Kernel Critical Sections

Real Time Operating Systems and Middleware

Luca Abeni
| uca. abeni @Qnitn. It

Critical Sections in Kernel Code

e Old Linux kernels used to be non-preemptable...

e Kernel = Big critical section

e Mutual exclusion was not a problem...

e Then, multiprocessor systems changed everything

e First solution: Big Kernel Lock «+ very bad!

e Removed BKL, and preemptable kernels, ...

e Multiple tasks can execute inside the kernel
simultaneously = mutual exclusion is an issue!

e Multiple critical sections inside the kernel

Real-Time Operating Systems and Middleware Kernel Locking

Enforcing Mutual Exclusion

e Mutual exclusion is traditionally enforced using
mutexes

e Mutexes are blocking synchronisation objects

e A task trying to acquire a locked mutex is
blocked. ..

e .. .And the scheduler is invoked!

e Good solution for user-space applications...

e But blocking is sometimes bad when in the kernel!

Real-Time Operating Systems and Middleware Kernel Locking

Blocking i1s Bad When...

e Atomic Context

e Code In “task” context can sleep (task blocked)

e .. .But some code does not run In a task context
(example: IRQ handlers)!

e Other situations (ex: interrupts disabled)

e Efficiency
e small critical sections — using mutexes, a task
would block for a very short time

e Busy-waiting can be more efficient (less context
switches)!

Real-Time Operating Systems and Middleware Kernel Locking

e In some particular situations. . .

e .. .We need a way to enforce mutual exclusion
without blocking any task
e This is only useful in kernel programming

e Remember: in general cases, busy-waiting Is
bad!

e S0, the kernel provides a spinning lock mechanism
e To be used when sleeping/blocking is not an
option
e Originally developed for multiprocessor systems

Real-Time Operating Systems and Middleware Kernel Locking

Spinlocks - The Origin

o lock: Spinning Lock

e Protects shared data structures in the kernel
e Behaviour: similar to mutex (locked / unlocked)
e But does not sleep!

e Basic idea: busy waiting (spin instead of blocking)

e Might neeed to disable interrupts in some cases

Real-Time Operating Systems and Middleware Kernel Locking

Spinlocks - Operations

e Basic operations on spinlocks: similar to mutexes

e Biggest difference: | ock() on a locked spinlock

e | ock() on an unlocked spinlock: change its state

e | ock() on alocked spinlock: until it 1s
unlocked

e Only useful on multiprocessor systems

e unl ock() on alocked spinlock: change its state

e unl ock() on an unlocked spinlock: error!!!

Real-Time Operating Systems and Middleware Kernel Locking

Spinlocks - Implementation

Int | ock = 1;
void | ock(int =*sl)

} whil e (Test AndSet (sl ,

voi d unl ock(int =sl)

{
}

*s| = 1:

0)

9| A possible algorithm

(using test and set)

| ock:
decb %9
_jns 3

'cnpb $0, %O
jle 2
] mp | ock

2

unl ock:
novb $1, %O

Real-Time Operating Systems and Middleware

Assembler implemen-
tation (in Linux)

Kernel Locking

Spinlocks and Livelocks

e Trying to lock a locked spinlock results in spinning
= spinlocks must be locked for a very short time

e If an interrupt handler interrupts a task holding a
spinlock, livelocks are possible...
e 7; gets a spinlock SL
e An interrupt handler interrupts ;...
e ...And tries to get the spinlock SL
e = The Interrupt handler spins waiting for S'L
e But 7; cannot release it!!!

Real-Time Operating Systems and Middleware Kernel Locking

Avoiding Livelocks

e Resource shared with ISRs — possible livelocks

e What to do?

e The ISR should not run during the critical
section!

e WWhen a spinlock Is used to protect data structures
shared with interrupt handlers, the spinlock must
disable the execution of such handlers!

e In this way, the kernel cannot be interrupted
when it holds the spinlock!

Real-Time Operating Systems and Middleware Kernel Locking

Spinlocks in Linux

e Defining a spinlock: spi nl ock_t ny_l ock;

e |nitialising: spi n_I ock_i nit (&my_| ock);

e Acquiring a spinlock: spi n_| ock(&y | ock) ;

e Releasing a spinlock: spi n_unl ock(&y _| ock) ;

e With interrupt disabling:

e SPI N_
Spl Nn_
Spl Nn_

OC
OC
OC

K_I rq(&y_l ock),
K_bh(&y _ ock),

K_I rgqsave(&ny_| ock, fl ags)

e spi n_unl ock. rqg(&y _| ock), ...

Real-Time Operating Systems and Middleware Kernel Locking

Spinlocks - Evolution

e On UP systems, traditional spinlocks are no-ops

e The _I r g variations are translated incl i1 /st |

e This works assuming only on execution flow in the
kernel = non-preemptable kernel

e Kernel preemptability changes things a little bit:

° ~Initialised to 0: number of
spinlocks currently locked
e spi n_| ock() Increases the counter

e spi n_unl ock() decreases the counter

Real-Time Operating Systems and Middleware Kernel Locking

Spinlocks and Kernel Preemption

e preemption counter: increased when entering a
critical section, decreased on exit

e When exiting a critical section, check If the
scheduler can be invoked

e If the preemption counter returns to 0,
spi n_unl ock() calls schedul e() ...

e ...And returns to user-space!

e Preemption can only happen on spi n_unl ock()
(interrupt handlers lock/unlock at least one
spinlock...)

Real-Time Operating Systems and Middleware Kernel Locking

Spinlocks and Kernel Preemption

e In preemptable kernels, spinlocks’ behaviour
changes a little bit:

e spi n_| ock() disables preemption

e Spi n_unl oc
no other spin

e Spi n_unl oc

K() might re-enable preemption (if
ock Is locked)

K() Is a preemption point

e Spinlocks are not optimised away on UP anymore

e Become similar to mutexes with the Non-Preemptive

Protocol (NPP)

e Again, they must be held for very short times!!!

Real-Time Operating Systems and Middleware Kernel Locking

Sleeping In Atomic Context

e atomic context: CPU context in which it is not
possible to modify the state of the current task

e Interrupt handlers
e Scheduler code
e Critical sections protected by spinlocks

e Do not call possibly-blocking functions from atomic
context!!!

Real-Time Operating Systems and Middleware Kernel Locking

	Critical Sections in Kernel Code
	Enforcing Mutual Exclusion
	Blocking is Bad When...
	Summing up...
	Spinlocks - The Origin
	Spinlocks - Operations
	Spinlocks - Implementation
	Spinlocks and Livelocks
	Avoiding Livelocks
	Spinlocks in Linux
	Spinlocks - Evolution
	Spinlocks and Kernel Preemption
	Spinlocks and Kernel Preemption
	Sleeping in Atomic Context

