
The Kernel
Real Time Operating Systems and Middleware

Luca Abeni
luca.abeni@unitn.it

Real-Time Operating Systems

Real-Time Operating Systems and Middleware Real-Time Kernels

• Real-Time operating system (RTOS): OS providing
support to Real-Time applications

• Real-Time application: the correctness depends not
only on the output values, but also on the time when
such values are produced

• Operating System:

• Set of computer programs

• Interface between applications and hardware

• Control the execution of application programs

• Manage the hardware and software resources

Different Visions of an OS

Real-Time Operating Systems and Middleware Real-Time Kernels

• An OS manages resources to provide services...

• ...hence, it can be seen as:

• A Service Provider for user programs

• Exports a programming interface...

• A Resource Manager

• Implements schedulers...

Operating System Services

Real-Time Operating Systems and Middleware Real-Time Kernels

• Services (Kernel Space):

• Process Synchronisation, Inter-Process
Communication (IPC)

• Process / Thread Scheduling

• I / O

• Virtual Memory

RT-POSIX API?

Task Scheduling

Real-Time Operating Systems and Middleware Real-Time Kernels

• Kernel: core part of the OS, allowing multiple tasks
to run on the same CPU

• Task set T composed by N tasks running on M

CPUs (M < N)

• All tasks τi have the illusion to run in parallel

• Temporal multiplexing between tasks

• Two core components:

• Scheduler: decides which task to execute

• Dispatcher: actually switches the CPU context
(context switch)

Synchronization and IPC

Real-Time Operating Systems and Middleware Real-Time Kernels

• The kernel must also provide a mechanism for
allowing tasks to communicate and synchronize

• Two possible programming paradigms:

• Shared memory (threads)

• Message passing (processes)

Programming Paradigms

Real-Time Operating Systems and Middleware Real-Time Kernels

• Shared memory (threads)

• The kernel must provide mutexes + condition
variables

• Real-time resource sharing protocols (PI, HLP,
NPP, ...) must be implemented

• Message passing (processes)

• Interaction models: pipeline, client / server, ...

• The kernel must provide some IPC mechanism:
pipes, message queues, mailboxes, RPC, ...

• Some real-time protocols can still be used

Real-Time Scheduling in Practice

Real-Time Operating Systems and Middleware Real-Time Kernels

• An adequate scheduling of system
resources removes the need for
over-engineering the system, and is
necessary for providing a predictable QoS

• Algorithm + Implementation = Scheduling

• RT theory provides us with good algorithms...

• ...But which are the prerequisites for correctly
implementing them?

Theoretical and Actual Scheduling

Real-Time Operating Systems and Middleware Real-Time Kernels

• Scheduler, IPC subsystem, ... → must respect the
theoretical model

• Scheduling is simple: fixed priorities

• IPC, HLP, or NPP are simple too...

• But what about (for example) timers?

• Problem:

• Is the scheduler able to select a high-priority
task as soon as it is ready?

• And the dispatcher?

Periodic Task Example

Real-Time Operating Systems and Middleware Real-Time Kernels

• Consider a periodic task
/* ... */
while(1) {
/* Job body */
clock_nanosleep(CLOCK_REALTIME,

TIMER_ABSTIME, &r, NULL);
timespec_add_us(&r, period);

}

• The task expects to be executed at time r
(= r0 + jT)...

• ...But is sometimes delayed to r0 + jT + δ

Example - Theoretical Schedule

Real-Time Operating Systems and Middleware Real-Time Kernels

0 2 4 6 8 10 12 14 16 18 20 22

τ1

τ2

Example - Actual Schedule

Real-Time Operating Systems and Middleware Real-Time Kernels

0 2 4 6 8 10 12 14 16 18 20 22

τ1

τ2

• What happens if the 2nd job of τ1 arrives a little bit
later???

• The 2nd job of τ2 misses a deadline!!!

