- N

Real Time Operating Systems and
Middleware

POSI X Threads
Synchronization

Luca Abeni

abeni @lit.unitn.it

Threads Synchronisation

- N

All the threads running in a process share the private
resources of the process

S0, the natural way to synchronise threads is by using
the shared resources paradigm

In particular, there can be two kind of interactions
between threads belonging to a process:

s Cooperation, when different threads need to
synchronise for providing a service (examples:
mailbox, pipeline, etc...)

s Competition, when different threads need a shared
resource for their execution, and the shared
resource cannot be accessed by more than 1 thread
at time (example: video output)

o |

Real Time Operating Systems and Middleware — p. 2

Competition

-

Two threads need a shared resource to perform some
action

The resource must be accessed in mutual exclusion
(simultaneous accesses from different threads are not
allowed)

» Example: the two threads need to print a file — If
mutual exclusion is not enforced, the two printings
are interleaved

Code accessing the shared resource: critical section

» Two threads cannot execute in critical section (for the
same resource) simultaneously

Mutual exclusion must be enforced by some kind of
synchronisation mechanism J

Real Time Operating Systems and Middleware —p. 3

°

Cooperation

-

A complex algorithm can be parallelised, by splitting it in
a set of parallel activities

s A parallel algorithm can take advantage of SMP
s A parallel algorithm can be simpler

Each one of such activities is executed in a thread

Each thread.:
» Works on the data produced by another thread
» Or produces data for another thread

When the data needed by a thread is not ready, the
thread must block

When a thread 7; finishes producing data for a blocked
thread 75, o must woken up

|

Real Time Operating Systems and Middleware —p. 4

Enforcing Mutual Exclusion: Mutexes

- N

Mutexes: synchronisation objects used to enforce
mutual exclusion in critical sections

» Each critical section must be protected by a mutex
s 1 — 1 mapping between mutexes and critical
sections
A mutex is similar to a binary semaphore
» Mutex == mutual exclusion semaphore
» Has two states: locked and unlocked

s Internal binary counter, can be 0 (locked) or 1
(unlocked)

» Two possible operations
s | ock() : enters the critical section
L s unl ock() : exits the critical section J

Real Time Operating Systems and Middleware —p. 5

Mutex Operations
ﬁ.o | ock(m: T

s If mutex mis unlocked, lock it (decrease the internal
counter) and continue

s If mutex mis locked (the counter is 0), block until mis
unlocked

unl ock(m:

s If mutex mis unlocked (the counter is 1), error

s If mutex mis locked (the counter is 0), unlock it
(increase the counter) and wake up blocked threads

A mutex must be locked to acquire a shared resource

(entering the critical section), before accessing it, and
must be unlocked when the access to the shared
L resource Is terminated

|

Real Time Operating Systems and Middleware —p. 6

Mutexes and Semaphores

-

A semaphore provides generic synchronization

» The semaphore counter can be initialized to a
generic value

A mutex explicitly provides the concept of critical

section (can be only used for mutual exclusion)

s The mutex counter is always automatically initialized
o1

s A mutex can be unlocked only by the thread that
locked it

= Mutexes are less powerful, but can help preventing
programming errors

Mutexes can support real-time resource sharing
protocols J

Real Time Operating Systems and Middleware —p. 7

o

POSIX Mutexes
-

In POSIX, a mutex Is identified by a descriptor, of type
pt hr ead_nut ex_t

A mutex must be initialized before using it

The pt hr ead_nmut ex_i ni t () function can be used to
Initialize a mutex

When initializing a mutex, a structure of type
pht read_nut exat tr _t can be used to describe the
mutex attributes

» Real-time resource protocol eventually used by the
mutex

s Priority of the highest priority thread that can try to
lock the mutex (for HLP-like protocols)

|

Real Time Operating Systems and Middleware —p. 8

POSIX Mutex Initialisation / Destruction

- N

Int pthread nutex init(pthread nutex t =*nutex,
const pthread nutexattr t *attr)

Returns 0 in case of success, # 0 In case of error
The mutex descriptor is returned in nut ex
If standard attributes are used, attr can be NULL

e o o o

An initialised mutex can be destroyed by calling
pt hr ead_nut ex_dest r oy()

| nt pthread nutex _destroy(pthread nmutex t =*nutex)

o |

Real Time Operating Systems and Middleware —p. 9

-

9o

9o

Other POSIX Mutex Operations
-

POSIX provides the usual | ock and unl ock
operations, but adds a non blocking lock operation
Non blocking lock (called t r yl ock) works as follows:

s If the mutex is unlocked, lock it (decreasing the
counter to 0) and continue

s If the mutex is already locked, fail without blocking
(but returning an error)

I nt pthread _nutex | ock(pthread nutex t =*nutex)
| nt pthread_nutex_unl ock(pthread nmutex t =*nutex)
I nt pthread nutex tryl ock(pthread nmutex t =*nutex)

Note that pt hr ead_nut ex_l ock() Is not a cancellation

point
-

Real Time Operating Systems and Middleware — p. 10

Cooperation Between Threads

- N

Mutexes solve the competition problem (provide mutual
exclusion for competing threads)...

