
Developing Real-Time
Applications

Real Time Operating Systems and Middleware

Luca Abeni
luca.abeni@unitn.it

Real-Time Applications

Real-Time Operating Systems and Middleware Real-Time Applications

• Characterised by temporal constraints

• deadlines

• Concurrent (application: set of real-time tasks)

• Threads

• Processes

• Cyclic Executinve...

• Periodic, sporadic, or aperiodic behaviour

Requirements

Real-Time Operating Systems and Middleware Real-Time Applications

• Need to implement periodic behaviour

• Requirements on the API

• Need an appropriate scheduling policy

• Again, requirements on the API...

• Also requirements on kernel latency!

• Latency requirements:

• Requirements on kernel structure

• Need to disable “lazy” behaviours (example: lazy
memory allocation)

Programming Interface

Real-Time Operating Systems and Middleware Real-Time Applications

• Real-time applications can use a standard API

• POSIX

• ...Or some specialised (worse: proprietary) one!

• RTAI

• vxworks, etc...

• Xenomai provides skins providing support for
existing real-time APIs

• Easy porting from non-standard APIs

Kernel Structure

Real-Time Operating Systems and Middleware Real-Time Applications

• Difference between real-time kernels and non
real-time ones:

• Real-time kernels provide deterministic (and
low!) latency

• Some possible technologies

• Distinction between real-time and non real-time
tasks (HLP)

• No distinction between real-time and non
real-time tasks

Using HLP, NPP or PI

Real-Time Operating Systems and Middleware Real-Time Applications

• Real-Time applications do not share the kernel with
non real-time ones:

• µkernels

• Dual-kernel systems

• Real-Time applications share the kernel with non
real-time ones:

• Preemptable kernels (NPP)

• Preempt-RT (PI)

µkernels and Dual-Kernel Systems - 1

Real-Time Operating Systems and Middleware Real-Time Applications

• Basic Idea: real-time applications do not use the
Linux (or similar) kernel

• Kernel critical sections cannot cause latencies
on real-time applications

• So, Linux can have large critical sections

• Real-Time applications use a “lower level kernel”

• Can be a µkernel or some kind of real-time
executive living in kernel space

• Real-Time applications run in user space
(µkernel) or in kernel space (dual kernel)

µkernels and Dual-Kernel Systems - 2

Real-Time Operating Systems and Middleware Real-Time Applications

• Real-Time applications have higher priorities than
non real-time ones

• Even higher priority than the kernel!

• The “lower level kernel” has short critical sections

• “Lower level kernel” critical sections: non
preemptable

• Linux critical sections: non preemptable by Linux
(and by non real-time applications) but
preemptable by real-time applications

• HLP!!!

Running all the Applications on the same Kernel

Real-Time Operating Systems and Middleware Real-Time Applications

• No explicit distinction between real-time and non
real-time applications

• All the applications use the same kernel (Linux)

• Impossible to use HLP

• Need to reduce the size of critical sections...

• ...And to use an appropriate resource sharing
protocol

• Spinlocks can only use NPP

• To use PI, we need mutexes ⇒ IRQ threads,
etc...

Real-Time in User Space

Real-Time Operating Systems and Middleware Real-Time Applications

• Address space protection

• Applications cannot disable interrupts

• Real-time applications can use the kernel (or
µkernel) functionalities

• System libraries (or libc) to invoke syscalls

• µkernel: maybe some additional user-space
servers

• Running on Linux: can use drivers, network, etc...

• µkernels: must re-implement everything

Real-Time in Linux User Space

Real-Time Operating Systems and Middleware Real-Time Applications

• Real-time over linux: preemptable kernel (NPP) or
Preempt-RT (PI)

• Can use Linux functionalities (drivers, network
stack, filesystem, ...)

