
Managing Concurrency in POSIX

POSIX Threads

Luca Abeni

luca.abeni@unitn.it

November 5, 2014

The POSIX Standard

Real Time Operating Systems and Middleware POSIX Threads – 2 / 19

■ Is an IEEE standard that specifies an operating system interface similar
to most unix systems

◆ The POSIX standard is not “free as gratis” (you have to pay for
having it)

◆ You can refer to the opengroup standard (www.opengroup.org)
instead

◆ http://www.opengroup.org/onlinepubs/009695399/basedefs/pthread.h.html for pthreads...

■ The standard defines a C API to handle concurrent activities

◆ POSIX makes a distinction between processes and threads

www.opengroup.org
http://www.opengroup.org/onlinepubs/009695399/basedefs/pthread.h.html

Threads

Real Time Operating Systems and Middleware POSIX Threads – 3 / 19

■ A thread is a schedulable entity (a flow of execution)

■ A process is composed by one or more threads + some private resources
(address space, file table, etc...)

◆ So, a thread is a single flow of control within a process

◆ Every process has at least 1 thread, the main thread

■ All the threads in a process share the same address space, file table,
program body, etc...

■ Each thread has its own context, and its own stack

■ In each process, there is a “special” thread:

◆ Terminating the main thread of a process terminates the process

PThreads

Real Time Operating Systems and Middleware POSIX Threads – 4 / 19

■ The POSIX standard defines its own threading library: the pthread
library

■ All the primitives operating (creation, termination, synchronization,
etc...) on threads are implemented in the pthread library

■ POSIX threading primitives and data structures are are declared in:

◆ pthread.h

◆ semaphore.h (if using semaphores!)

■ Use the man command to access on-line documentation

■ When compiling with gcc (generally under GNU/Linux), use the
-pthread option!!!

Thread Body

Real Time Operating Systems and Middleware POSIX Threads – 5 / 19

■ The code executed by a thread is defined by a C function, the thread
body:

1 void *my_thread(void *arg)
2 {
3 ...
4 }

■ When created, a thread starts executing the first instruction of its body

■ The thread ends when exiting the body (at the end of the C function)

◆ But a thread can terminate also in other ways (by explicitly calling
a termination function, when killed by another thread, etc...)

Thread Creation

Real Time Operating Systems and Middleware POSIX Threads – 6 / 19

■ Threads can be created by using the pthread create() call:

int pthread_create(pthread_t *id , pthread_attr_t *attr ,
void *(* body)(void *), void *arg)

■ The attr parameter (of type pthread attr t) describes some thread’s
attributes

■ body is a pointer to the thread body

■ arg is the argument passed to the thread body on start

■ The identifier of the created thread is returned in id (of type
pthread t)

■ The return value is 0 if no error occurred, 6= 0 in case of error

Thread Attributes

Real Time Operating Systems and Middleware POSIX Threads – 7 / 19

■ The thread attributes specified in attr permits to control some of the
characteristics of the created threads

◆ Stack size (and address)

◆ Detach state (joinable or detached)

◆ Some scheduling parameters (priority, etc...)

■ Thread attributes must be initialized and destroyed:

int pthread_attr_init(pthread_attr_t *attr)

int pthread_attr_destroy(pthread_attr_t *attr)

Thread Termination

Real Time Operating Systems and Middleware POSIX Threads – 8 / 19

■ A thread can terminate by using the pthread exit() call:

void pthread_exit(void *retval)

■ A thread also terminates when its execution arrives at the end of the
thread body

◆ pthread exit() is automatically called when returning from the
thread body

■ When the main thread exits, exit() is called (and not
pthread exit(), and the process terminates

Thread IDs

Real Time Operating Systems and Middleware POSIX Threads – 9 / 19

■ Each thread is identified by an unique ID (returned by
pthread create()

■ The ID of the current thread can be obtained by using pthread self()

pthread_t pthread_self(void)

■ Two IDs can be compared by using pthread equal()

int pthread_equal(pthread_t id1 ,
pthread_t id2)

Thread Synchronization - Join

Real Time Operating Systems and Middleware POSIX Threads – 10 / 19

■ A thread can wait for the termination of another thread by calling
pthread join()

int pthread_join(pthread_t id , void ** result)

■ The return value of the thread (or PTHREAD CANCELED if the thread has
been killed) is returned in result

■ By default, every thread must be joined

◆ The private resources of a terminate thread are not released until a
join occours

◆ Similar to what happens with processes and wait() (think about
zombies)

Detached Threads

Real Time Operating Systems and Middleware POSIX Threads – 11 / 19

■ A thread that will not be joined has to be declared as detached

◆ When a detached thread terminates, its resources are immediately
released

■ There are two ways to detach a thread:

◆ The “detached” state is set on thread creationg (through the attr
parameter), by using pthread attr setdetachstate()

◆ The thread becomes detached by calling pthread detach()