Kernel Latency

Real-Time Operating Systems and Middleware Real-Time Kernels

• The delay δ in scheduling a task is due to kernel
latency

• Kernel latency can be modelled as a blocking time

•
∑N

k=1
Ck

Tk

≤ Ulub → ∀i, 1 ≤ i ≤ n,
∑i−1

k=1
Ck

Tk

+ Ci+δ

Ti

≤

Ulub

• Ri = Ci+
∑i−1

h=1

⌈

Ri

Th

⌉

Ch → Ri = Ci+δ+
∑i−1

h=1

⌈

Ri

Th

⌉

Ch

• ∃0 ≤ t ≤ Di : Wi(0, t) = Ci +
∑i−1

h=1

⌈

t

Th

⌉

Ch ≤ t →

∃0 ≤ t ≤ Di : Wi(0, t) = Ci +
∑i−1

h=1

⌈

t

Th

⌉

Ch ≤ t− δ

Kernel Latency

Real-Time Operating Systems and Middleware Real-Time Kernels

• Scheduler → triggered by internal (IPC, signal, ...)
or external (IRQ) events

• Time between the triggering event and dispatch:

• Event generation

• Event delivery (interrupts may be disabled)

• Scheduler activation (nonpreemptable sections)

• Scheduling time

Scheduler

Event Delivery Dispatch
Event Time Latency

Theoretical Model vs Real Schedule

Real-Time Operating Systems and Middleware Real-Time Kernels

• In real world, high priority tasks often suffer from
blocking times coming from the OS (more precisely,
from the kernel)

• Why?

• How?

• What can we do?

• To answer the previous questions, we need to recall
how the hardware and the OS work...

System Architecture

Real-Time Operating Systems and Middleware Real-Time Kernels

• System bus, intercon-
necting:

• One or more CPU(s)

• Memory (RAM)

• I/O Devices

• Secondary mem-
ory (disks, etc. . .)

• Network cards
• Graphic cards
• Keyboard, mouse,

etc

CPU CPU

TastieraRAM

Bus

Schermo

I/O Devices

Disco

The CPU

Real-Time Operating Systems and Middleware Real-Time Kernels

• General-purpose registers

• Can be accessed by all the
programs

• data registers or address
registers

PC

SP

FG
P

R
eg

is
te

rs

• Program Counter (PC) - AKA Instruction Pointer

• Stack Pointer (SP) register

• Flags register (AKA Program Status Word)

• Some “special” registers

• Control how the CPU works, must be “protected”

The CPU - Protection

Real-Time Operating Systems and Middleware Real-Time Kernels

• Regular user programs should not be allowed to:

• Influence the CPU mode of operation

• Perform I/O operations

• Reconfigure virtual memory

• ⇒ Need for “privileged” mode of execution

• Regular registers vs “special” registers

• Regular instructions vs privileged instructions

• User programs: low privilege level (User Level)

• The OS kernel runs in Supervisor Mode

An Example: Intel x86

Real-Time Operating Systems and Middleware Real-Time Kernels

• Real CPUs are more complex. Example: Intel x86

• Few GP registers: EAX, EBX, ECX, EDX
(accumulator registers - containing an 8bit part
and a 16bit part), EBP, ESI, EDI

• EAX: Main accumulator
• EBX: Sometimes used as base for arrays
• ECX: Sometimes used as counter
• EBP: Stack base pointer (for subroutines

calls)
• ESI: Source Index
• EDI: Destination Index

Intel x86 - 2

Real-Time Operating Systems and Middleware Real-Time Kernels

• Segmented memory architecture

• Segment registers CS (code segment), DS (data
segment), SS (stack segment), GS, FS

• Various modes of operation: RM, PM, VM86,
x86-64, . . .

• Mainly due to backward compatibility

The Kernel

Real-Time Operating Systems and Middleware Real-Time Kernels

• Part of the OS which manages the hardware

• Runs with the CPU in Supervisor Mode (high
privilege level)

• Privilege level known as Kernel Level (KL) -
execution in Kernel Space

• Regular programs run in User Space

• Mechanisms for increasing the privilege level (from
US to KS) in a controlled way

• Interrupts (+ traps / hw execptions)

• Instructions causing a hardware exception

Interrupts and Hardware Exceptions

Real-Time Operating Systems and Middleware Real-Time Kernels

• Switch the CPU from User Level to Supervisor Mode

• Enter the kernel

• Can be used to implement system calls

• A partial Context Switch is performed

• Flags and PC are pushed on the stack

• If processor is executing at User Level, switch to
Kernel Level, and eventually switch to a kernel
stack

• Execution jumps to a handler in the kernel →
save the user registers for restoring them later

Back to User Space

Real-Time Operating Systems and Middleware Real-Time Kernels

• Return to low privilege level (execution returns to
User Space) through a “return from interrupt”
Assembly instruction (IRET on x86)

• Pop flags and PC from the stack

• Eventually switch back to user stack

• Return path for system calls and hardware interrupt
handlers

Simplified CPU Execution

Real-Time Operating Systems and Middleware Real-Time Kernels

• To understand interrupts, consider simplified CPU
execution first

Increment
Program
Counter

Execute
Instruction

Fetch
Instruction

• The CPU iteratively:

• Fetch an instruction (address given by PC)

• Increase the PC

• Execute the instruction (might update the PC on
jump...)