...But are not generic synchronisation objects
s Mutexes cannot be used for synchronising

cooperating threads

A different synchronization object (with different
primitives) is needed
s Think about monitors

» They guarantee mutual exclusion between
methods...

s ...But they also provide a way to wait for some kind
of condition to be verified

L.o Condition Variables!!! J

Real Time Operating Systems and Middleware —p. 11

Condition Variables

-

A condition variable is a synchronisation object on
which a thread can sleep waiting for a condition to be
true

A condition variable is always associated to a mutex

s It is possible to sleep on a condition variable only
Inside a critical section

» Before blocking on a condition variable, a thread
must acquire (lock) the associated mutex

When a thread blocks on a condition variable, the
associated mutex is released (unlocked)

When a thread blocked on a condition variable is woken
up, some different options are possible

Real Time Operating Systems and Middleware — p. 12

Waking up from a Condition
-

f.o To wake up a thread = blocked on a condition, a thread
75 Must lock the associated mutex first
Some unblocking semantics are possible:
» 7o unlocks the mutex, and = acquires it immediately

» The mutex locking is “transferred” from =, to m;, and
75 blocks on the mutex

s 71 IS unblocked and inserted in the mutex gqueue.
When » will unlock the mutex, =; will eventually
compete for it with other threads

» ...
POSIX implements the last solution

Note that when 7 iIs woken up and locks the mutex
L again, the condition might be false again... J

Real Time Operating Systems and Middleware — p. 13

Waking up — 2
-

t hreadl() t hread2() t hread3()
[*...*]
<l ock nutex>
<Is Ctrue?>
<NO bl ock on cond var>
/*mutex 1s rel eased)*/

OO ~NOOLP,,WDNBE

[... *[

<l ock mut ex>

<C is now true>
10 <Wake up threadl>
11 /*contendi ng for nutexx/ [+ ... =]
12 <unl ock nut ex>
13 [+ ... =/
14 <l ock mut ex>
15 <Mbke C fal se>
16 <unl ock nut ex>
17 [*x ... *]

18 <l ock nutex>
19 /[/* BUT C 1S FALSE AGAINIIT */

Solution: t hr ead1 has to test the condition again

o |

Real Time Operating Systems and Middleware — p. 14

POSIX Condition Variables
B -

I nt pthread cond init(pthread cond t *cond,
const pthread condattr t *cond attr)

I nt pthread cond destroy(pthread cond t *cond)

I|dentified by a descriptor of type pt hr ead_cond_t

Initialized by calling pt hread_condi ti on_i nit ()

Destroyed by calling pt hread_condi ti on_destroy()
o

As usual, attributes can be used inthe _.i nit ()
function

» To create a default condition variable, you can set
cond_attr to NULL

o |

Real Time Operating Systems and Middleware — p. 15

Blocking on a Condition Variable

- N

I nt pthread cond wait(pthread cond t *cond,
pt hread nutex t =*nutex)

A thread can block on a condition by calling
pt hread_cond wai t ()

o Note that it must first lock the associated mutex

Remember: after waking up, the condition must be
checked again!!!

#® We cannot check the condition withi f () : awhil e()
cycle is needed

pt hread_mut ex_| ock(&m;
[* ... */
while (!c) {
pt hread cond wait (&cond var, &m;
}

[* ... =*/
pt hr ead_nut ex_unl ock(&M ;

Real Time Operating Systems and Middleware — p. 16

~NOo ok, WwDNE

o

Waking up from a Condition Variable

- N

| nt pthread _cond broadcast (pthread cond t *cond)
| nt pthread _cond _signal (pthread cond t *cond)

A thread can wake up:

s One thread blocked on a condition, by calling
pt hr ead_cond_si gnal ()

s All the threads blocked on a condition, by calling
pt hr ead_cond_br oadcast ()

o Note that it must first lock the associated mutex
nut ex

If no thread is blocked on cond, nothing happens
» A condition variable is not a semaphore!!!

o |

Real Time Operating Systems and Middleware —p. 17

Cancellation Problems

- N

As usual, things are more complex than expected...

s As said, pt hr ead_nut ex_l ock() isnot a
cancellation point...

s ..Butpthread_condwait () is!l!
#® If athread is killed while blocked on a condition variable,
the associated mutex is locked again before dying...
s The thread dies, the mutex is locked, and noone can
lock it anymore!!!l

A cleanup handler must be used to protect a thread
sleeping on a condition variable

o |

Real Time Operating Systems and Middleware — p. 18

	Threads Synchronisation
	Competition
	Cooperation
	Enforcing Mutual Exclusion: Mutexes
	Mutex Operations
	Mutexes and Semaphores
	POSIX Mutexes
	POSIX Mutex Initialisation / Destruction
	Other POSIX Mutex Operations
	Cooperation Between Threads
	Condition Variables
	Waking up from a Condition
	Waking up -- 2
	POSIX Condition Variables
	Blocking on a Condition Variable
	Waking up from a Condition Variable
	Cancellation Problems