■ Joining a detached thread results in an error

Example 1

Real Time Operating Systems and Middleware POSIX Threads – 12 / 19

■ File: http://dit.unitn.it/~abeni/RTOS/ex_create.c

■ The example shows how to create threads

◆ The main thread (having body main()) creates a second thread,
with body body()

◆ The second thread check the thread IDs, by using
pthread equal(), and then exits

◆ The main thread waits for the other thread termination by joining it

■ Also: http://dit.unitn.it/~abeni/RTOS/thread.c

◆ Compare with the fork.c example

http://dit.unitn.it/~abeni/RTOS/ex_create.c
http://dit.unitn.it/~abeni/RTOS/thread.c

Scheduling Algorithms - 1

Real Time Operating Systems and Middleware POSIX Threads – 13 / 19

■ The POSIX standard supports fixed priority scheduling through the
SCHED FIFO and SCHED RR scheduling policies

■ The functions and data types needed to set the scheduling policy are
declared in the sched.h header

◆ The sporadic server has been recently added to the standard

■ The system can define additional scheduling policy

◆ In particular, traditional unix scheduling is often supported with the
name SCHED OTHER or SCHED NORMAL

Scheduling Algorithms - 2

Real Time Operating Systems and Middleware POSIX Threads – 14 / 19

■ The POSIX standard mandates a fixed priority scheduler with at least 32
priority levels (from 0 to 31)

◆ As usual, the highest priority ready thread is scheduled

◆ What happens if two threads have the same priority?

■ There is one queue per priority level, containing all the ready threads for
such priority

◆ The highest priority ready thread is in the highest level non-empty
queue

◆ The first thread from the highest non-empty queue is selected for
scheduling and becomes the running thread

◆ So, the question is: how are the priority queues handled?

FIFO vs Round Robin

Real Time Operating Systems and Middleware POSIX Threads – 15 / 19

■ The priority queues can be handled according to a FIFO or to a
Round-Robin stratey

◆ SCHED FIFO: First In First Out queueing. This means that the
highest priority thread is scheduled until it ends (or it is caneled), it
blocks, or it is preempted by an higher priority thread.

◆ SCHED RR: Round Robin queueing. The highes priority thread is
also descheduled when its scheduling quantum expires

■ The SCHED OTHER policy is also often provided as implementation
dependent.

◆ It often is a UNIX scheduler with aging

■ Quantum expiration → priority decreases

■ Task blocks → priority increases

Resource Sharing

Real Time Operating Systems and Middleware POSIX Threads – 16 / 19

■ Some real-time resource sharing protocols are also supported, by using
mutexes to protect the shared resource

◆ Priority Ceiling

◆ Priority Inheritance

◆ Warning: not all the implementations support them

■ POSIX leaves unspecified the scheduling order between threads
belonging to different processes

■ Example:

◆ There can be “global” thread scheduling...

◆ ...Or threads can be scheduled “per process”

Setting the Scheduling Policy

Real Time Operating Systems and Middleware POSIX Threads – 17 / 19

■ When creating a thread, the scheduling policy and parameters can be
set through the attr parameter

◆ To do this, the “scheduler inheritance” attribute should be set to
PTHREAD EXPLICIT SCHED

◆ The default value of such attribute is implementation dependent

int pthread_attr_setschedpolicy (pthread_attr_t *a,
int policy)

int pthread_attr_setschedparam(pthread_attr_t *a,
const struct sched_param *param)

int pthread_attr_setinheritsched(pthread_attr_t *attr ,
int inheritsched)

■ The only important field in sched param is sched priority

Real-Time Priorities - 1

Real Time Operating Systems and Middleware POSIX Threads – 18 / 19

■ General purpose systems such as Windows or Unix schedule “regular”
threads in background respect to real-time ones

■ Real-Time threads can be scheduled in foreground respect to all the
other threads / processes

■ A real-time thread can preempt / starve other applications

◆ This can be implementation-dependent (the scheduling order
between threads belonging to different processes is unspecified)...

◆ ...But most systems use “global” scheduling → we can have
problems!

Real-Time Priorities - 2

Real Time Operating Systems and Middleware POSIX Threads – 19 / 19

■ Example: the following thread scheduled at high priority can make the
system unusable

1 void *bad_bad_thread(void *arg)
2 {
3 while (1);
4 }

■ So, we learned that:

◆ Real-time computation have to be limited (use real-time priorities
only when really needed!)

◆ On sane systems, running applications with real-time priorities
requires root privileges (or part of them!)

	The POSIX Standard
	Threads
	PThreads
	Thread Body
	Thread Creation
	Thread Attributes
	Thread Termination
	Thread IDs
	Thread Synchronization - Join
	Detached Threads
	Example 1
	Scheduling Algorithms - 1
	Scheduling Algorithms - 2
	FIFO vs Round Robin
	Resource Sharing
	Setting the Scheduling Policy
	Real-Time Priorities - 1
	Real-Time Priorities - 2