CPU Execution with Interrupts

Real-Time Operating Systems and Middleware Real-Time Kernels

• More realistic execution model

Interrupts
Disabled?

No

Yes

Fired?
Interrupt

No

Yes

Hardware Exception

Increment
Program
Counter

Execute
Instruction

Fetch
Instruction

Process
Interrupt

• Interrupt: cannot fire during the execution of an
instruction

• Hardware exception: caused by the execution of an
instruction

• trap, syscall, sc, . . .

• I/O instructions at low privilege level, Page faults,
...

Processing Interrupts

Real-Time Operating Systems and Middleware Real-Time Kernels

Process
Interrupt

• Interrupt table → addresses of the handlers

• Interrupt n fires ⇒ after eventually switching to
KS and pushing flags and PC on the stack

• Read the address contained in the nth entry of
the interrupt table, and jump to it!

Interrupt Tables

Real-Time Operating Systems and Middleware Real-Time Kernels

• Implemented in hardware or in software

• x86 → Interrupt Description Table composed by
interrupt gates. The CPU automatically jumps to
the nth interrupt gate

• Other CPUs jump to a fixed address → a
software demultiplexer reads the interrupt table

Software Interrupt - System Call

Real-Time Operating Systems and Middleware Real-Time Kernels

τ 1

τ 2

KS

US
Interrupt
Software

Blocks

New task
scheduled

Syscall

1. Task τ1 executes and invokes a system call

2. Execution passes from US to KS (change stack,
push PC & flags, increase privilege level)

3. The invoked syscall executes. Maybe, it is blocking

4. τ1 blocks → back to US, and τ2 is scheduled

Hardware Interrupt

Real-Time Operating Systems and Middleware Real-Time Kernels

τ 2

1τ

1τ KS

US

ISR

Hardware
Interrupt

unblocks

1. While τ2 is executing, a hardware interrupt fires

2. Execution passes from US to KS (change stack,
push PC & flags, increase privilege level)

3. The proper Interrupt Service Routine executes

4. The ISR can unblock τ1 → when execution returns
to US, τ1 is scheduled

Summing up...

Real-Time Operating Systems and Middleware Real-Time Kernels

• The execution flow enters the kernel for two
reasons:

• Reacting to events “coming from up” (syscalls)

• Reacting to an event “coming from below” (an
hardware interrupt from a device)

• The kernel executes in the context of the interrupted
task

Blocking / Waking up Tasks...

Real-Time Operating Systems and Middleware Real-Time Kernels

• A system call can block the invoking task, or can
unblock a different task

• An ISR can unblock a task

• If a task is blocked / unblocked, when returning to
user space a context switch can happen

The scheduler is invoked
when returning from KS to US

Example: I/O Operation

Real-Time Operating Systems and Middleware Real-Time Kernels

• Consider a generic Input or Output to an external
device (example: a PCI card)

• Performed by the kernel

• User programs must use a syscall

• The operation if performed in 3 phases

1. Setup: prepare the device for the I/O operation

2. Wait: wait for the end of the operation

3. Cleanup: complete the operation

• Can be done using polling, PIO, DMA, ...

Polling

Real-Time Operating Systems and Middleware Real-Time Kernels

• User programs invoke the kernel; execution in
kernel space until the operation is terminated

• The kernel cyclically reads (polls) an interface status
register to check if the operation is terminated

• Busy-waiting in kernel space!

• No user task can execute while waiting for the
I/O operation...

• The operation must be very short!

• I/O operation == blocking time

Polling - 2

Real-Time Operating Systems and Middleware Real-Time Kernels

1. The user program raises a software input

2. Setup phase - in kernel: in case of input operation,
nothing is done; in case of output operation, write a
value to a card register

3. Wait - in kernel: cycle until a bit of the card status
register becomes 1

4. Cleanup - in kernel: in case of input, read a value
from a card register; in case of output, nothing is
done. Eventually return to phase 1

5. IRET

Interrupt

Real-Time Operating Systems and Middleware Real-Time Kernels

• User programs invoke the kernel; execution returns
to user space while waiting for the device

• The task that invoked the syscall blocks!

