with $U < U_{lub}$: the system is schedulable.

$\tau_1 = (2, 8), \tau_2 = (3, 12), \tau_3 = (4, 16)$;

$U = 0.75 < U_{lub} = 0.77$
Task set \mathcal{T} composed by 3 periodic tasks with $U < U_{lub}$: the system is schedulable.

$\tau_1 = (2, 8), \tau_2 = (3, 12), \tau_3 = (4, 16)$;

$U = 0.75 < U_{lub} = 0.77$
Example

Task set \mathcal{T} composed by 3 periodic tasks with $U < U_{lub}$: the system is schedulable.

$\tau_1 = (2, 8), \tau_2 = (3, 12), \tau_3 = (4, 16)$;

$U = 0.75 < U_{lub} = 0.77$
Task set \mathcal{T} composed by 3 periodic tasks with $U < U_{\text{lub}}$: the system is schedulable.

$\tau_1 = (2, 8), \tau_2 = (3, 12), \tau_3 = (4, 16)$;

$U = 0.75 < U_{\text{lub}} = 0.77$
Example

Task set \mathcal{T} composed by 3 periodic tasks with $U < U_{lub}$: the system is schedulable.

$\tau_1 = (2, 8), \tau_2 = (3, 12), \tau_3 = (4, 16);$

$U = 0.75 < U_{lub} = 0.77$
Example

Task set \mathcal{T} composed by 3 periodic tasks with $U < U_{lub}$: the system is schedulable.

$\tau_1 = (2, 8), \tau_2 = (3, 12), \tau_3 = (4, 16);$

\[
U = 0.75 < U_{lub} = 0.77
\]
Task set \mathcal{T} composed by 3 periodic tasks with $U < U_{lub}$: the system is schedulable.

$\tau_1 = (2, 8), \tau_2 = (3, 12), \tau_3 = (4, 16)$;

$U = 0.75 < U_{lub} = 0.77$
Task set \mathcal{T} composed by 3 periodic tasks with $U < U_{lub}$: the system is schedulable.

$\tau_1 = (2, 8), \tau_2 = (3, 12), \tau_3 = (4, 16)$;

$U = 0.75 < U_{lub} = 0.77$
Example

Task set \mathcal{T} composed by 3 periodic tasks with $U < U_{lub}$: the system is schedulable.

$\tau_1 = (2, 8), \tau_2 = (3, 12), \tau_3 = (4, 16);
\textcolor{red}{U = 0.75 < U_{lub} = 0.77}$
Example 2

By increasing the computation time of task τ_3, the system may still be schedulable

$\tau_1 = (2, 8), \tau_2 = (3, 12), \tau_3 = (5, 16)$;

$U = 0.81 > U_{lub} = 0.77$
Utilisation Bound for DM

- If relative deadlines are less than or equal to periods, instead of considering \(U = \sum_{i=1}^{n} \frac{C_i}{T_i} \), we can consider:

\[
U' = \sum_{i=1}^{n} \frac{C_i}{D_i}
\]

- Then the test is the same as the one for RM (or DM), except that we must use \(U' \) instead of \(U \).
- Idea: \(\tau = (C, D, T) \rightarrow \tau' = (C, D, D) \)
 - \(\tau' \) is a “worst case” for \(\tau \)
 - If \(\tau' \) can be guaranteed, \(\tau \) can be guaranteed too
Pessimism

- The bound is very pessimistic: most of the times, a task set with $U > U_{lub}$ is schedulable by RM.
- A particular case is when tasks have periods that are harmonic:
 - A task set is harmonic if, for every two tasks τ_i, τ_j, either T_i is multiple of T_j or T_j is multiple of T_i.
- For a harmonic task set, the utilisation bound is $U_{lub} = 1$
- In other words, Rate Monotonic is an optimal algorithm for harmonic task sets
Example of Harmonic Task Set

\[\tau_1 = (3, 6), \quad \tau_2 = (3, 12), \quad \tau_3 = (6, 24); \]

\[U = 1; \]