
Real Time Operating Systems and
Middleware
POSIX Threads
Synchronization

Luca Abeni

abeni@dit.unitn.it

Real Time Operating Systems and Middleware – p. 1



Threads Synchronisation

All the threads running in a process share the private
resources of the process

So, the natural way to synchronise threads is by using
the shared resources paradigm

In particular, there can be two kind of interactions
between threads belonging to a process:

Cooperation, when different threads need to
synchronise for providing a service (examples:
mailbox, pipeline, etc...)
Competition, when different threads need a shared
resource for their execution, and the shared
resource cannot be accessed by more than 1 thread
at time (example: video output)

Real Time Operating Systems and Middleware – p. 2



Competition

Two threads need a shared resource to perform some
action

The resource must be accessed in mutual exclusion
(simultaneous accesses from different threads are not
allowed)

Example: the two threads need to print a file → if
mutual exclusion is not enforced, the two printings
are interleaved

Code accessing the shared resource: critical section
Two threads cannot execute in critical section (for the
same resource) simultaneously

Mutual exclusion must be enforced by some kind of
synchronisation mechanism

Real Time Operating Systems and Middleware – p. 3



Cooperation

A complex algorithm can be parallelised, by splitting it in
a set of parallel activities

A parallel algorithm can take advantage of SMP
A parallel algorithm can be simpler

Each one of such activities is executed in a thread

Each thread:
Works on the data produced by another thread
Or produces data for another thread

When the data needed by a thread is not ready, the
thread must block

When a thread τ1 finishes producing data for a blocked
thread τ2, τ2 must woken up

Real Time Operating Systems and Middleware – p. 4



Enforcing Mutual Exclusion: Mutexes

Mutexes: synchronisation objects used to enforce
mutual exclusion in critical sections

Each critical section must be protected by a mutex
1 → 1 mapping between mutexes and critical
sections

A mutex is similar to a binary semaphore
Mutex == mutual exclusion semaphore
Has two states: locked and unlocked
Internal binary counter, can be 0 (locked) or 1

(unlocked)
Two possible operations
lock(): enters the critical section
unlock(): exits the critical section

Real Time Operating Systems and Middleware – p. 5



Mutex Operations

lock(m):
If mutex m is unlocked, lock it (decrease the internal
counter) and continue
If mutex m is locked (the counter is 0), block until m is
unlocked

unlock(m):
If mutex m is unlocked (the counter is 1), error
If mutex m is locked (the counter is 0), unlock it
(increase the counter) and wake up blocked threads

A mutex must be locked to acquire a shared resource
(entering the critical section), before accessing it, and
must be unlocked when the access to the shared
resource is terminated

Real Time Operating Systems and Middleware – p. 6



Mutexes and Semaphores

A semaphore provides generic synchronization
The semaphore counter can be initialized to a
generic value

A mutex explicitly provides the concept of critical
section (can be only used for mutual exclusion)

The mutex counter is always automatically initialized
to 1

A mutex can be unlocked only by the thread that
locked it

⇒ Mutexes are less powerful, but can help preventing
programming errors

Mutexes can support real-time resource sharing
protocols

Real Time Operating Systems and Middleware – p. 7



POSIX Mutexes

In POSIX, a mutex is identified by a descriptor, of type
pthread mutex t

A mutex must be initialized before using it

The pthread mutex init() function can be used to
initialize a mutex

When initializing a mutex, a structure of type
phtread mutexattr t can be used to describe the
mutex attributes

Real-time resource protocol eventually used by the
mutex
Priority of the highest priority thread that can try to
lock the mutex (for HLP-like protocols)

Real Time Operating Systems and Middleware – p. 8



POSIX Mutex Initialisation / Destruction

int pthread_mutex_init(pthread_mutex_t *mutex,
const pthread_mutexattr_t *attr)

Returns 0 in case of success, 6= 0 in case of error

The mutex descriptor is returned in mutex

If standard attributes are used, attr can be NULL

An initialised mutex can be destroyed by calling
pthread mutex destroy()

int pthread_mutex_destroy(pthread_mutex_t *mutex)

Real Time Operating Systems and Middleware – p. 9



Other POSIX Mutex Operations

POSIX provides the usual lock and unlock
operations, but adds a non blocking lock operation

Non blocking lock (called trylock) works as follows:
If the mutex is unlocked, lock it (decreasing the
counter to 0) and continue
If the mutex is already locked, fail without blocking
(but returning an error)

int pthread_mutex_lock(pthread_mutex_t *mutex)
int pthread_mutex_unlock(pthread_mutex_t *mutex)
int pthread_mutex_trylock(pthread_mutex_t *mutex)

Note that pthread mutex lock() is not a cancellation
point

Real Time Operating Systems and Middleware – p. 10



Cooperation Between Threads

Mutexes solve the competition problem (provide mutual
exclusion for competing threads)...