• An interrupt will notify the kernel when the “wait”
phase is terminated

• The interrupt handler will take care of performing
the I/O operation

• Many, frequent, short interruptions of unrelated
user-space tasks!!!

Interrupt - 2

Real-Time Operating Systems and Middleware Real-Time Kernels

1. The user program raises a software input

2. Setup phase - in kernel: instruct the device to raise
an input when it is ready for I/O

3. Wait - return to user space: block the invoking task,
and schedule a new one (IRET)

4. Cleanup - in kernel: the interrupt fires → enter
kernel, and perform the I/O operation

5. Return to phase 2, or unblock the task if the
operation is terminated (IRET)

Programmed I/O Mode

Real-Time Operating Systems and Middleware Real-Time Kernels

τ 1

τ 2

τ 1

ISR ISR ISR

1τ

Operation
I/O

start i/o

Blocks KS

US

unblocks

DMA / Bus Mastering

Real-Time Operating Systems and Middleware Real-Time Kernels

• User programs invoke the kernel; execution returns
to user space while waiting for the device

• The task that invoked the syscall blocks!

• I/O operations are not performed by the kernel on
interrupt,

• Performed by a dedicated HW device

• An interrupt is raised when the whole I/O
operation is terminated

DMA / Bus Mastering - 2

Real-Time Operating Systems and Middleware Real-Time Kernels

1. The user program raises a software input

2. Setup phase - in kernel: instruct the DMA (or the
Bus Mastering Device) to perform the I/O

3. Wait - return to user space: block the invoking task,
and schedule a new one (IRET)

4. Cleanup - in kernel: the interrupt fires → the
operation is terminated. Stop device and DMA

5. Unblock the task and invoke the scheduler (IRET)

DMA / Bus Mastering - 3

Real-Time Operating Systems and Middleware Real-Time Kernels

τ 1

τ 2

τ 1

ISR

1τ

Operation
I/O

Blocks KS

US

unblocks

start DMA

Example: Linux System Call

Real-Time Operating Systems and Middleware Real-Time Kernels

int close(int fd)
{
long __res;

__asm__ volatile ("int $0x80"
: "=a" (__res)
: "0" (__NR_close),"b" ((long)(fd)));

__syscall_return(type, __res);
}

• Don’t be scared!

• syscall return() is just converting a linux
error code in −1, properly filling errno

• Linux uses a syscall1 macro to define it (see
asm/unistd.h)
#define _syscall1(type, name, type1, arg1)
type name(type1 arg1) \
{ \
...

Kernel Side (arch/*/kernel/entry.S)

Real-Time Operating Systems and Middleware Real-Time Kernels

ENTRY(system_call)
pushl %eax # save orig_eax
SAVE_ALL
GET_THREAD_INFO(%ebp)
cmpl $(nr_syscalls), %eax
jae syscall_badsys
syscall_call:
call *sys_call_table(,%eax,4)
movl %eax,EAX(%esp) # store the return value
/* ... */
restore_all:

/* ... */
RESTORE_REGS
addl $4, %esp
1: iret

• SAVE ALL pushes all the registers on the stack

• The syscall number is in the eax register
(accumulator)

• After executing the syscall, the return value is in eax
→ must be put in the stack to pop it in
RESTORE REGS

	Real-Time Operating Systems
	Different Visions of an OS
	Operating System Services
	Task Scheduling
	Synchronization and IPC
	Programming Paradigms
	Real-Time Scheduling in Practice
	Theoretical and Actual Scheduling
	Periodic Task Example
	Example - Theoretical Schedule
	Example - Actual Schedule
	Kernel Latency
	Kernel Latency
	Theoretical Model vs Real Schedule
	System Architecture
	The CPU
	The CPU - Protection
	An Example: Intel x86
	Intel x86 - 2
	The Kernel
	Interrupts and Hardware Exceptions
	Back to User Space
	Simplified CPU Execution
	CPU Execution with Interrupts
	Processing Interrupts
	Interrupt Tables
	Software Interrupt - System Call
	Hardware Interrupt
	Summing up...
	Blocking / Waking up Tasks...
	Example: I/O Operation
	Polling
	Polling - 2
	Interrupt
	Interrupt - 2
	Programmed I/O Mode
	DMA / Bus Mastering
	DMA / Bus Mastering - 2
	DMA / Bus Mastering - 3
	Example: Linux System Call
	Kernel Side (arch/*/kernel/entry.S)