• Cost: to get low latencies, Linux has to be
modified

• NPP: long critical sections in the kernel can cause
high latencies on all the tasks

• PI: tasks not using a critical section are not
penalised

Linux Real-Time Applications

Real-Time Operating Systems and Middleware Real-Time Applications

• PI / Preempt-RT: Properly written real-time tasks
experience good performance

• Some special care is needed

• Low latency: lower-priority tasks cannot affect
the response time....

• ...But real-time tasks still need “some tricks” to
achieve deterministic response times

• Example: virtual memory management / dynamic
memory allocation...

Virtual Memory Management

Real-Time Operating Systems and Middleware Real-Time Applications

• User applications do not access physical memory

• Virtual memory address space: divided in pages

• A page in virtual memory can be mappedo to a
page in physical memory...

• ...Or can have no correspondent page in
physical memory

• In the first case, the memory can be accessed

• In the second case, it must be mapped in
physical memory first

• When does the mapping happen?

Page Faults

Real-Time Operating Systems and Middleware Real-Time Applications

• When a process starts, no page is mapped in
physical memory

• When a non-mapped page is accessed, page fault

• A kernel handler is invoked

• Finds a free physical page...

• ...And creates the mapping!

• What happens if no free physical page is found?

• Some existing mapping is removed

• To avoid data loss, the content of the page is
saved to disk

Minor and Major Faults

Real-Time Operating Systems and Middleware Real-Time Applications

• A page fault can happen because:

• This is the first time we access a memory page
(minor fault)

• We access a page that has been previously
unmapped / swapped to disk (major fault)

• Majour faults are (obviously) more expensive

• All page faults make the memory access time less
predictable

• Should be avoided in real-time applications

Avoiding Major Faults

Real-Time Operating Systems and Middleware Real-Time Applications

• How to avoid Majour Faults? Just don’t swap pages
to disk!

• If a mapped page cannot be unmapped...

• ...Then no major fault can happen on it!

• POSIX provides system calls (mlockall(), ...) to
“pin” memory pages in physical memory

• A “pinned” page cannot be unmapped / swapped to
disk

• Only one minor fault the first time we access the
page

What About Minor Faults?

Real-Time Operating Systems and Middleware Real-Time Applications

• Minor faults cannot be avoided

• To access a memory page, it must be mapped...

• The problem is the “lazy” memory management
used by many OS

• A memory page is mapped when it is accessed
the first time

• Minor fault on the first access

• Add unpredictability to memory access time!

• Solution: map all the pages before starting real-time
activities

Minor Faults in Real-Time Applications

Real-Time Operating Systems and Middleware Real-Time Applications

• We do not want page faults during real-time
activities

• Majour faults: use mlockall()

• Minor faults: force mapping all the pages in an
initialisation phase

• All page faults in initialisation → no minor faults
during real-time activities

• Touch all the memory buffers before starting

• Example: allocate dynamic memory before the first
job, and memset it to 0 immediately

Dynamic Memory Allocation, Again...

Real-Time Operating Systems and Middleware Real-Time Applications

• malloc() & friends are safe only during
initialisation...

• What to do if the jobs of a real-time taks need to
dynamically allocate / free memory?

• Dirty trick: play with the memory allocation
subsystem so that freed memory is not returned to
the kernel

• Example: use mallopt() or similar

• A sufficient amount of memory needs to be
allocated and freed during initialisation

Real-Time in Kernel Space

Real-Time Operating Systems and Middleware Real-Time Applications

• Dual-kernel approach (RTLinux, RTAI, Xenomai, ...)

• Real-Time applications do not use the Linux
kernel

• So, we can use HLP!

• Real-Time task: kernel thread

• So, real-time applications run in kernel
space!!!

• On Linux: use kernel modules

Linux Kernel Modules

Real-Time Operating Systems and Middleware Real-Time Applications

• Kernel module: code that can be dynamically
loaded/unloaded into the kernel at runtime

• Change the kernel code without needing to reboot
the system

• More technically: the modules’ object code is
dynamically linked to the running kernel code

• Form of dynamic linking!

• This mechanism can be used to load kernel-space
real-time applications!