...But are not generic synchronisation objects
Mutexes cannot be used for synchronising
cooperating threads

A different synchronization object (with different
primitives) is needed

Think about monitors
They guarantee mutual exclusion between
methods...
...But they also provide a way to wait for some kind
of condition to be verified

Condition Variables!!!

Real Time Operating Systems and Middleware – p. 11



Condition Variables

A condition variable is a synchronisation object on
which a thread can sleep waiting for a condition to be
true

A condition variable is always associated to a mutex
It is possible to sleep on a condition variable only
inside a critical section
Before blocking on a condition variable, a thread
must acquire (lock) the associated mutex

When a thread blocks on a condition variable, the
associated mutex is released (unlocked)

When a thread blocked on a condition variable is woken
up, some different options are possible

Real Time Operating Systems and Middleware – p. 12



Waking up from a Condition

To wake up a thread τ1 blocked on a condition, a thread
τ2 must lock the associated mutex first

Some unblocking semantics are possible:
τ2 unlocks the mutex, and τ1 acquires it immediately
The mutex locking is “transferred” from τ2 to τ1, and
τ2 blocks on the mutex
τ1 is unblocked and inserted in the mutex queue.
When τ2 will unlock the mutex, τ1 will eventually
compete for it with other threads
...

POSIX implements the last solution

Note that when τ1 is woken up and locks the mutex
again, the condition might be false again...

Real Time Operating Systems and Middleware – p. 13



Waking up – 2

1 thread1() thread2() thread3()
2 /*...*/
3 <lock mutex>
4 <Is C true?>
5 <NO: block on cond var>
6 /*mutex is released)*/
7 /* ... */
8 <lock mutex>
9 <C is now true>

10 <Wake up thread1>
11 /*contending for mutex*/ /* ... */
12 <unlock mutex>
13 /* ... */
14 <lock mutex>
15 <Make C false>
16 <unlock mutex>
17 /* ... */
18 <lock mutex>
19 /* BUT C IS FALSE AGAIN!!! */

Solution: thread1 has to test the condition again

Real Time Operating Systems and Middleware – p. 14



POSIX Condition Variables

int pthread_cond_init(pthread_cond_t *cond,
const pthread_condattr_t *cond_attr)

int pthread_cond_destroy(pthread_cond_t *cond)

Identified by a descriptor of type pthread cond t

Initialized by calling pthread condition init()

Destroyed by calling pthread condition destroy()

As usual, attributes can be used in the init()
function

To create a default condition variable, you can set
cond attr to NULL

Real Time Operating Systems and Middleware – p. 15



Blocking on a Condition Variable

int pthread_cond_wait(pthread_cond_t *cond,
pthread_mutex_t *mutex)

A thread can block on a condition by calling
pthread cond wait()

Note that it must first lock the associated mutex

Remember: after waking up, the condition must be
checked again!!!

We cannot check the condition with if(): a while()
cycle is needed
1 pthread_mutex_lock(&m);
2 /* ... */
3 while (!c) {
4 pthread_cond_wait(&cond_var, &m);
5 }
6 /* ... */
7 pthread_mutex_unlock(&m);

Real Time Operating Systems and Middleware – p. 16



Waking up from a Condition Variable

int pthread_cond_broadcast(pthread_cond_t *cond)
int pthread_cond_signal(pthread_cond_t *cond)

A thread can wake up:
One thread blocked on a condition, by calling
pthread cond signal()

All the threads blocked on a condition, by calling
pthread cond broadcast()

Note that it must first lock the associated mutex
mutex

If no thread is blocked on cond, nothing happens
A condition variable is not a semaphore!!!

Real Time Operating Systems and Middleware – p. 17



Cancellation Problems

As usual, things are more complex than expected...
As said, pthread mutex lock() is not a
cancellation point...
...But pthread cond wait() is!!!

If a thread is killed while blocked on a condition variable,
the associated mutex is locked again before dying...

The thread dies, the mutex is locked, and noone can
lock it anymore!!!

A cleanup handler must be used to protect a thread
sleeping on a condition variable

Real Time Operating Systems and Middleware – p. 18


	Threads Synchronisation
	Competition
	Cooperation
	Enforcing Mutual Exclusion: Mutexes
	Mutex Operations
	Mutexes and Semaphores
	POSIX Mutexes
	POSIX Mutex Initialisation / Destruction
	Other POSIX Mutex Operations
	Cooperation Between Threads
	Condition Variables
	Waking up from a Condition
	Waking up -- 2
	POSIX Condition Variables
	Blocking on a Condition Variable
	Waking up from a Condition Variable
	Cancellation Problems

