The Non-Preemptable
Section Latency

Real Time Operating Systems and Middleware

Luca Abeni
| uca. abeni @Qnitn. it

e Latency: measure of the difference between the
theoretical and actual schedule
e Task 7 expects to be scheduled attime ¢ . ..
e ... butis actually scheduled at time ¢’
e = Latency L =1t — ¢

e The latency L can be modelled as a blocking time
= affects the guarantee test
e Similar to what done for shared resources

e Blocking time due to latency, not to priority
Inversion

Real-Time Operating Systems and Middleware Non-Preemptable Section Latency

Effects of the Latency

e Upper bound for L? If not known, no schedulability
tests!!!

e The latency must be bounded: L™ . L < L™

e If L%" Is too high, only few task sets result to be
schedulable

e Large blocking time experienced by all tasks!
e The worst-case latency L™ cannot be too high

Real-Time Operating Systems and Middleware Non-Preemptable Section Latency

Sources of Latency

e Atask 7; Is a stream of jobs J; ; arriving at time r; ;
e Job J; ; is scheduled at time ¢’ > r,; ;

o t' —r;;is given by:
1. J;;'s arrival is signalled at time r; ; + L’

2. Such event is served at time r; ; + L' + L?
3. J;; is actually scheduled at r; ; + L' + L* + L*

-
S |

1 2 L3
Real-Time Operating Systems and I\l‘l-iddlewalre Non-Preemptable Section Latency

Analysis of the Various Sources

o L =L'+1%*+13
e [’ is the scheduler latency

e Interference from higher priority tasks

e Already accounted by the guarantee tests —
let’'s not consider it

e L?is the non-preemptable section latency (L")

e L!is due to the delayed interrupt generation

Real-Time Operating Systems and Middleware Non-Preemptable Section Latency

Non-Preemptable Section Latency

e Delay between time when an event is generated and
when the kernel handles it

e Due to non-preemptable sections in the kernel,
which delay the response to hardware interrupts

e Composed by various parts: interrupt disabling,
bottom halves delaying, ...

e Depends on how the kernel handles the various
events...

e WiIll talk about it later!

Real-Time Operating Systems and Middleware Non-Preemptable Section Latency

Interrupt Generation Latency

e Hardware interrupts: generated by devices

e Sometimes, an interrupt should be generated at
timet ...

e ... but it si actually generated at time ¢’ = ¢ + L™

e L' is the Interrupt Generation Latency

e It Is due to hardware issues
e It Is generally small compared to L™

e EXxception: if the device Is a timer device, the
Interrupt generation latency can be quite high

e Timer Resolution Latency L™

Real-Time Operating Systems and Middleware Non-Preemptable Section Latency

The Timer Resolution Latency

e Interrupt generation latency for a hw timer device

o L1 can often be much larger than the
non-preemptable section latency L"?

e Where does it come from?

e Kernel timers are generally implemented by
using a hardware device that produces periodic
Interrupts

e Can we do anything about it?

Real-Time Operating Systems and Middleware Non-Preemptable Section Latency

Non-Preemptable Section Latency

e The non-preemptable section latency L"” is given by
the sum of different components

1.
2.
3.

nterrupt disabling
Delayed interrupt service

Delayed scheduler invocation

e The first two are mechanisms used by the kernel to
guarantee the consistency of internal structures

e The third mechanism is sometimes used to reduce
the number of preemptions and increase the system
throughput

Real-Time Operating Systems and Middleware Non-Preemptable Section Latency

Disabling Interrupts

e Remember? Before checking if an interrupt fired,
the CPU checks if interrupts are enabled...

