Multi-Processor Real-Time Scheduling

Real Time Operating Systems and Middleware

Luca Abeni luca.abeni@unitn.it

- UniProcessor Systems
 - A schedule $\sigma(t)$ is a function mapping time t into an executing task $\sigma: t \to \mathcal{T} \cup \{\tau_{idle}\}$ where \mathcal{T} is the set of tasks running in the system
 - τ_{idle} is the *idle task*
- For a multiprocessor system with M CPUs, $\sigma(t)$ is extended to map t in vectors $\tau \in (\mathcal{T} \cup \{\tau_{idle}\})^M$
- Scheduling algorithms for M > 1 processors?
 - Partitioned scheduling
 - Global scheduling

Real-Time Operating Systems

Multi-Processor Real-Time Scheduling

- UP Scheduling:
 - N periodic tasks with $D_i = T_i$: (C_i, T_i, T_i)
 - Optimal scheduler: if $\sum \frac{C_i}{T_i} \leq 1$, then the task set is schedulable
 - EDF is optimal
- Multiprocessor scheduling:
 - Goal: schedule periodic task sets with $\sum \frac{C_i}{T_i} \leq M$
 - Is this possible?
 - Optimal algorithms

Partitioned Scheduling - 1

- Reduce $\sigma : t \to (\mathcal{T} \cup \{\tau_{idle}\})^M$ to M uniprocessor schedules $\sigma_p : t \to \mathcal{T} \cup \{\tau_{idle}\}, 0 \le p < M$
 - Statically assign tasks to CPUs
 - Reduce the problem of scheduling on *M* CPUs to *M* instances of uniprocessor scheduling
 - Problem: system underutilisation

Partitioned Scheduling - 2

- Reduce an M CPUs scheduling problem to M single CPU scheduling problems and a bin-packing problem
- CPU schedulers: uni-processor, EDF can be used
- Bin-packing: assign tasks to CPUs so that every CPU has load ≤ 1
 - Is this possible?
- Think about 2 CPUs with $\{(6, 10, 10), (6, 10, 10), (6, 10, 10)\}$

- One single task queue, shared by M CPUs
 - \bullet The first M ready tasks are selected
 - What happens using fixed priorities (or EDF)?
 - Tasks are not bound to specific CPUs
 - Tasks can often migrate between different CPUs
- Problem: schedulers designed for UP...

Global Scheduling - Problems

- Dhall's effect: U^{lub} for global multiprocessor scheduling can be 1 (for RM or EDF)
 - Pathological case: M CPUs, M + 1 tasks. M tasks $(\epsilon, T 1, T 1)$, a task (T, T, T).

•
$$U = M \frac{\epsilon}{T-1} + 1$$
. $\epsilon \to 0 \Rightarrow U \to 1$

- Global scheduling can cause a lot of useless migrations
 - Migrations are overhead!
 - Decrease in the throughput
 - Migrations are not accounted for...

Real-Time Operating Systems

Multi-Processor Real-Time Scheduling

Global Scheduling for Soft Tasks

- Dhall's Effect \rightarrow global EDF and global RM have $U^{lub} = 1$
 - With U > 1, deadlines can be missed
 - Global EDF / RM are not useful for hard tasks
- However, global EDF can be useful for scheduling soft tasks...
- When U ≤ M, global EDF guarantees an upper bound for the *tardiness*!
 - Deadlines can be missed, but by a limited amount of time