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From Theory...
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• Real-time system: {τi}

• τi : (Ci, Ti)

• Independent tasks

• Periodic tasks, Di = Ti

• WCET???

• Theoretical schedule: function t → τi

• 1 CPU



...To Practice
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• Real-time system: {τi}, {Sk}

• τi : (Ci, Di, Ti)

• Sporadic Tasks

• Minimum Inter-Arrival Time???

• Still do be solved:

• Do something about WCET and MIT knowledge

• Scheduling for more than 1 CPU (example: SMP
or multicore)

• Take OS overhead into account



The WCET
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• Schedulability analysis is based on the WCET

• But... How can I know it?

• Today, my crystal ball is broken...

• Problem: a task τi executing for more than Ci can
cause deadline misses in a different task τj

• Two possible solutions:

• Analyse the effects of variations in the WCETs:
Sensistivity Analysis

• Limit the execution time in some way (enforcing
a WCET): Resource Reservations



Sensitivity Analysis - 1
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• WCETs are estimations. What happens if my WCET
estimation is wrong?

• A job Ji,j can execute for a time ci,j > Ci!

• What’s the acceptable error in WCETs estimations?

• Formulate TDA or RTA as a sensitivity analysis
problem

• How sensible is the demanded time (or response
time) to variations of the WCETs?



Sensitivity Analysis - 2
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• How sensible is the demanded time (or response
time) to variations of the WCETs?

• Example: What happens to Ri if Ch (with ph > pi)
is increased by a small amount δ?

• Ri = f(C1, . . . Ci, T1, . . . Ti−1); f() is not linear...

• ... I can see strange effects!

• Complex analysis, not explained here (see old
slides if you are curious)



Reservation-Based Scheduling
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• Force the task not to demand more time than a
periodic (or sporadic!) (Q, T ) task

• How to enforce this?

• Measure the demanded time, and deschedule
the task when it’s too much

• Similar to “traffic shaping used in networks”

• Temporal Protection!!!



Temporal Protection
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• Protect real-time tasks from “misbehaving” tasks

• “Misbehaviour”: a task executes for too much
time, or the WCET estimation is wrong

• High-priority real-time task executing more than
Ci → some other task might miss a deadline!

• With reservations / temporal protection:

• If task τi executes for more than Qi = Ci, it will
be blocked...

• ...τi will miss a deadline (not other tasks!!!)

• Similar to memory protection...



Implementing Temporal Protection
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• Budget q, consumed when the task executes

• When the budget is 0 the task cannot be
scheduled

• Budget

• Accounting (Enforcement)

• Replenishment

2
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Aperiodic Servers
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• How to cope with the MIT?

• Aperiodic tasks: no particular structure (no
knowledge about the MIT)

• Traditional solution: use a periodic (or sporadic) task
to serve aperiodic requests...

• Aperiodic Servers

• Polling Server, Deferrable Server, Sporadic
Server, ...

• Implementation: use a budget...



Multiprocessor Scheduling
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• Real-Time scheduling with more than 1 processor?

• Trivial solution: partitioned scheduling

• Statically assign tasks to CPUs

• Reduce the problem of scheduling on M CPUs
to M instances of uniprocessor scheduling

• Problem: system underutilisation

• Global scheduling

• One single ready task queue

• Select the first M tasks from the queue

• Problem: migrations...
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