Multi-Processor Real-Time Scheduling

Real Time Operating Systems and Middleware

Luca Abeni
luca.abeni@unitn.it
Multiprocessor Scheduling

- UniProcessor Systems
 - A schedule $\sigma(t)$ is a function mapping time t into an executing task $\sigma : t \rightarrow T \cup \{\tau_{idle}\}$ where T is the set of tasks running in the system
 - τ_{idle} is the idle task

- For a multiprocessor system with M CPUs, $\sigma(t)$ is extended to map t in vectors $\tau \in (T \cup \{\tau_{idle}\})^M$

- Scheduling algorithms for $M > 1$ processors?
 - Partitioned scheduling
 - Global scheduling
The Quest for Optimality

- **UP Scheduling:**
 - N periodic tasks with $D_i = T_i: (C_i, T, T_i)$
 - Optimal scheduler: if $\sum \frac{C_i}{T_i} \leq 1$, then the task set is schedulable
 - EDF is optimal

- **Multiprocessor scheduling:**
 - Goal: schedule periodic task sets with $\sum \frac{C_i}{T_i} \leq M$
 - Is this possible?
 - Optimal algorithms
Partitioned Scheduling - 1

- Reduce $\sigma : t \rightarrow (T \cup \{\tau_{idle}\})^M$ to M uniprocessor schedules $\sigma_p : t \rightarrow T \cup \{\tau_{idle}\}$, $0 \leq p < M$

- Statically assign tasks to CPUs

- Reduce the problem of scheduling on M CPUs to M instances of uniprocessor scheduling

- Problem: system underutilisation
Reduce an M CPUs scheduling problem to M single CPU scheduling problems and a bin-packing problem

CPU schedulers: uni-processor, EDF can be used

Bin-packing: assign tasks to CPUs so that every CPU has load ≤ 1

Is this possible?

Think about 2 CPUs with $
\{(6, 10, 10), (6, 10, 10), (6, 10, 10)\}$
Global Scheduling

- One single task queue, shared by M CPUs
 - The first M ready tasks are selected
 - What happens using fixed priorities (or EDF)?
 - Tasks are not bound to specific CPUs
 - Tasks can often migrate between different CPUs

- Problem: schedulers designed for UP...
Global Scheduling - Problems

- Dhall’s effect: \(U^{lub} \) for global multiprocessor scheduling can be 1 (for RM or EDF)

 - Pathological case: \(M \) CPUs, \(M + 1 \) tasks. \(M \) tasks \((\epsilon, T - 1, T - 1)\), a task \((T, T, T)\).

 \[
 U = M \frac{\epsilon}{T - 1} + 1. \quad \epsilon \to 0 \Rightarrow U \to 1
 \]

- Global scheduling can cause a lot of useless migrations

 - Migrations are overhead!
 - Decrease in the throughput
 - Migrations are not accounted for...
Global Scheduling for Soft Tasks

- Dhall’s Effect \rightarrow global EDF and global RM have $U^{lub} = 1$
 - With $U > 1$, deadlines can be missed
 - Global EDF / RM are not useful for hard tasks

- However, global EDF can be useful for scheduling soft tasks...

- When $U \leq M$, global EDF guarantees an upper bound for the tardiness!
 - Deadlines can be missed, but by a limited amount of time