
Real-Time in the Real World
Real Time Operating Systems and Middleware

Luca Abeni
luca.abeni@unitn.it



From Theory...

Real-Time Operating Systems Real-Time in the Real World

• Real-time system: {τi}

• τi : (Ci, Ti)

• Independent tasks

• Periodic tasks, Di = Ti

• WCET???

• Theoretical schedule: function t → τi

• 1 CPU



...To Practice

Real-Time Operating Systems Real-Time in the Real World

• Real-time system: {τi}, {Sk}

• τi : (Ci, Di, Ti)

• Sporadic Tasks

• Minimum Inter-Arrival Time???

• Still do be solved:

• Do something about WCET and MIT knowledge

• Scheduling for more than 1 CPU (example: SMP
or multicore)

• Take OS overhead into account



The WCET

Real-Time Operating Systems Real-Time in the Real World

• Schedulability analysis is based on the WCET

• But... How can I know it?

• Today, my crystal ball is broken...

• Problem: a task τi executing for more than Ci can
cause deadline misses in a different task τj

• Two possible solutions:

• Analyse the effects of variations in the WCETs:
Sensistivity Analysis

• Limit the execution time in some way (enforcing
a WCET): Resource Reservations



Sensitivity Analysis - 1

Real-Time Operating Systems Real-Time in the Real World

• WCETs are estimations. What happens if my WCET
estimation is wrong?

• A job Ji,j can execute for a time ci,j > Ci!

• What’s the acceptable error in WCETs estimations?

• Formulate TDA or RTA as a sensitivity analysis
problem

• How sensible is the demanded time (or response
time) to variations of the WCETs?



Sensitivity Analysis - 2

Real-Time Operating Systems Real-Time in the Real World

• How sensible is the demanded time (or response
time) to variations of the WCETs?

• Example: What happens to Ri if Ch (with ph > pi)
is increased by a small amount δ?

• Ri = f(C1, . . . Ci, T1, . . . Ti−1); f() is not linear...

• ... I can see strange effects!

• Complex analysis, not explained here (see old
slides if you are curious)



Reservation-Based Scheduling

Real-Time Operating Systems Real-Time in the Real World

• Force the task not to demand more time than a
periodic (or sporadic!) (Q, T ) task

• How to enforce this?

• Measure the demanded time, and deschedule
the task when it’s too much

• Similar to “traffic shaping used in networks”

• Temporal Protection!!!



Temporal Protection

Real-Time Operating Systems Real-Time in the Real World

• Protect real-time tasks from “misbehaving” tasks

• “Misbehaviour”: a task executes for too much
time, or the WCET estimation is wrong

• High-priority real-time task executing more than
Ci → some other task might miss a deadline!

• With reservations / temporal protection:

• If task τi executes for more than Qi = Ci, it will
be blocked...

• ...τi will miss a deadline (not other tasks!!!)

• Similar to memory protection...



Implementing Temporal Protection

Real-Time Operating Systems Real-Time in the Real World

• Budget q, consumed when the task executes

• When the budget is 0 the task cannot be
scheduled

• Budget

• Accounting (Enforcement)

• Replenishment

2

(3,8)

4



Aperiodic Servers

Real-Time Operating Systems Real-Time in the Real World

• How to cope with the MIT?

• Aperiodic tasks: no particular structure (no
knowledge about the MIT)

• Traditional solution: use a periodic (or sporadic) task
to serve aperiodic requests...

• Aperiodic Servers

• Polling Server, Deferrable Server, Sporadic
Server, ...

• Implementation: use a budget...



Multiprocessor Scheduling

Real-Time Operating Systems Real-Time in the Real World

• Real-Time scheduling with more than 1 processor?

• Trivial solution: partitioned scheduling

• Statically assign tasks to CPUs

• Reduce the problem of scheduling on M CPUs
to M instances of uniprocessor scheduling

• Problem: system underutilisation

• Global scheduling

• One single ready task queue

• Select the first M tasks from the queue

• Problem: migrations...


	From Theory...
	...To Practice
	The WCET
	Sensitivity Analysis - 1
	Sensitivity Analysis - 2
	Reservation-Based Scheduling
	Temporal Protection
	Implementing Temporal Protection
	Aperiodic Servers
	Multiprocessor Scheduling