Using Kernel Modules

Real-Time Operating Systems and Middleware Real-Time Applications

• Kernel Module: kernel object → .ko file

• Inserted with modprobe <module name>

• Can be removed with rmmod <module name>

• When inserted, a kernel module can:

• Register some services

• Start some tasks (kernel threads)

• A kernel module can use some exported kernel
functions

Kernel Programming - 1

Real-Time Operating Systems and Middleware Real-Time Applications

• No single entry point (no “main() function)

• No memory protection

• Kernel Memory Address Space: all the memory
can be accessed

• Kernel-space tasks can easily corrupt important
data structures!

• Not linked to standard libraries

• Cannot include <stdio.h> and friends...

• No standard C library!

Kernel Programming - 2

Real-Time Operating Systems and Middleware Real-Time Applications

• The kernel (or nanokernel, or ...) provides some
functions we can use

• Example, no printf(), but printk()...

• Errors do not result in segmentation faults...

• ...But can cause system crashes!

• Other weird details

• No floating point (do not use float or double)

• Small stack (4KB or 8KB)

• Atomic contexts, ...

Kernel Programming Language

Real-Time Operating Systems and Middleware Real-Time Applications

• OS kernels are generally coded in C or C++

• The Linux kernel uses C

• Subset of C99 + some extensions (likely() /
unlikely() annotations, etc...)

• As said, no access to standard libraries

• Different set of header files and utility functions

• Some Assembly is used (for entry points, etc...)

• Example: Linked Lists (include/linux/list.h)

Writing Linux Kernel Modules

Real-Time Operating Systems and Middleware Real-Time Applications

• Written in C99 + extensions (see previous slide)

• Must include some headers:
1 #include <linux/module.h>
2 #include <linux/kernel.h>
3 #include <linux/init.h>

• Must define two entry points: init and cleanup

• Init entry point: called when the module is
inserted

• Cleanup entry point: called when the module is
removed

The Init Entry Point

Real-Time Operating Systems and Middleware Real-Time Applications

1 static int __init my_init(void)
2 {
3 ...
4 return 0;
5 }
6

7 module_init(my_init);

• static: not used outside this compilation unit

• init: annotation for the kernel (not used after
insmod)

• return 0;: module initialised without errors

• module init(my init);: mark my init as the
init entry point

The Exit Entry Point

Real-Time Operating Systems and Middleware Real-Time Applications

1 static void __exit my_cleanup(void)
2 {
3 ...
4 }
5

6 module_exit(my_cleanup);

• exit: annotation for the kernel (used only in
rmmod)

• module exit(my cleanup);: mark my cleanup
as the cleanup entry point

• Responsible for undoing things done by init

• If not defined, the module cannot be unloaded

Applications as Kernel Modules

Real-Time Operating Systems and Middleware Real-Time Applications

• The init entry point must return quickly

• modprobe does not terminate until init returns

• Just creates some (real-time!) threads and return

• After loading the module, the application is
started!

• The cleanup entry point stops the threads

• See Xenomai example (in the lab!)

	Real-Time Applications
	Requirements
	Programming Interface
	Kernel Structure
	Using HLP, NPP or PI
	kernels and Dual-Kernel Systems - 1
	kernels and Dual-Kernel Systems - 2
	Running all the Applications on the same Kernel
	Real-Time in User Space
	Real-Time in Linux User Space
	Linux Real-Time Applications
	Virtual Memory Management
	Page Faults
	Minor and Major Faults
	Avoiding Major Faults
	What About Minor Faults?
	Minor Faults in Real-Time Applications
	Dynamic Memory Allocation, Again...
	Real-Time in Kernel Space
	Linux Kernel Modules
	Using Kernel Modules
	Kernel Programming - 1
	Kernel Programming - 2
	Kernel Programming Language
	Writing Linux Kernel Modules
	The Init Entry Point
	The Exit Entry Point
	Applications as Kernel Modules

