
Kernel Critical Sections
Real Time Operating Systems and Middleware

Luca Abeni
luca.abeni@unitn.it

Critical Sections in Kernel Code

Real-Time Operating Systems and Middleware Kernel Locking

• Old Linux kernels used to be non-preemptable...

• Kernel⇒ Big critical section

• Mutual exclusion was not a problem...

• Then, multiprocessor systems changed everything

• First solution: Big Kernel Lock← very bad!

• Removed BKL, and preemptable kernels, ...

• Multiple tasks can execute inside the kernel
simultaneously⇒ mutual exclusion is an issue!

• Multiple critical sections inside the kernel

Enforcing Mutual Exclusion

Real-Time Operating Systems and Middleware Kernel Locking

• Mutual exclusion is traditionally enforced using
mutexes

• Mutexes are blocking synchronisation objects

• A task trying to acquire a locked mutex is
blocked. . .

• . . .And the scheduler is invoked!

• Good solution for user-space applications...

• But blocking is sometimes bad when in the kernel!

Blocking is Bad When...

Real-Time Operating Systems and Middleware Kernel Locking

• Atomic Context

• Code in “task” context can sleep (task blocked)

• . . .But some code does not run in a task context
(example: IRQ handlers)!

• Other situations (ex: interrupts disabled)

• Efficiency

• small critical sections→ using mutexes, a task
would block for a very short time

• Busy-waiting can be more efficient (less context
switches)!

Summing up...

Real-Time Operating Systems and Middleware Kernel Locking

• In some particular situations. . .

• . . .We need a way to enforce mutual exclusion
without blocking any task

• This is only useful in kernel programming

• Remember: in general cases, busy-waiting is
bad!

• So, the kernel provides a spinning lock mechanism

• To be used when sleeping/blocking is not an
option

• Originally developed for multiprocessor systems

Spinlocks - The Origin

Real-Time Operating Systems and Middleware Kernel Locking

• spinlock: Spinning Lock

• Protects shared data structures in the kernel

• Behaviour: similar to mutex (locked / unlocked)

• But does not sleep!

• Basic idea: busy waiting (spin instead of blocking)

• Might neeed to disable interrupts in some cases

Spinlocks - Operations

Real-Time Operating Systems and Middleware Kernel Locking

• Basic operations on spinlocks: similar to mutexes

• Biggest difference: lock() on a locked spinlock

• lock() on an unlocked spinlock: change its state

• lock() on a locked spinlock: spin until it is
unlocked

• Only useful on multiprocessor systems

• unlock() on a locked spinlock: change its state

• unlock() on an unlocked spinlock: error!!!

Spinlocks - Implementation

Real-Time Operating Systems and Middleware Kernel Locking

int lock = 1;

void lock(int *sl)
{
while (TestAndSet(sl, 0) == 0);

}

void unlock(int *sl)
{
*sl = 1;

}

A possible algorithm
(using test and set)

lock:
decb %0
jns 3

2:
cmpb $0,%0
jle 2
jmp lock

3:
...

unlock:
movb $1,%0

Assembler implemen-
tation (in Linux)

Spinlocks and Livelocks

Real-Time Operating Systems and Middleware Kernel Locking

• Trying to lock a locked spinlock results in spinning
⇒ spinlocks must be locked for a very short time

• If an interrupt handler interrupts a task holding a
spinlock, livelocks are possible...

• τi gets a spinlock SL

• An interrupt handler interrupts τi...

• ...And tries to get the spinlock SL

• ⇒ The interrupt handler spins waiting for SL

• But τi cannot release it!!!

Avoiding Livelocks

Real-Time Operating Systems and Middleware Kernel Locking

• Resource shared with ISRs→ possible livelocks

• What to do?

• The ISR should not run during the critical
section!

• When a spinlock is used to protect data structures
shared with interrupt handlers, the spinlock must
disable the execution of such handlers!

• In this way, the kernel cannot be interrupted
when it holds the spinlock!

Spinlocks in Linux

Real-Time Operating Systems and Middleware Kernel Locking

• Defining a spinlock: spinlock t my lock;

• Initialising: spin lock init(&my lock);

• Acquiring a spinlock: spin lock(&my lock);

• Releasing a spinlock: spin unlock(&my lock);

• With interrupt disabling:

• spin lock irq(&my lock),
spin lock bh(&my lock),
spin lock irqsave(&my lock, flags)

• spin unlock irq(&my lock), ...

Spinlocks - Evolution

Real-Time Operating Systems and Middleware Kernel Locking

• On UP systems, traditional spinlocks are no-ops

• The irq variations are translated in cli/sti

• This works assuming only on execution flow in the
kernel⇒ non-preemptable kernel

• Kernel preemptability changes things a little bit:

• Preemption counter, initialised to 0: number of
spinlocks currently locked

• spin lock() increases the counter

• spin unlock() decreases the counter

Spinlocks and Kernel Preemption

Real-Time Operating Systems and Middleware Kernel Locking

• preemption counter: increased when entering a
critical section, decreased on exit

• When exiting a critical section, check if the
scheduler can be invoked

• If the preemption counter returns to 0,
spin unlock() calls schedule()...

• ...And returns to user-space!

• Preemption can only happen on spin unlock()
(interrupt handlers lock/unlock at least one
spinlock...)

Spinlocks and Kernel Preemption

Real-Time Operating Systems and Middleware Kernel Locking

• In preemptable kernels, spinlocks’ behaviour
changes a little bit:

• spin lock() disables preemption

• spin unlock() might re-enable preemption (if
no other spinlock is locked)

• spin unlock() is a preemption point

• Spinlocks are not optimised away on UP anymore

• Become similar to mutexes with the Non-Preemptive
Protocol (NPP)

• Again, they must be held for very short times!!!

Sleeping in Atomic Context

Real-Time Operating Systems and Middleware Kernel Locking

• atomic context: CPU context in which it is not
possible to modify the state of the current task

• Interrupt handlers

• Scheduler code

• Critical sections protected by spinlocks

• . . .

• Do not call possibly-blocking functions from atomic
context!!!

	Critical Sections in Kernel Code
	Enforcing Mutual Exclusion
	Blocking is Bad When...
	Summing up...
	Spinlocks - The Origin
	Spinlocks - Operations
	Spinlocks - Implementation
	Spinlocks and Livelocks
	Avoiding Livelocks
	Spinlocks in Linux
	Spinlocks - Evolution
	Spinlocks and Kernel Preemption
	Spinlocks and Kernel Preemption
	Sleeping in Atomic Context