Process [e .
I nterrupt I

YJ No

Fetch | ncrement Execute fterru No
L . Pr g pts |
Instruction I— ch)l&:]gtalerll Instruction I—‘Disabled? — nﬁﬁruot

Yes:

e Every CPU has some protected instructions
(STI/ CLI on x86) for enabling/disabling interrupts

Real-Time Operating Systems and Middleware Non-Preemptable Section Latency

Interrupts and Latency

e In modern system, only the kernel (or code running
In KS) can enable/disable interrupts

e Interrupts disabled for a time 7T — L™ > T

e Interrupt disabling is used to enforce mutual
exclusion between sections of the kernel and ISRs

Real-Time Operating Systems and Middleware Non-Preemptable Section Latency

Delayed Interrupt Service - 1

e When the interrupt fire, the ISR is ran, but the kernel
can delay interrupt service some more...

e ISRs are generally small, and do only few things

e An ISR can set some kind of software flag, to
notify that the interrupt fired

e Later, the kernel can check such flag and run a
larger (and more complex) interrupt handler

e Hard IRQ handlers (ISRs) va “Soft IRQ handlers”

Real-Time Operating Systems and Middleware Non-Preemptable Section Latency

Delayed Interrupt Service - 2

e Advantages of “soft IRQ handlers™:

e ISRs generally run with interrupts disabled,

e Soft IRQ handlers can re-enable hardware
Interrupts

e Enabling/Disabling soft handlers is
simpler/cheaper

e Disadvantages:

e Increase NP latency: L™ >> T

e “Soft IRQ handlers” are often non-preemptable
Increasing the latency for other tasks too...

Real-Time Operating Systems and Middleware Non-Preemptable Section Latency

Deferred Scheduling

e Scheduler invoked when returning from KS to US
e Sometimes, return to US after a lot of activities

e Try to reduce the number of KS < US switches
e Reduce the number of context switches
e Throughput vs low latency

e ISR executed at the correct time, soft IRQ handler
ran immediately, but scheduler invoked too late

Latency]
A
_— | Us
3 Event Delivery :
Event Time \/ !
) TETES ' Scheduler
X ‘ KS

Real-Time Operating Systems and MiddlewaHe% - Non-Preemptable Section Latency

Latency in the Standard Kernel

100000 — [B .

S

1000 |

Latency (usec)

100 | |

10 |-

, L
1000 70EDQ0ANO0 17000
Elapsed Time (msec)

20000

Real-Time Operating Systems and Middleware Non-Preemptable Section Latency

Summing Up -1

e [P depends on some different factors

e In general, no hw reasons — it almost entirely
depends on the kernel structure

e Non-preemptable section latency is generally the
result of the strategy used by the kernel for
ensuring mutual exclusion on its internal data
structures

Real-Time Operating Systems and Middleware Non-Preemptable Section Latency

Summing Up - 2

e To analyze / reduce L"?, we need to understand
such strategies

e Different kernels, based on different structures, work
In different ways

e Some activities causing L":

e Interrupt Handling (Device Drivers)
e Management of the parallelism

Real-Time Operating Systems and Middleware Non-Preemptable Section Latency

Example: Data Structures Consistency

e HW Interrupt: breaks the regular execution flow

e If the CPU is executing in US, switch to KS

e If execution Is already In KS, possible problems:

1. The kernel is updating a linked list
2. IRQ While the list Is In an inconsistent state

3. Jump to the ISR, that needs to access the list...

e Must disable interrupts while updating the list!

e Similar interrupt disabling Is also used in spinlocks
and mutex implementations...

Real-Time Operating Systems and Middleware Non-Preemptable Section Latency

	Latency
	Effects of the Latency
	Sources of Latency
	Analysis of the Various Sources
	Non-Preemptable Section Latency
	Interrupt Generation Latency
	The Timer Resolution Latency
	Non-Preemptable Section Latency
	Disabling Interrupts
	Interrupts and Latency
	Delayed Interrupt Service - 1
	Delayed Interrupt Service - 2
	Deferred Scheduling
	Latency in the Standard Kernel
	Summing Up - 1
	Summing Up - 2
	Example: Data Structures Consistency

